
  

RESEARCH INFORMATION LETTER 1002: 

Identification and Analysis of Failure 
Modes in Digital Instrumentation and 

Controls (DI&C) Safety Systems—Expert 
Clinic Findings, Part 2 

EXECUTIVE SUMMARY 

In Staff Requirements Memorandum (SRM) M080605B, the Commission directed the staff to 
“report the progress made with respect to identifying and analyzing digital I&C failure modes.”  
The desired outcome of this directive was to better enable the staff to make safety assurance 
determinations of digital safety systems. 

Three research information letters (RILs), RIL-1001, RIL-1002, and RIL-1003, address the 
Commission’s SRM.  RIL-1001 (part 1) dated May 4, 2011 discussed uncertainties that impede 
reasonable assurance determinations of DI&C safety systems containing software.  RIL-1002 
(part 2) discusses the staff’s progress with respect to identifying and analyzing DI&C failure 
modes.  RIL-1003 (part 3) is scheduled to be completed in early 2015.  It will discuss the 
feasibility of applying failure mode analysis to quantification of risk associated with DI&C 
systems. 
 
Eleven sets of DI&C safety system failure modes are identified and compared in this report.  
The staff’s work resulted in one synthesized generic set of system level DI&C failure modes.  
The staff’s analysis found that the synthesized failure modes could be used beneficially to 
support, in part, the development of the design basis of a system, and in the analysis of 
performance-degradation during operation. 
 
The staff’s analysis also found, however, that the synthesized set may not be suitable for 
determining the level of safety of a DI&C safety system.  The findings indicate that there may be 
additional system—specific failure modes that have not been identified.  Furthermore, some or 
all of the failure modes identified may not manifest in a particular system.  As such, the 
synthesized set of failure modes may not be helpful for purposes of making determinations of 
reasonable assurance of safety.  The NRC staff is investigating alternative analytical 
approaches to support needs for making better determinations of safety assurance; these 
investigations will continue in future work. 
 
This RIL also includes results from staff investigations on the efficacy of Software Fault Modes 
and Effects Analysis (SFMEA) as a method for identifying faults leading to DI&C system failure, 
i.e., performance – degradation of a safety function.  Six distinct SFMEA methods were found, 
but the staff did not find a sound technical basis to require NRC applicants and licensees to 
perform an SFMEA similar to any of these methods.  NUREG/IA-0254, “Suitability of Fault 
Modes and Effects Analysis for Regulatory Assurance of Complex Logic in Digital 
Instrumentation and Control Systems,” provides additional information supporting this 
conclusion. 
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The staff used an expert elicitation process to establish its findings as described above.  The 
process involved collecting and analyzing information from a diverse panel of safety critical 
digital system experts.  These experts were consulted in 2010.  In addition, the staff also 
reviewed over 150 public and nonpublic documents and conducted additional interviews with 
experts who were not a part of the elicitation process. 
 
The results of the staff’s efforts have been shared with researchers that are both internal and 
external to the NRC.  Specifically, the results have been shared with NRC experts conducting 
research on DI&C probabilistic risk assessment (PRA) methods and researchers from the 
Electrical Power Research Institute (EPRI) who are conducting research on hazard analysis 
methods.  This RIL does not address issues related to quantifying the reliability of digital 
systems.  The Division of Risk Assessment within the Office of Nuclear Regulatory Research 
(RES) is evaluating appropriate failure modes for the development of probabilistic models for 
DI&C systems. 
 
In summary, the staff finds that the failure modes identified in this RIL may not be suitable for 
determining the level of safety of a DI&C safety system.  However, there could be some 
potential benefits if the identified failure modes are applied in the development of the design 
basis of a DI&C system and in analysis of performance degradation modes.  No additional work 
will be performed by the NRC to identify additional failure modes.  NRC will continue to monitor 
external research on identification of digital system failure modes and seek opportunities to 
share any insights found with its stakeholders. 
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1. INTRODUCTION 

This RIL is a result of Commission directions to “report the progress made with respect to 
identifying failure modes” for use in assurance of digital safety systems as stated in Staff 
Requirements Memorandum (SRM) M080605B, “Meeting with Advisory Committee on Reactor 
Safeguards (ACRS),” dated June 26, 2008 [1].  Findings from staff investigations on the efficacy 
Software Fault Modes and Effects Analysis (SFMEA)1 for use in software assurance are also 
included in this RIL. 

This research information letter (RIL) is the second in a series of three letters (RIL-1001, 
RIL-1002, and RIL-1003) that collectively respond to digital instrumentation and control (DI&C) 
related directions in the SRM.  RIL-1001, “Software -Related Uncertainties in the Assurance of 
Digital Safety Systems – Expert Clinic Findings, Part 1,” was published on May 4, 2011 [3].  
RIL-1003 will discuss the feasibility of applying failure mode analysis to quantification of risk 
associated with digital safety systems. 

The insights described in this letter are interim results of a broader research effort to support 
improved regulatory guidance for staff to make reasonable assurance determinations of DI&C 
safety systems. 

1.1. Objectives 

The objectives of this RIL are to: 

1. “Report the progress made with respect to identifying and analyzing DI&C failure modes,” 
as directed by the Commission in SRM M080605B [1]. 

 
2. Report the findings resulting from the staff investigation on “the efficacy of SFMEA as a 

method for identifying faults leading to system failure,” i.e., performance-degradation of a 
safety function2 in response to ACRS recommendation #4 as detailed in [4]. 

 
3. Formally transfer knowledge regarding these research results to licensing reviewers in the 

Office of Nuclear Reactor Regulation (NRR) and the Office of New Reactors (NRO). 
 

4. Add to the basis established in RIL-1001 for research results to be reported in RIL-1003, 
“Feasibility of Applying Failure Mode Analysis to Quantification of Risk Associated with 
Digital Safety Systems—Expert Clinic Findings, Part 3.” 

1  Whereas the term, “failure modes and effects analysis (FMEA)” is used in the context of the 
overall DI&C system, the corresponding concept for software (and other forms of complex logic) 
in a DI&C system is “fault modes and effects analysis.”  Logic does not fail in the traditional sense 
of degradation of a hardware component but the system could fail, due to a pre-existing logic 
fault, triggered by some combination of inputs and system-internal conditions.” [2] (See Appendix 
A) 

2  This objective satisfies the staff commitment to the ACRS detailed in NRC staff response letter 
dated December 7, 2010 [4] (See Background). 
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1.2. Scope 

The scope of this research is limited to organizing existing knowledge about identified failure 
modes for purposes of determining the level of safety of a digital I&C safety system in an NPP.  
The use of the failure modes for other purposes or applications is outside the scope of this work. 

Related topics such as guidance for reviewing specific methods for failure mode analysis (such 
as Failure Modes and Effects Analysis), system hazard analysis, development assurance, 
defensive measures, preventative approaches, and hardware/software interactions are outside 
the scope of this RIL and are addressed or will be addressed through ongoing or future Office of 
Nuclear Regulatory Research (RES) efforts with input from the NRC licensing offices. 

Although this RIL is not intended to address issues related to quantifying the reliability of digital 
systems, the results and conclusions may provide insights for probabilistic risk assessment 
purposes in related RES efforts (see Appendix E). 

2. ORGANIZATION OF REMAINING SECTIONS 

Section 3 summarizes the history that led to this RIL.  Section 4 presents the regulations and 
guidance pertinent to the content in this report.  Section 5 describes the research method.  
Section 6 presents the findings.  Section 7 summarizes the conclusions and presents the next 
steps.  A glossary of terms used is presented in Section 8.  Section 9 through Section 11 list 
respectively the experts consulted, literature cited, and literature reviewed but not cited during 
the research that led to this document. 

The appendices contain information that supports and supplements the discussion presented in 
the main body of this document.  Appendix A discusses the usage of the terms fault, error, 
failure, event, state, and mode in the context of characterizing behavior.  Appendix B presents 
the fault and fault modes found.  Appendix C presents several methods that can be called 
Software Fault Modes and Effects Analysis.  Appendix D discusses the use of failure modes to 
organize operating experience.  An overview of research on failure-mode analysis for PRA 
activities in which the NRC staff is involved in are discussed in Appendix E. 
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3. BACKGROUND 

On June 26, 2008, the Commission issued SRM-M080605B directing the staff to “report the 
progress made with respect to identifying and analyzing digital I&C failure modes, and discuss 
the feasibility of applying failure mode analysis to quantification of risk associated with digital 
I&C” [1].  The Office of Nuclear Reactor Regulation (NRR) took the lead in effecting the 
response with support from RES.  On June 6, 2009, the Commission was orally briefed about 
the progress [5]. 

The Commission direction to the staff has its roots in long standing agency wide efforts to risk 
inform the licensing process [6].  As part of that effort, the RES staff began supporting 
investigations, such as NUREG/CR-6962, “Traditional Probabilistic Risk Assessment Methods 
for Digital Systems,” on state-of-the art probabilistic risk assessment (PRA) methodologies for 
software based DI&C systems [7]. 

The following information provides an overview (aided with Figure 1) of the history of the 
initiating concerns and how these concerns are addressed by NRC research activities.  In 
Figure 1, white boxes represent documents that communicate the concerns resulting in staff 
work efforts, shaded boxes annotated with a circle represent ongoing work, dark-shaded boxes 
represent completed work, and boxes annotated with a star represent future work. 

 

Figure 1 Inter-related research work products 

The Advisory Committee on Reactor Safeguards (ACRS) raised concerns at various meetings 
that digital system failure modes were not well understood, and formally brought the concerns to 
the Commission’s attention [8] after reviewing DI&C ISG-03, “Interim Staff Guidance on Review 
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of New Reactor Digital Instrumentation and Control Probabilistic Risk Assessments”[9] on 
April 11, 2008 [10].  The ACRS discussed its recommendations with the Commission on June 5, 
2008 [11] which led to SRM-M080605B [1]. 

The NRC research activity, “Analytical Assessment of DI&C Systems" described in 
Section 3.1.5 of the Digital Systems Research Plan fiscal year (FY) 2010 - FY2014 [12], was 
formulated partly to support the NRR response to the Commission.  Execution of this plan 
included expert elicitation activities, which are described in Appendix B of RIL-1001 [3].  The 
NRC staff also performed additional research to validate these findings through a literature 
review and discussions with experts who were not part of the elicitation activities described in 
Appendix B of RIL-1001 [3]. 

Section 3.1.5 of [12] was also intended to address, in part, Objective 2 (stated above), as a 
response [4] to ACRS’ suggestion that “Software FMEA methods should be investigated and 
evaluated to examine their suitability for identifying critical software failures that could impair 
reliable and predictable DI&C performance” [13].  Further amplifying the need for this research, 
the NRC licensing staff has also raised concerns that a complete set of failure modes is not 
known and the frequencies of occurrence for known digital system failure modes are not 
available.3 

To identify research issues of common interest and collaboration opportunities under a bilateral 
agreement between the NRC and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 
the latter’s DI&C experts reviewed the NRC Digital Systems Research Plan and indicated 
interest in the research described in Section 3.1.5.  A collaborative effort was conducted on one 
of the topics of common interest, Software Fault Modes and Effects Analysis (SFMEA), which 
primarily contributed to Objective 2  and resulted in NUREG/IA-0254 [2].  The results of the 
collaboration with IRSN provided an independent check on the information obtained from the 
NRC expert elicitation activities about the efficacy of SFMEA as a method for identifying faults 
leading to system failures impairing a safety function.  The effort also resulted in the 
identification of a set of DI&C system failure modes which are discussed in Section 6.1.1.1. 

An overview of ongoing work and future work in Figure 1 is discussed in Section 7. 
  

3  Data from operating experience cannot be aggregated and is statistically insignificant, spotty, and 
scattered.  The staff has indicated that operating experience and failure mode data provided by 
industry to support claims of digital equipment reliability in submittals such as Benefits Associated 
with Expanding Automatic Diverse Actuation System Functions [14] has been insufficient [15]. 
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4. APPLICABLE NRC REGULATIONS AND GUIDANCE ON FAILURE 
MODE ANALYSES 

Title 10, Chapter 1, of the Code of Federal Regulations (CFR), regulatory guides (RGs), and 
other NRC-generated documents require or endorse only one method for failure mode analysis.  
This method is called a Failure Mode and Effects Analysis (FMEA).  FMEA documentation has 
been accepted to support determinations of reasonable assurance for I&C hardware.  The 
regulations and guidance do not provide prescriptive acceptance criteria on the format, or 
content of a failure mode analysis [16]. 

The following regulations directly mention and require identification of failure modes or failure 
mode analyses: 

• 10 CFR 50.34(f)(2)(xxii) states that any application regarding B&W designed plants shall 
“Perform a failure modes and effects analysis of the integrated control system (ICS) to 
include consideration of failures and effects of input and output signals to the ICS.” 

• 10 CFR 50.73(b)(2)(ii)(E) states that Licensee Event Reports shall contain “The failure 
mode, mechanism, and effect of each failed component, if known.” 

• 10 CFR Part 50, “Domestic Licensing of Production and Utilization Facilities,” 
Appendix A, III., “Protection and Reactivity Control Systems” 

General Design Criterion 23 – “Protection System Failure Modes” states that the 
protection system shall be designed to fail into a safe state or into a state demonstrated 
to be acceptable on some other defined basis if conditions such as disconnection of the 
system, loss of energy (e.g., electric power, instrument air), or postulated adverse 
environments (e.g., extreme heat or cold, fire, pressure, steam, water, and radiation) are 
experienced. 

• 10 CFR 50, Appendix K, “ECCS Evaluation Models,” I.D.1 — “Single Failure Criterion,” 
states that “An analysis of possible failure modes of ECCS equipment and of their 
effects on ECCS performance must be made.” 

 
Failure mode identification and analysis has also been used to satisfy the following regulations: 
 
• 10 CFR 50.55a(h), “Protection and Safety Systems,” incorporates by reference IEEE 

Standard 603-1991 “IEEE Standard Criteria for safety systems for Nuclear power 
Generating Stations4,” which in Section 5.1, “Single Failure Criterion,” states that: 
 
“The safety systems shall perform all safety functions required for a design basis event 
in the presence of:  (1) any single detectable failure within the safety systems concurrent 
with all identifiable but non-detectable failures; (2) all failures caused by the single 
failure; and (3) all failures and spurious system actions that cause or are caused by the 

4  Regulations in10 CFR Part 50.55a(h)(1) incorporates by reference IEEE Std 603-1991, including 
the correction sheet dated January 30, 1995. 
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design basis event requiring the safety functions.  The single-failure criterion applies to 
the safety systems whether control is by automatic or manual means.” 

In addition to Section 5.1, Clause 4 includes the following statements: 

4. Safety system designation.  A specific basis shall be established for the design 
of each safety system of the nuclear power generating station.  The design basis 
shall also be available as needed to facilitate the determination of the adequacy 
of the safety system, including design changes.  The design basis … shall 
document as a minimum: 

… 

4.8 The conditions having the potential for functional degradation of safety 
system performance and for which provisions shall be incorporated to retain the 
capability for performing the safety functions  …5 

 
• 10 CFR 50, Appendix A, III, “Protection and Reactivity Control Systems” 

 
Criterion 21 – Protection System Reliability and Testability.  The protection system shall 
be designed for high functionality reliability and in-service testability commensurate with 
the safety functions to be performed.  Redundancy and independence designed into the 
protection system shall be sufficient to assure that (1) no single failure results in loss of 
the protection function and (2) removal from service of any component or channel does 
not result in loss of the required minimum redundancy unless the acceptable reliability of 
operation of the protection system can be otherwise demonstrated. 

 
• RG 1.53, Revision 2, “Application of the Single-Failure Criterion to Safety Systems” [17] 

endorses IEEE 379-2000 [18], which suggests that documentation of a single failure 
analysis through an FMEA may be acceptable.  Experience from staff reviews of FMEAs 
has shown that “Each system must be independently assessed to conclude that FMEA 
is sufficiently detailed to provide a useful assessment of the potential failures and effects 
of those failures” [16]. 
 

• Part II of RG 1.70, Revision 3, “Standard Format and Content of Safety Analysis Reports 
for Nuclear Power Plants, LWR Edition” [19] communicates that the staff found it 
acceptable that FMEAs be provided for various systems.  Specific to I&C systems, [19] 
states that FMEAs should be provided for the reactor trip system according to Section 
7.2.2, and engineered safety feature system according to Section 7.3.2.  Specific to 
Control Systems Not Required for Safety of [19], Section 7.7.2, states that “analyses 

5  For emerging digital safety systems, characterized by increasing inter-connectivity, interactions, 
and dependence on software, FMEA does not suffice for satisfying Clause 4.8. FMEA does not 
suffice because “the conditions having the potential for functional degradation of safety system 
performance” are not limited to a failure of some part of the system.  “Functional degradation of 
safety system performance” can occur due to unintended interactions and couplings, even when 
no component of the system fails.  Alternative analytical approaches are needed, for which 
early-stage exploration has started; these investigations should continue.  See Draft RIL-1101 
“Technical basis to review hazard analysis of digital safety systems” [ML13331A003]. 
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should demonstrate that the protection systems are capable of coping with all (including 
gross) failure modes of the control systems.” 
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5. RESEARCH METHOD 

The results presented in this RIL were obtained through an expert elicitation process 
(Section 5.1) and supplemented with subsequent NRC research activities (Section 5.2) to 
strengthen the findings and improve the degree of validity of the reported results. 

5.1. NRC Expert Elicitation  

Information from a select group of experts was captured in individual elicitation interviews, group 
discussions held during a 2-day expert clinic (see Appendix B of RIL-1001 [3]), and post-clinic 
discussions.  Table 14 (Section 09) lists the experts who participated in this elicitation process, 
their affiliation, and their initials.  Information provided by interviewed experts is cited with the 
use of their initials in the remainder of this RIL (e.g., [AW] stands for Alan Wassyng). 

5.2. Supplemental NRC Research Activities 

The NRC staff also sought information from other sources because the expert elicitation did not 
result in a set of digital safety system failure modes for use in determinations of reasonable 
assurance of digital safety systems.  Specifically, additional research was needed to find failure 
modes appropriate for evaluating systems like those described in new reactor licensing 
applications.6  The supplemental information was also reviewed to validate that the information 
obtained was representative of the larger DI&C community. 

The staff reviewed more than 150 publications from various technical meetings, conferences, 
journals, and non-published documents from organizations7 that have worked on or are 
performing work on the topics addressed in this RIL.  The literature review included Software 
Fault Modes and Effects Analysis (SFMEA) - related publications.  Results and insights also 
were obtained from licensee and applicant-submitted documents, NRC safety evaluation 
reports, the collaborative effort with IRSN, and other ongoing research activities.8  Additional 
experts, not present at the expert elicitation activities, also were engaged (See Section 09, 
Table 15).  The staff sought diverse perspectives through these supplemental research activities 
to improve validity of the results reported in this RIL. 

6  Systems that included features outside previous operating experience such as more software, 
interconnections, interactions, and potential feedback paths. 

7  Such as NASA, Jet Propulsion Laboratory, etc. 
8  See Appendix E for a description of PRA related work and the Halden Research Project 

Collaboration. 
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6. FINDINGS 

Section 6.1 presents the DI&C safety system (Objective 1) failure modes identified.  Section 6.2 
reports the findings on the efficacy of Software Fault Modes and Effects Analysis (SFMEA) as a 
method for identifying faults leading to system failures impairing a safety function (Objective 2). 

The information obtained included some terms that had multiple meanings in the sources cited 
and referenced.  For the purpose of integrating information drawn from these sources and 
references unambiguously, more specific (narrower) definitions of some terms have been 
selected.  Please see Section 8 Glossary and Appendix A.  Efforts outside the scope of this RIL 
continue toward a consistent vocabulary across internal and external stakeholders and relevant 
standards. 

6.1. Digital System Failure Modes Findings 

The surveyed technical community has not identified a complete set of (generic or “standard”) 
digital system failure modes suitable for use in reasonable assurance determinations in a digital 
system like those seen in recent new reactor licensing applications (see Footnote 8).  Some 
experts indicated that it is unlikely that anyone can identify a complete set of failure modes that 
can occur in a moderately complex digital system [MH, AW, PM, DC]9.  Dr. Michael Holloway 
[MH] summarized that “A comprehensive set depends on the complexity of the system; for any 
system that is moderately complex, you can never be sure that you’ve got a comprehensive 
set.”  A comprehensive, complete set is needed to ensure that no critical unanalyzed conditions 
are missed during a regulatory review of a Failure Mode and Effects Analysis (FMEA).  
STUK [20] also reported that “software failure modes are generally unknown—software modules 
do not fail, they only display incorrect behavior.” 

As reported in [21], many companies that develop safety critical systems in other industries 
(e.g., aerospace and automotive industries) use two or three generic failure modes10 for 
analysis in the early stages of development.  Two or three high-level generic failure modes, 
however, are not sufficiently informative for use in assurance of a DI&C safety system11 with 
more software, interconnections, interactions, and potential feedback paths than systems for 
which operating experience has been accumulated. 

Section 6.1.1 presents system level DI&C failure modes found through the expert elicitation 
process and supplemental research activities.12  The failure modes identified by each source 

9  See Table 14 and Table 15 to decode expert initials.  Information provided by interviewed experts 
is cited by the use of their initials in this RIL. 

10  Examples provided in this reference include: function not provided when required; function 
provided when not required; function incorrect [21]. 

11  NRC sponsored Brookhaven National Laboratory that included another set of three generic failure 
modes:  Failure to generate a signal in time (omission failure), Spurious signal (generation of 
signal when it is not required), and Adverse effects on other functions (systems, operators).  They 
cautioned, however, that for PRA “the level of modeling detail is established by the objectives of 
the study and the resources available” [22]. 

12  Readers note that the failure modes reported in this section may also be reported in the non-cited 
references.  See Section 11.0. 
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are presented as separate sets (Sets A through K shown in Table 1 through Table 11); patterns 
are seen across these sets.  For the purpose of reporting the progress made with respect to 
identifying digital system failure modes (Objective 2) and to summarize what has been learned, 
the staff synthesized information gleaned from sets A through K shown in Table 1 through Table 
11 into one generic13 set (Set L).  Section 6.1.2 presents this synthesis of identified generic 
digital safety system failure modes.  This study does not claim that Set L is complete.  A specific 
system may exhibit some failure mode not identified in Set L.  This study does not claim that Set 
L is the best possible synthesis for all kinds of purposes; other synthesized characterizations 
are possible and may be useful for other purposes.  However, for the purpose of NPP safety 
system analysis and safety assurance, Set L is more informative than Sets A-K; the extent of its 
utility will be explored in future work. 

There are other ongoing efforts at the NRC and among stakeholder organizations to identify and 
analyze failure modes for different objectives and purposes.  A description of the NRC research 
projects is provided in Appendix E:  Failure Mode Related Efforts by NRC PRA Staff and Other 
Stakeholders.  Descriptions of research from stakeholder organizations, such as work reported 
in the Electrical Power Research Institute’s (EPRI’s)  “Hazard Analysis Methods for Digital 
Instrumentation and Control Systems” [23], is integrated where appropriate in the body or 
appendices of this report.14 

6.1.1. Digital System Failure Modes Identified 

Sections 6.1.1.1 through 6.1.1.10 provide an overview of different failure modes as 
characterized in various sources.  Discussions on the utility of these sets of failure modes for 
the purpose of organizing data from operating experience of unwanted and possibly unsafe 
behaviors of a digital safety system of a kind that may be used in NPPs are also included. 

The primary focus is on identified system-level functional failure modes, in terms of behavior 
change, as manifested at the system output.  Some failure modes found were characterized in 
the context of software or some other component, but are analyzed here for insights into how 
system-level failure modes can be characterized.  The technical community does not consider 
these sets of failure modes standard or complete. 

6.1.1.1. Reference Set A - NRC/IRSN Collaboration 

Table 1 shows a set of failure modes, Reference Set A, elicited from IRSN [2].  The failure 
modes are characterized in terms of behavior change, as manifested at the output of a software 
module.  This set was selected as the baseline (reference set) because it was the most 
informative characterization of known digital system failure modes before work on RIL-1002 
began. 

 

13  Generic means that the failure modes apply to a broad range of digital safety systems.  Additional 
failure modes may be found in specific designs. 

14  See Section 6.1.1.11, Footnote 20, and Section B.2.9 for descriptions and insights obtained from 
EPRI’s research. 
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Table 1 Reference Set A - NRC/IRSN Collaboration [2] 

ID Failure Modes Elaboration Remarks 

A.1 Failure to perform the module 
function at the required time 

Deviation from requirement in 
time domain 

Includes: 
• Function completion too 

early 
• Function completion too 

late 
• No function completion 
May not be discovered in 
controlled tests. 

A.2 Failure to perform the module 
function with correct value  

Deviation from requirement in 
value domain 

Application-specific 
examples: 
• value zero 
• value too low 
• value too high 
• value stuck at previous 

A.3 Performance of an unwanted 
function by the module 

Deviation from expected 
performance of the module 

Application-specific example: 
Module interrupt service 
routine interrupts function 
processing. 
May be difficult to detect 
during system testing 

A.4 Interference or unexpected 
coupling with another module. 

Deviation from expected 
system performance due to 
module interactions 

More prevalent in 
software-reliant complex 
systems and networked 
systems. 

May not be discovered in 
controlled tests or revealed in 
design FMEA. 

Since the set of failure modes is small, it would seem to ease the burden of gathering and 
organizing data from operating experience.  These failure modes, however, are not discernible 
by direct observation of the physical state of the failed system, as in the case of a simple 
electromechanical relay or similar hardware device.  Additional information is needed (e.g., 
run-time history) to determine if the intended function was executed in a timely manner (failure 
mode A.1 in Table 1) or, in the case of a multi-valued output, whether the value was incorrect 
(failure mode A.2 in Table 1). 

Failure mode A.3 occurs when a module performs an unintended or unexpected function, but it 
could also have secondary effects.  For example, the unintended or unexpected function could 
cause the system to respond in a way that deviates from the expected performance of the 
system.  For example, a module could have an integrated function prioritization routine that 
interrupts the cyclic processing of background functions in a manner that causes the 
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background functions to cease operating.  This in turn could cause the system to fail to meet 
schedule constraints on performing background testing functions. 

Failure mode A.4 is a case where a module (module X) may produce a correct, timely output, 
but the output interferes with the performance of another module (module Y) in a system.  
Often, module X and module Y may satisfy their respective specifications when evaluated 
individually or even under integrated testing (which is not exhaustive due to its effort-intensive, 
time-intensive nature).  Even after failure of module Y in operation, it may be difficult to identify 
such interference from the externally observable states of modules X and Y.  Significant 
investigative effort is needed to detect this class of failure modes. 

Reference Set A could be used to aggregate and organize operating experience data to 
estimate the historic frequency at which failure modes A.1, A.2, A.3 and A.4 occurred.  
However, in the case of a complex digital safety system for a NPP, the historic frequency of 
occurrence of failure modes A.1, A.2, A.3, and A.4 (in Table 1) would not be very informative 
about the future likelihood of occurrence because of differences across systems and their 
environments, as explained in Appendix D:  Operating Experience and Failure Modes. 

The same limitation occurs in other sets of failure modes, which are discussed in 
Section 6.1.1.2 through Section 6.1.1.10.  In these sections, Reference Set A is used for 
comparison with characterizations reported in these sections and accompanying tables. 

6.1.1.2. Failure Mode Set B 

In [8], the ACRS provided an “example list” of processor-level “failure modes” as a starting point 
for the NRC’s study to identify a “comprehensive” set of failure modes for a digital safety 
system.  In this example, a “task” implies a “real-time program executing under control of a 
kernel or operating system”; the “real-time program” is some unit of work in the application 
software. 

In Table 2, failure mode B.1 through failure mode B.6 can be abstracted into the behavior 
change of a digital safety system (within which these tasks are executing), as manifested at its 
output, in the following manner.  Failure modes B.1, B.2, B.3, B.4, and B.6 can be mapped (⇒) 
into failure mode A.1 (see Table 1).  Failure mode B.5 can be mapped into failure mode A.2.  
Failure mode B.5 also can be mapped into failure mode A.3.  However, the characterization of 
failure mode B.5, by itself, does not provide enough information to determine whether the 
system-level effect is failure mode A.2 or failure mode A.3.  While Set B may be useful for 
diagnostic analysis at a component level, its value addition over Reference Set A is unclear for 
the purpose of organizing operating experience data. 
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Table 2 Failure Mode Set B [8]. 

ID Failure Modes Elaboration Remarks/Mapping 

B.1 Task Crash The control software task 
exits unexpectedly. ⇒A.2 

B.2 Task Hang   The process goes into an 
infinite loop. ⇒A.1 

B.3 Task Late Response 
The output of the task 
exceeds the specified 
response time. 

⇒A.1 

B.4 Task Early Response   The output of the task is too 
early ⇒A.1 

B.5 Task Incorrect Response 
The output of the task is 
timely but violates 
specifications. 

⇒{A.2 or A.3} 

B.6 Task No Response 
There is no output from the 
task (but the task is not 
suspended). 

⇒A.1 

Also, there could be some other kind of task-level “misbehavior” that prevents progress of 
execution of an application program without anything “failing” (e.g., a task waiting or blocked for 
something else).  The wait could be indefinite, in case of a deadlock condition.  Consider 
collecting experiential data about digital system failures at such a level of detail:  First, the set of 
“failure modes” would have to be expanded to cover missed cases, such as those discussed 
above.  Next, each failure incident would have to be analyzed to identify the particular “mode.”  
In current practice, such information is not available.  Secondly, the information may not be 
enough to determine future likelihood of occurrence from past frequency of occurrence for the 
same reasons that were mentioned in the discussion for Table 1 above. 

6.1.1.3. Failure Mode Set C  

In “Effective Application of Software Safety Techniques for Automotive Embedded Control 
Systems,” [24], which is based on SAE Standard ARP 5580 [25] and tried in the automotive 
component industry, failure mode set {C.1, C.2, C.3, C.4} is considered applicable to all 
software components.  As shown in Table 3, failure mode C.1 is mappable into failure mode 
A.1.  With failure mode C.2, if no output is produced, the failure mode corresponds to {B.1 or 
B.2 or B.6}, all of which map into A.1.  Further, in C.2, if an output is produced, the failure mode 
corresponds roughly to {B.2 or B.6}, both of which map into A.1. 

Failure mode C.3 could correspond to B.3 or B.4 (both mappable into A.1).  Failure mode C.4 
corresponds roughly to B.5 (mappable into A.2 or A.3).  Thus, in Failure Mode Set C, failure 
mode C.1 through failure mode C.4 are not more informative than Reference Set A. 
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In [24], failure modes C.5 and C.6 are considered applicable only to interrupt service routines 
(ISR).  However, failure mode C.5 could apply to any called routine.  Furthermore, if failure 
mode C.5 does not complete or return, it could block the progress of the calling routine or 
program.  The effect is similar to failure mode B.5 above. 

Table 3 Failure Mode Set C [24]. 

ID Failure Modes Elaboration Remarks/Mapping 

C.1 Failure to execute  ⇒A.1 

C.2 Executes incompletely No output produced 
Output produced 

⇒{B.1 or B.2 or B.6}⇒A.1 
⇒{B.2 or B.6}⇒A.1 

C.3 Executes with incorrect timing  
Includes: 
• incorrect activation time 
• incorrect execution time 

⇒A.1 

C.4 Erroneous execution Includes incorrect output 
value 

Similar to B.5. 
⇒{A.2 or A.3} 

C.5 Failure to return 

Subsumes “failure to 
complete” failure mode  
Effect:  Prevents execution of 
tasks with lower priority. 

Similar to B.5. ⇒{A.2 or A.3} 
Applicable only to “interrupt 
service routine” (ISR) type of 
software 

C.6 Returns incorrect priority  

Applicable only to ISR in an 
operating system using 
priority-based scheduling of 
tasks. 

Failure mode C.6 provides more specific information about a misbehaving interrupt service 
routine (ISR).  However, a system-specific analysis is needed to determine the effect on the 
system behavior.  If the analysis finds that system safety is affected, [24] suggests means of 
mitigation be devised.  However, addition of components may create new hazards and may 
increase system complexity.  In contrast, the developer should consider correcting the defect 
(eliminating the failure mode).  If correctness of the original software cannot be assured, it is 
unclear how correctness of the mitigating means could be assured.  While Set C may be useful 
for diagnostic analysis at a component level, its value addition over Reference Set A is unclear 
for the purpose of organizing operating experience data. 

6.1.1.4. Failure Mode Set D  

“Software FMEA Techniques” [26] suggests a generic set of failure modes for consideration at 
the early stage of the system development lifecycle to analyze the effects of failures, identify 
commensurate requirements and constraints, rework the architecture, and iterate until all 
identified failure modes are addressed. 
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Failure Mode Set D was developed from experience in the analysis of automotive embedded 
systems (called electronic control units) for controlling brakes, steering, and engine throttle.  In 
Table 4, failure mode D.1 is an abstraction of all possible combinations of incorrect inputs (i.e., 
the analysis examines the effect of all incorrect sets of inputs).  Similarly, failure mode D.2 is an 
abstraction of all possible combinations of incorrect outputs (i.e., the analysis examines the 
effect of all incorrect sets of outputs).  Failure mode D.2 roughly corresponds to B.5 and C.4. 

Failure modes D.2, D.3, D.4, and D.5 require system design information at a level of detail that 
may not be available at the system architecture design phase or even at the software 
architecture design phase.  Furthermore, system level analysis requires consideration of the 
failure modes of the elements of the system, which, in [26] are the same as the set {C.1, C.2, 
C.3, C.4} discussed above.  Often, this level of detail is not developed at the system and 
software architecture design phases of the development lifecycle for a new system. 

Table 4 Failure Mode Set D [26]. 

ID Failure Modes Elaboration Remarks 

D.1 Input value incorrect  ⟹A.2 

D.2 Output value corrupted  Logically complete set 
Similar to B.5 and C.4 
⟹A.2 or A.3 

D.3 Blocked interrupt  
Does not map to Set A.  This 
level of detail is not available 
at the system level. 

D.4 Incorrect interrupt return  
Includes: 
• incorrect priority 
• failure to return 

Does not map to Set A.  Does 
not map to Set A.  This level 
of detail is not available at the 
system level. 

D.5 Priority errors  
Causality-oriented 
characterization. 

D.6 Resource conflict Logically complete set of 
resource conflicts. 

Causality-oriented 
characterization. 
⇒A.4. 

In [26] and in an interview with the NRC, [PG] cautions about the significant (often prohibitive) 
amount of effort required to perform a FMEA on software elements15.  While Set D may be 
useful for diagnostic analysis at a component level, its value addition over Reference Set A is 
unclear for the purpose of organizing operating experience data. 

6.1.1.5. Failure Mode Set E 

In “Industry Survey of Digital I&C Failures” [27], Korsah, et al., report failure modes identified in 
a variety of surveyed failure databases.  Many of these databases are identified in ANSI/IEEE 

15  Software FMEA requires identification of the failure mode of every algorithm and every variable. 
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Std 500-1984, “IEEE Standard Reliability Data for Pumps and Drivers, Actuators, and Valves” 
[28].  IEEE Std 500-1984 databases have been used by various industries to organize 
instrumentation failure data.  Table 5 summarizes the relationship of the Failure Mode Set E 
failures with the Reference Set A categories. 

Table 5 Failure Mode Set E [27]. 

ID Failure Modes Elaboration Remarks/Mapping 

E.1 Zero or maximum output Original Source:  [28] ⟹A.2  

E.2 No change of output with 
change of input 

Has “no change on demand” 
[28] ⟹A.2  

E.3 Functioned without signal Has “change without 
demand” [28] ⟹A.3 

E.4 No function with signal 
A special case of E.2. 
It could also be the “zero 
output case” of E.1. 

⟹A.2 

E.5 Erratic output Original Source:  [28] 

Could have effects that are 
different from A.2 (output has 
incorrect value, but it may be 
stable) and should be 
considered for inclusion in a 
set more comprehensive than 
A – see Set L in Table 13. 

E.6 High output Original Source:  [28] ⟹A.2 

E.7 Low output Original Source:  [28] ⟹A.2 

E.8 Functioned at improper signal 
level  

May be viewed as a special 
case of E.3 or E.5 
⟹A.3 

E.9 Intermittent Operation 

The term “intermittent” is 
sometimes used for a case 
where failure occurs 
intermittently.  However, 
users logging operational 
experience data might not 
have such a meaning 
consistently. 

Could have effects that are 
different from A.2 (output has 
incorrect value, but it may be 
stable) and should be 
considered for inclusion in a 
set more comprehensive than 
A – see Set L in Table 13. 

Set E lacks the information provided by failure mode A.1 (incorrectness in time) and failure 
mode A.4 (unwanted effect on some other item).  Thus, in this respect, Failure Mode Set E is 
not as informative as Reference Set A.  However, failure mode E.5 and failure mode E.9 could 
have effects that are different from failure mode A.2 (output has incorrect value, but it may be 
stable) and should be considered for inclusion in a set more comprehensive and informative 
than Reference Set A – see Failure Mode Set L in Table 13. 
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6.1.1.6. Failure Mode Set F 

Dr. Sergio Guarro abstracted Failure Mode Set F from databases of anomalies and failures at 
the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory 
(JPL).  Failure mode F.1 is specific to a servo-controlled function and oriented to causality rather 
than behavior change observable at output.  Failure mode F.1 maps to failure mode A.1, failure 
mode A.2, or failure mode A.3, depending on the type of failure.  Failure mode F.2 maps into 
failure mode E.4, which maps into failure mode A.2.  Failure mode F.3 maps into failure mode 
E.4, which maps into failure mode A.2.  Failure mode F.5 could map into any of failure mode 
E.1, failure mode E.2, failure mode E.5, failure mode E.6, or failure mode E.7, which map into 
failure mode A.2 (except failure mode E.5).  Table 6 summarizes the relationship of the Failure 
Mode Set F failures with Reference Set A. 

Table 6 Failure Mode Set F 

ID Failure Modes Elaboration Remarks/Mapping 

F.1 Continuous Control Failure 

Control set point too high 
Control set point too low 
Control algorithm 
overcorrecting 
Control algorithm under 
correcting 

Causality-oriented 
characterization. 
⇒A.1 or 
⇒A.2 or  
⇒A.3 

F.2 Failure to Activate Upon demand ⇒E.4⇒A.2 

F.3 Inadvertent Activation Includes premature 
activation. ⇒A.3 

F.4 Redundancy Management 
Failure  

Application-specific 
examples: 
VMC and SIGI redundancy 
management failure 
Does not map to Reference 
Set A. 

F.5 Failure to Run Correctly  

⇒ A.1, A.2, A.3, or A.4. 
⇒E.1⇒A.2 or   
⇒E.2⇒A.2 or 
⇒E.5 or 
⇒E.6⇒A.2 or 
⇒E.7⇒A.2. 
Application-specific 
examples: 
• Value zero 
• Value too low 
• Value too high 
• Value stuck at previous 

6.1.1.7. Failure Mode Set G  

In “How FMEA Improves Hardware and Software Safety & Design Reuse” [29], Bidokhti 
identifies Failure Mode Set G for a functional FMEA performed at the top-level software 
architecture.  Failure modes G.1, G.2, and G.3 are the same as failure modes C.1, C.2, and 
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C.3, but failure mode G.4, “Errors in the assigned functioning,” is not specific or clear enough to 
be usable consistently.  If the intended meaning is “mistake in allocation of a function to a 
software element,” then the characterization is causality-oriented rather than in terms of 
behavior change, as manifested at the output. 

Bidokhti also mentions other types of FMEA.  For hardware-software interface issues, a set of 
failure modes are identified as failure to update value; incomplete update of value; value update 
occurs at incorrect time; and errors in value or message.  Conceptually, these failure modes 
correspond to G.1, G.2, G.3, and G.4, respectively. 

Table 7 summarizes the relationship of the Failure Mode Set G failures with Reference Set A. 

Table 7 Failure Mode Set G [29] 

ID Failure Modes Elaboration Remarks/Mapping 

G.1 Failure to Execute Conceptually, failure to 
update value ⇒C.1⇒A.1 

G.2 Incomplete Execution Conceptually, incomplete 
update of value 

⇒C.2⇒{B.1 or B.2 or 
B.6}⇒A.1 
⇒C.2⇒{B.2 or B.6}⇒A.1 

G.3 Execution at an incorrect time Conceptually, value update 
occurs at incorrect time ⇒C.3⇒A.1 

G.4 
Errors in the assigned 
functioning 
 

Conceptually, errors in value 
or message 

Does not map to Set A. 
Causality-oriented.  This level 
of detail is not available at the 
system level. 

6.1.1.8. Failure Mode Set H [30] 

In “Failure Modes and Effects Analysis (FMEA) and Systematic Design” [30], Murdoch, et al., 
cluster failures into two groups {H.1, H.2}, which could be viewed as generic failure modes, 
since the authors use the expression, “A system may generally fail in one of two ways.” 
However, H1 is a causality-oriented characterization, and H2 is mappable into A.4.  Failure 
modes H1 and H2 could also be viewed as categories of failures rather than failure modes. 

Table 8 summarizes the relationship of the Failure Mode Set H failures with Reference Set A. 

Table 8 Failure Mode Set H [30]. 

ID Failure Modes Elaboration Remarks/Mapping 

H.1 System Failure resulting from 
component failure H.1 is causality-oriented Does not map to Set A. 

H.2 
Unintended functioning when 
all components are behaving 
according to specification. 

 ⇒A.4 
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6.1.1.9. Failure Mode Set I - FMEA Approach for Reliability Modeling of Digital I&C [31] 

In “A Generic Failure Modes and Effects Analysis (FMEA) Approach for Reliability Modeling of 
Digital Instrumentation and Control (I&C) Systems” [31], Chu, et al., characterize two failure 
modes for analog output signals, I.1 and I.2.  While these modes may be typical of analog 
hardware failures, a system function failure due to software could also result in other incorrect 
values.  Chu et al. characterize four failure modes for digital output signals, I.3, I.4, I.5, and I.6.  
However, only binary valued outputs are considered, even though digital outputs can be 
multi-valued (e.g., motor speed to adjust fluid flow rate).  Thus, the Set, I, by itself, is not 
sufficient for characterizing failure modes of digital safety systems in general. 

Table 9 summarizes the relationship of the Failure Mode Set I failures with Reference Set A. 

Table 9 Failure Mode Set I [31] 

ID Failure Modes Elaboration Remarks/Mapping 

I.1 Signal fails high Applicable to analog signals 

Only binary valued outputs 
are considered even though 
multi-valued digital outputs 
are possible in digital I&C 

safety systems. 

I.2 Signal fails low 
This failure mode includes 
loss of signal.  Applicable to 
analog signals 

I.3 Normally closed, fails closed 
(NCFC) 

Applies to digital signals 
 

I.4 Normally closed, fails open 
(NCFO) 

I.5 Normally open, fails closed 
(NOFC) 

I.6 Normally open, fails open 
(NOFO) 

6.1.1.10. Failure Mode Set J – WGRisk Activities16 [32] 

In “A Summary of Taxonomies of Digital System Failure Modes Provided by the DIGREL Task 
Group” [32], and “Development of Best Practice Guidelines on Failure Modes Taxonomy 
Reliability Assessment of Digital I&C Systems for PSA” [33], Chu, Holmberg, et al., reported 
Failure Mode Set J.  Failure mode J.1 and failure mode J.5 do not appear to provide any 
information more than failure mode J.7.  Failure mode J.6 (causality-oriented) is subsumed in 
failure mode J.5.  Thus, the seven failure modes identified in Failure Mode Set J have 
effect-oriented information equivalent to four failure modes:  J.2, J.3, J.4, and J.7.  Failure mode 
J.2 corresponds to failure mode A.1.  Failure mode J.3 corresponds to failure mode A.3.  Failure 
mode J.4 corresponds to failure mode A.4.  Failure mode J.7 (no actuation signal when 
demanded) may be viewed as a special case of failure mode A.2 (failure to perform the function 
with correct value).  Thus, Failure Mode Set J does not provide any more information than 

16  Note that these failure modes are compiled from intermediate results of ongoing and evolving 
work.  These examples of failure modes compiled for this work were compiled from 10 different 
organizations participating in the WGRISK Group for a Reactor Protection System.  See 
Appendix E, Section E.2 for more information. 
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Reference Set A.  The latter is more comprehensive because failure mode A.2 is more 
comprehensive than failure mode J.7 for the purpose of safety assurance.17 

Table 10 summarizes the relationship of the Failure Mode Set J failures with Reference Set A. 

Table 10 Failure Mode Set J – WGRisk Activities [32] and [33]. 

ID Failure Modes Elaboration Remarks/Mapping 

J.1 Failure to actuate  ⇒A.2 

J.2 Failure to actuate in time  ⇒A.1 

J.3 Spurious actuation  ⇒A.3 

J.4 Adverse effects on other 
functions  ⇒A.4 

J.5 Loss of function  
⇒A.1 or 

⇒A.2 

J.6 Loss of communication Causality-oriented 
⇒J.5⇒A.1, or 

⇒A.2 

J.7  No actuation signal when 
demanded  ⇒A.2 (special case) 

6.1.1.11. Failure Mode Set K 

EPRI’s ongoing Hazard Analysis Methods for Digital Instrumentation and Control Systems 
project, in part, researched, evaluated, and developed different methods for identifying ways in 
which adverse impact on nuclear safety and operability can occur [34].  Industry sponsored this 
work, because plants were experiencing unexpected/unwanted behaviors from some DI&C 
systems, even after extensive FMEAs [35].  EPRI summarized its interim project report [23] in a 
presentation to the ACRS on September 19, 2013 [36].  Some of the methods tried by EPRI do 
not use the term “failure modes” but other terms such as guidewords, deviations, or unsafe 
control actions [23] [36].  Table 11 shows a set of “failure modes” identified in the Functional 
Failure Modes and Effects Analysis method. 

Table 11 Failure Mode Set K [23],[36]  

ID Failure Modes Elaboration Remarks/Mapping 

K.1 No Function  ⇒A.1 

K.2 Partial Function  ⇒A.1 

K.3 Over Function  ⇒A.3 

17  It is acknowledged that Set J is more informative than Reference Set A for diagnostic analysis. 
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K.4 Degraded Function  ⇒A.4 or A.2 

K.5 Intermittent Function  ⇒E.9 no mapping to 
Reference Set A 

K.6 Unintended Function  ⇒A.3 

6.1.1.12. Summary of Failure Mode Correlations to Reference Set A 

Table 12 summarizes the correlation of Failure Mode Set B through Failure Mode Set K with 
Reference Set A.  Readers should note that not all failure modes mapped to Reference Set A.  
Reference Set A does not constitute a complete set of digital system failure modes. 

Table 12 Summary of Failure Mode Correlations to Reference Set A 

ID 

A.1 A.2 A.3 A.4 

Failure to perform 
the module function 
at the required time 

Failure to perform 
the module function 
with correct value 

Performance of an 
unwanted function 
by the module 

Interference or 
unexpected 
coupling with 
another module 

B.1  X   

B.2 X    

B.3 X    

B.4 X    

B.5  X X  

B.6 X    

C.1 X    

C.2 X    

C.3 X    

C.4  X X  

C.5  X X  

C.6     

D.1  X   
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Table 12 Summary of Failure Mode Correlations to Reference Set A 

ID 

A.1 A.2 A.3 A.4 

Failure to perform 
the module function 
at the required time 

Failure to perform 
the module function 
with correct value 

Performance of an 
unwanted function 
by the module 

Interference or 
unexpected 
coupling with 
another module 

D.2  X X  

D.3     

D.4     

D.5     

D.6    X 

E.1  X   

E.2  X   

E.3   X  

E.4  X   

E.5     

E.6  X   

E.7  X   

E.8   X  

E.9     

F.1 X X X  

F.2  X   

F.3   X  

F.4     

F.5 X X X X 
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Table 12 Summary of Failure Mode Correlations to Reference Set A 

ID 

A.1 A.2 A.3 A.4 

Failure to perform 
the module function 
at the required time 

Failure to perform 
the module function 
with correct value 

Performance of an 
unwanted function 
by the module 

Interference or 
unexpected 
coupling with 
another module 

G.1 X    

G.2 X    

G.3 X    

G.4     

H.1     

H.2    X 

I.1     

I.2     

I.3     

I.4     

I.5     

I.6     

J.1  X   

J.2 X    

J.3   X  

J.4    X 

J.5 X X   

J.6 X X   

J.7  X   
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Table 12 Summary of Failure Mode Correlations to Reference Set A 

ID 

A.1 A.2 A.3 A.4 

Failure to perform 
the module function 
at the required time 

Failure to perform 
the module function 
with correct value 

Performance of an 
unwanted function 
by the module 

Interference or 
unexpected 
coupling with 
another module 

K.1 X    

K.2 X    

K.3   X  

K.4  X  X 

K.5     

K.6   X  

Some other reported “failure modes” are not included in Table 2 through Table 11 because 
those failure modes could not be related to the system function level or because of differing 
interpretations of the term “failure mode.”  For example, failure modes of digital components 
such as microprocessors, and static random access memory (SRAM), which can be found in 
references such as [31] and [37], are not included in Table 2 through Table 11 because the 
failure modes listed are specific to such digital hardware components.  Appendix B lists 
examples that do not align with the definition of “failure mode” used in this RIL, but are aligned 
with the definitions of “fault” or “fault mode.” 

6.1.2. A Synthesized Set of Digital System Failure Modes 

The sets of failure modes in Section 6.1.1 exhibit patterns that indicate utility from different 
sources and perspectives.  For the purpose of reporting the progress made with respect to 
identifying digital I&C failure modes (Objective 2), Table 13 shows a set of digital system failure 
modes (L.1-L.9) synthesized from informative characterizations reported in Section 6.1.1 such 
that Set L is more informative than any one set reported in Section 6.1.1. 
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Table 13 Failure Mode Set L – Characterization of Failure Modes of a “Generic” Digital 
Safety System. 

ID Failure Mode Elaboration Remarks/Mapping 

L.1 No output upon demand Includes no change in output 
or no response for any input ⟹A.2 

L.2 Output without demand e.g., Unwanted response ⟹A.3 

L.3 Output value incorrect Incorrect response to input or 
set of inputs 

⟹A.2 

Includes: 

• Value too high or too low;  

Value stuck at previous value, 
e.g., ON, OFF 

L.4 Output at incorrect time 
Too early;  

Too late. 
⟹A.1 

L.5 Output duration too short or 
too long. 

This mode is specific to 
continuous functions. 

No direct mapping, but  
related to A.1, C.3 and F.1 

L.6 Output intermittent 
Functions correctly 
intermittently Example:  
Loose connection 

⟹E.9 

No mapping to Reference Set 
A 

L.7 Output flutters 

Unwanted oscillation; output 
fluctuates rapidly Example:  
Unstable servo-loop. 

Could damage equipment. 

⟹E.5 

No mapping to Reference Set 
A 

L.8 Interference 

Affects another system, often 
resulting from unwanted, 
unintended interactions, 
coupling, or side effects. 

⟹A.4 
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Table 13 Failure Mode Set L – Characterization of Failure Modes of a “Generic” Digital 
Safety System. 

ID Failure Mode Elaboration Remarks/Mapping 

L.9 Byzantine behavior 

Possible in a distributed 
system. 

Could affect redundant 
elements of a system. 

Could be caused by software 
(e.g., propagating and 
worsening effect of round-off 
error). 

Could be caused by 
hardware, (e.g., single-bit 
hardware fault caused 
Amazon S3 system failure in 
2008) [33]. 

⇒J.4⇒A.4 

Although Set L in Table 13 is the most informative generic set synthesizable from the surveyed 
literature, there may be other system-specific failure modes, worthy of distinct identification, 
because the corresponding consequences can be distinguished usefully.  Failure mode L.5 
through failure mode L.8, at some moment, could be construed to be a special case of one of 
the other failure modes (L.1, L.2, L.3, or L.4) in failure mode Set L; these are identified distinctly, 
because the consequences could be different or the recovery paths could be different.  A 
particular system may not exhibit all of the failure modes in Set L.  For example, failure mode 
L.5 would not be useful in a system that provides only discrete outputs, (i.e., does not provide 
any continuous control function).  A particular system may also exhibit unexpected or undesired 
behaviors not characterized in Set L. 

Nevertheless, Set L could be used beneficially to support, in part, development of the design 
basis of a system, as well as in the diagnostic analysis of performance-degradation during 
operation.  The extent of its utility in NPP safety system analysis and safety assurance will be 
explored in future work. 

6.2. Efficacy of SFMEA for Identifying Faults Leading to System 
Failures 

Software is not subject to wear and tear or degradation in the same manner as hardware and 
does not exhibit failure in that sense.  The potential effect of faulty software is considered in 
terms of system failure modes (i.e., performance-degradation of the safety function) and is 
identified in Section 6.1.  The appendices provide more information on the efficacy of Software 
Fault Modes and Effects Analysis (SFMEA) as a method for identifying faults that may lead to 
system failure, i.e., performance-degradation of a safety function (Objective 2).  Appendix B 
includes software faults and fault modes identified in the technical literature reviewed and 
identified by interviewed experts.  Correlation and synthesis of software fault modes was not 
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performed because the number of faults found was very large.  Many faults and fault modes 
reported in Appendix B may not apply to some software systems. 

The staff found six distinct SFMEA processes which are described in Appendix C:  Software 
Fault Modes and Effects Analysis Methods.18 The methods found were all adapted from 
methods originally intended to address hardware failures.  None of the methods found were 
developed for purposes of assurance of software or digital safety systems similar to those seen 
in recent new reactor licensing applications.19  In addition to Appendix C, please see 
NUREG/IA-0254 [2] for more information on SFMEA. 

18  Other SFMEA processes were also found but are not discussed in detail because of similarities to 
the six that are discussed in Appendix C. 

19  KAERI has applied SFMEA to a small, critical software module, finding a defect that could not be 
found with testing and formal verification.  However, KAERI does not claim that it is scalable to 
such systems. 
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7. CONCLUSIONS 

This RIL is part of an ongoing research effort to improve regulatory guidance concerning digital 
safety systems (See Figure 1).  Following are the conclusions with respect to objectives 1 and 2 
stated in Section 1.1. 

7.1. Failure Modes Identified 

The staff identified eleven sets of DI&C system failure modes by interviewing subject matter 
experts and by performing an extensive literature review.  These failure mode sets are not 
supported by documented public consensus, and are not endorsed by any accepted standards 
for use in determinations of reasonable assurance of a digital I&C safety system with features 
such as software, interconnections, interactions, and potential feedback paths. 

The failure modes listed in Failure Mode Sets B – K were compared to Reference Set A 
because it contained the most informative characterizations of known digital system failure 
modes before work on RIL-1002 began.  This comparison of the DI&C failure modes found 
resulted in one synthesized system level generic set. 

The staff’s analysis of the synthesized set of generic failure modes found that they could be 
used beneficially to support partial development of the design basis of a DI&C safety system for 
use in the nuclear industry.  The synthesized set could also be useful in the analysis of 
performance-degradation during operation. 

The synthesized set of system level DI&C failure modes, however, may not be helpful for 
determining the level of safety of a DI&C safety system.  Additional critical generic and 
system—specific failure modes may exist.  Some or all of the failure modes identified may not 
manifest in a particular system.  In addition, the staff also learned that a digital system may 
experience unintended or undesired behaviors without the occurrence of a failure.  As such, the 
synthesized set may not be comprehensive for purposes of making determinations of 
reasonable assurance. 

See Section 7.3, Next Steps, for a discussion of the staff’s continuing research efforts to support 
licensing reviews of digital safety systems. 

7.2. SFMEA 

Appendix B lists the software faults and fault modes obtained by the staff throughout this 
research effort.  Appendix C describes six different SFMEA techniques that were adapted from 
techniques originally developed for analyzing hardware failures.  No sound technical basis was 
found to require or endorse that any of the SFMEA techniques be performed or submitted as 
part of licensing applications.  Therefore, changes to established regulations and guidance is 
not recommended. 
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7.3. Next Steps 

RIL-1002 will be followed by RIL-1003, which will discuss the feasibility of applying failure mode 
analysis to quantification of risk associated with digital safety systems.  RIL-1003 will complete 
the staff’s work required by SRM M080605B [1].  RES will continue to track progress of external 
research on identification and analysis of digital safety failure modes.20  The NRC has 
requested that EPRI review the findings in this report and explore a common position on a 
generic set of digital safety system failure modes for analysis or for organizing operating 
experience.   

The NRC will continue to explore common ground with potential utility for reducing uncertainties 
in safety assurance. 

A broader hazard analysis approach will be introduced in RIL-1101, which includes the technical 
basis to support NRC licensing staff in the evaluation of an applicant’s digital safety system 
hazard analysis (HA) submission.  A project has also been established to investigate the use of 
Safety Demonstration (or Assurance Case) Framework21 as discussed in Section A.6 of 
RIL-1001. 

Research to establish an HA-based framework for assurance of digital safety systems is 
continuing.  The RES staff is working with the NRC licensing staff to address related topics 
outside the scope of this RIL in other ongoing or future RES projects. 

20  The failure modes reported as Failure Mode Set J in Section 6.1.1.10 is from an ongoing and 
evolving research effort in which NRC is participating.  NRC will continue following this work until 
results are finalized. 

21  A safety demonstration framework or assurance case seeks to demonstrate the satisfaction of a 
safety goal through a logical (argument based) organization and integration of evidence from 
verification, validation, and audit activities in digital system development. 
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8. GLOSSARY 

8.1. Selection of Definitions 

Expert elicitation participants and technical references identified a divergence and lack of 
agreement on the vocabulary to discuss the topic with a common understanding [DC, PM, and 
MH] [39] [40].  The glossary focuses on terms that are not commonly understood in the same 
way in the sources informing the content of this RIL, removing or reducing ambiguity by 
selecting and using more specific definitions.  Definitions in this RIL are based on definitions 
traceable to authoritative sources22, approximately in the following selection order: 

1. definitions provided by 10 CFR Part 50, “Domestic Licensing of Production and 
Utilization Facilities” 

 
2. IEEE 603 – IEEE Standard Criteria for Safety Systems for Nuclear Power Generating 

Stations 
 
3. IEEE Standard 100 
 
4. IEC 60050 
 
5. other engineering standards 
 
6. common acceptable dictionary 

The intended usage-scope of these definitions is limited to this RIL.  The meanings of 
compound words, terms, and expressions are derived from the meanings of their constituent 
words, as defined in this glossary.  Where a word is not defined explicitly in the glossary, it is 
understood in terms of common usage as defined in published dictionaries of the English 
language.  Notes are included to explain the meaning derived from such composition.  Notes 
are also used to explain the derivation or adaptation from published definitions to suit the scope 
of this document.  Notes are also provided where definitions have been modified based on 
learning that occurred after the public release of RIL-1001. 

8.2. Definitions 

Assure:  Confirm the certainty of correctness of the claim, based on evidence and reasoning. 

Notes: 
1. For example, by proof 

2. Derived forms: 
2.1. Assurance 

22  Authoritative sources may choose to modify definitions of the terms included in this glossary after 
public release of this RIL.  This RIL communicates intermediate results of a long term NRC 
research effort.  Definitions of future NRC documents may modify the definitions in this RIL with 
consideration of new information. 
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2.2. Assurable 
2.3. Assurability 

3. Claim:  A true-false statement about the value of a defined property of a system.  
(Adapted from ISO/IEC TR 15026-1:2010 Systems and software engineering – Systems 
and software assurance – Part 1:  Concepts and vocabulary, revised as ISO/IEC DIS 
15026-1:2013.  Examples:  (1) The system is safe.  (2) Property X of the system holds. 

3.1. The statement includes the following: 

3.1.1. Limitations on the value of the property associated with the claim. 

3.1.2. Limitations on the uncertainty of the property value meeting its limitations. 

3.1.3. Limitations on conditions under which the claim is applicable. 

3.2. The statement may also include the following: 

3.2.1. Condition-related uncertainty. 

3.3. A limitation may have a single value, may have multiple single values, may have a 
range of values, may have multiple ranges of values, or may be multi-dimensional.  The 
boundary of a limitation may be incremental or conditional or probabilistic. 

4. Evidence:  Data supporting the existence or verity of something.  (Adapted from 3.1936 
in ISO/IEC/IEEE 24765 Systems and software engineering – vocabulary, 2010) 

5. Reason:  Argument:  A logical sequence or series of statements from a premise to a 
conclusion.  (Adapted from http://www.merriam-webster.com/dictionary/argument.  
Derived forms: 

5.1. Reasoning:  The use of reason. 
5.2. Reasonable:  Being in accordance with reason.   

(http://www.merriam-webster.com/dictionary/reasonable) 
6. Assurance of a safety system means that the certainty of correctness of the claim about 

its “safety property” is confirmed. 

7. Assurance of software means that the certainty of correctness of the claim about its 
contribution to the “safety property” is confirmed.  It is expected that the contribution will 
correspond to the allocation of requirements and constraints necessary for supporting 
the system safety property. 

Byzantine behavior:  In a distributed system, arbitrary behavior in response to a failure or fault 
[41]. 

Note:  Arbitrary behavior of an element that results in disruption of the intended system 
behavior. 
 
Complexity:  (A) (software) The degree to which a system or component has functionality, 
design or implementation that is difficult to understand and verify.  (definition (1)(A) in [42]). 
 
(B) (software) Pertaining to any of a set of structure-based metrics that measure the attribute in 
Definition 1A in Ref. [42]. (definition (1)(B) in [42]). 
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Note 1:  There is no universally accepted definition of the term “complexity.”23
 The notes below 

give some other definitions of complexity to illustrate the diversity of perspectives. 
 
Note 2:  Conversely (changing negative expression to positive) Simplicity:  The degree to which 
a system or component functionality, design or implementation can be understood and verified. 
 
Note 3:  The number of linearly independent paths (one plus the number of conditions) through 
the source code of a computer program is an indicator of control flow complexity, known as 
McCabe's cyclomatic complexity [43]. 
 
Note 4:  In nontechnical language, we can define the effective complexity of an entity as the 
length of a highly compressed description of its regularities [44]. 
 
Note 5:  An ill-defined term that means many things to many people [45]. 
 
Note 6:  A system is classified as complex if its design is unsuitable for the application of 
exhaustive simulation and test, and therefore its behavior cannot be verified by exhaustive 
testing.  Source:  Defence Standard 00-54, Requirements for safety related electronic hardware 
in defence equipment, UK Ministry of Defence, 1999. 

Component:  Constituent, elemental, or most primitive parts of a system. 

Control System:  (A) “an assemblage of control apparatus coordinated to execute a planned 
set of control.” (B) a system in which a desired effect is achieved by operating on the various 
inputs to the system until the output, which is a measure of the desired effect, falls within 
acceptable range of values.” (C) “A system in which deliberate guidance or manipulation is used 
to achieve a prescribed value of a variable.” (D) “A system in which a desired effect is achieved 
by operating on inputs until the output, which is a measure of the desired effect, falls within an 
acceptable range of values.”  Note:  All definitions are from [42]. 

Error:  The difference between a computed, observed, or measured value or condition and the 
true, specified, or theoretically correct value or condition (definition 8A in [42]). 

Failure:  The termination of the ability of an item to perform a required function [42] [46].24  

Notes: 

1. The following definitions represent the perspectives of different disciplines to reinforce 
the definition given above: 

1.1. The termination of the ability of an item to perform a required function (Definition (1)(A) 
in [42]). 

1.2. The termination of the ability of a functional unit to perform its required function 
(Definition (1)(N) in [42]). 

23  Research is needed to clarify complexity within the context of system safety evaluation. 
24  Reference [46] includes a note that this concept as defined does not apply to items consisting of 

software only. 
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1.3. An event in which a system or system component does not perform a required function 
within specified limits; a failure may be produced when a fault is encountered 
(Definition (1)(O) in [42]). 

1.4. The termination of the ability of an item to perform its required function (Definition 9 in 
[42] from “nuclear power generating station”). 

1.5. The loss of ability of a component, equipment, or system to perform a required function 
(Definition 13 in [42] Safety systems equipment in “nuclear power generating stations”). 

1.6. An event that may limit the capability of equipment or a system to perform its function(s) 
(Definition 14 in [42] “Supervisory control, data acquisition, and automatic control”). 

1.7. The termination of the ability of an item to perform a required function (Definition 15 in 
[42] “nuclear power generating systems”) 

2.  After failure, the item has a fault [46]. 
3.  “Failure” is an event, as distinguished from “fault” which is a state [46]. 

4. This concept as defined does not apply to items consisting of software only [46]. 

Failure mode:  (A) The effect by which a failure is observed to occur (adapted from definition 1 
in [42]).  (B) The manner in which failure occurs. (adapted from definition 4 in [42]).  Note - A 
failure mode is usually characterized by the manner in which a failure occurs. 

Fault:  the state of an item characterized by inability to perform a required function, excluding 
the inability during preventive maintenance or other planned actions, or due to lack of external 
resources [46]. 25 

Notes 

1. A fault is often the result of a failure of the item itself but may exist without prior 
failure. (191-05-01 in [46]) 

2. Following are other definitions, relating “fault” and “defect”: 

a. a defect or flaw in a hardware or software component (Definition 13 in 
[42] 

b. a defect in a hardware device or component; for example, a short circuit 
or broken wire (Definition 9 in [42]) 

c. Synonym:  physical defect  

3. The following definition is specific to software:  An incorrect step, process, or 
data definition in a computer program (Definition (7)(A) in [42]). 

Fault Mode:  One of the possible states of a faulty item, for a given required function [46]. 

Fault Tree Analysis (FTA):  An analysis to determine which fault modes of the subitems or 
external events, or combinations thereof, may result in a stated fault mode of the item, 
presented in the form of a fault tree [191-16-05 in [46]] 

25  This definition is different than the definition of Fault used in RIL-1001 because of learning that 
occurred while performing supplemental research activities for RIL-1002. 
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Hazard:  Potential for harm 

Hazard Analysis (HA):  The process of examining a system throughout its lifecycle to identify 
inherent hazards and contributory hazards, and requirements and constraints to eliminate, 
prevent, or control them. 

Notes: 

1. “Hazard identification” part of HA includes the identification of losses (harm) of 
concern. 

2. This definition is narrower than many definitions of HA, some of which 
correspond to the NRC’s usage of the term “safety analysis” (as in a safety 
analysis report). 

a. The scope of the definition excludes the verification that the 
requirements and constraints have been satisfied. 

b. Various HA definitions and descriptions identify artifacts (results, 
including intermediate results) of HA by different names.  The 
expression “requirements and constraints” used in this definition (to 
align and integrate them in well-established systems engineering terms) 
subsumes them. 

c. The scope of the definition does not include quantification explicitly.  
Where appropriate (e.g., for a hardware component, quantification of its 
reliability would be implicit in the activity of formulating requirements and 
constraints). 

Latent Fault:  An existing fault that has not been recognized. 

Mistake:  (A) A human action that produces an unintended result (definition 1 in [42]:  electronic 
computation).  Note:  Common mistakes include incorrect programming, coding, and manual 
operation [42].  (B) A human action that produces an incorrect result (definition C [42]:  
software).  

Safety System:  System designed (1) to initiate automatically the operation of appropriate 
systems including the reactivity control systems, to assure that specified acceptable fuel design 
limits are not exceeded as a result of anticipated operational occurrences [10 CFR Part 50, 
Appendix A, Criterion 20, “Protection System Functions”]; and (2) to sense accident conditions 
and to initiate the operation of systems and components important to safety [10 CFR Part 50, 
Appendix A, Criterion 20].  (3) A system that is relied upon to remain functional during and 
following design basis events to ensure:  (i) the integrity of the reactor coolant pressure 
boundary, (ii) the capability to shut down the reactor and maintain it in a safe shutdown 
condition, or (iii) the capability to prevent or mitigate the consequences of accidents that could 
result in potential offsite exposures comparable to the 10 CFR Part 100, “Reactor Site Criteria,” 
guidelines [47].26  

26  A safety system includes but is not limited to a) emergency negative reactivity insertion, b) 
emergency core cooling, c) post-accident radiation removal, d) containment isolation, and e) 
post-accident heat removal. 
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Note:  IEEE 603-2009 states that “a safety system shall encompass all of the elements required 
to achieve a safety function.”  In addition, “safety functions include but are not limited to the 
following:  a) emergency negative reactivity insertion, b) emergency core cooling, c) 
post-accident radiation removal, d) containment isolation, and e) post-accident heat removal” 
[48]. 

Software Fault Mode and Effects Analysis:  A qualitative method of reliability analysis, which 
involves the study of the fault modes, which can exist in every sub item of the item, and the 
determination of the effects of each fault mode on other sub items of the item and on the 
required functions of the item. 

System:  A combination of interacting elements organized to achieve one or more stated 
purposes [49]. 
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9. EXPERTS CONSULTED 

Table 14 identifies experts consulted during the NRC’s DI&C expert elicitation activity, including 
the initials used in this RIL to refer to them.  Table 15 identifies experts consulted after the 
NRC’s DI&C expert elicitation activity, including the symbols used in this RIL to reference their 
names. 

Table 14 Experts Interviewed during NRC’s DI&C Expert Elicitation Activity. 

Abbreviation Expert and 
Affiliation Abbreviation Expert and  

Affiliation 

AW Alan Wassyng 
McMaster University JH Jorgen Hansson 

Carnegie-Mellon University 

BJ Barry Johnson 
University of Virginia JM John McDermid 

University of York 

CW Chris Johnson 
University of Glasgow LS Lorenzo Stringini 

City University, London 

DC Darren Cofer 
Rockwell Collins MB Manfred Broy 

Technical University of Munich 

DD Dan Dvorak 
NASA JPL MD Mike Dewalt 

Federal Aviation Administration 

DW David Ward 
MIRA Ltd. MH Michael Holloway 

NASA Langley 

GH Gerard Holzman 
NASA JPL PJ Paul Jones 

Food and Drug Administration 

JH Jamie Harper 
NASA Goddard PM Paul Miner 

NASA Langley 

JB Jens Braband 
TS RA SD RAMSS RB Robin Bloomfield 

City University, London 

JG John Goodenough 
Carnegie Mellon University SS Stefan Schaan 

Siemens 

JK John Knight 
University of Virginia SP Steve Prusha 

NASA JPL 
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Table 15 Experts Consulted during Additional NRC Research Activities. 

Abbreviation Expert and 
Affiliation 

Communications with 
NRC 

HH Herbert Hecht 
SoHaR Inc. 

Tele-meeting 
October 10, 2010 

PG Pete Goddard 
TRW Automotive 

Tele-meeting 
September 10, 2010 

RC Ram Chillarege 
Chillarege Inc. 

Tele-meeting 
September 1, 2010 

RL Robyn Lutz 
NASA JPL 

Private Communications 
w. S. Birla 

SG Sergio Guarro 
Asca Inc 

Informal Presentations 
December 22, 2010 and 

February 23, 2011 
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APPENDIX A. THE VOCABULARY RELATED TO FAILURE MODES – 
A DISCUSSION 

Terms such as failure, fault, defect, error, and mode are commonly used in different ways, 
leading to ambiguity and confusion.  To avoid misunderstanding, RIL-1002 uses each of these 
terms as defined in the Glossary27 and based on authoritative28 sources.  This discussion 
explains the rationale underlying the selected definitions. 

The scope and context of this discussion is limited29 to a software-dependent safety system, 
where the criticality is of the highest level and the system consists of safety-related elements 
only. 

The discussion starts with an introduction of basic concepts (failure; fault; defect; error; mistake; 
stimulus-response; event-action; state and mode) and progresses to a combination of those 
concepts (e.g., fault mode) demonstrating the consistency of the combinational terms with the 
constituent terms and the value of maintaining such consistency. 

A.1. Failure  

In the context of engineered systems, especially those with sensors, actuators and control logic, 
the term “failure” has been used to mean “termination of the ability of an item to perform a 
required function” 30 [A1](also see [A2] and definitions 1A, 1N, 1O, 9, 13, 14 and 15 in [A3]).  
The term, “failure” implies that the system or component of concern was once31 able to perform 
its required function [MB].  Failure is an event [A1], signifying termination or loss of function.  
This widely accepted definition is similar to and consistent with the definition of “single failure” 
stated in Title 10 of the Code of Federal Regulations (10 CFR) Part 50, Appendix A “General 
Design Criteria for Nuclear Power Plants”:  “A single failure means an occurrence which results 
in the loss of capability of a component to perform its intended safety functions.”  In this 
definition, “loss of capability” has the same meaning as “termination of the ability” in the 
International Electrotechnical Commission (IEC) definition given above.  The term “occurrence” 
in the definition given in Appendix A of 10 CFR Part 50 maps into the term “event” mentioned 
above and in reference [A1]. 

The concept of “failure” is well-known, well-accepted and well-understood in the context of 
physical components and systems with physical elements.  Physical components fail as a result 
of applied excessive loading, or wear and tear due to physical degradation processes or 
mechanisms.  Examples of failure of physical systems and components (which were functioning 
correctly) include: 

1. A fluid flow control (shut-off) valve is unable to stop or resume flow. 
2. A motor is unable to provide motion, motive force, or motive torque. 

27  Exceptions arise when quoting or citing references, which use these terms in meanings different 
from the one in the RIL-1002 glossary. 

28  Authoritative definitions are those accepted with a broad consensus, usually evidenced by 
inclusion in an accepted standard by a reputable standards organization. 

29  While the discussion may have much broader applicability, the scope is kept narrow for ease of 
explanation. 

30  This definition is widely accepted. 
31  i.e., at the start of operation. 
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3. A pipe is no longer able to transport fluid from its source to destination at a specified flow 
rate. 

4. A resistor ceases to provide the specified resistance. 

A.2. Reason for Avoiding the Term “Failure” for Software 

The concept of “failure” as explained in Section A.1 does not apply to software [A1].  Some 
experts assert that use of the term, failure, for software may be meaningless or perhaps 
misleading [DC, PM, and MH].  The rationale is that “Software does not exhibit random wear-out 
failures as does hardware; it is an abstraction [A4].”  That is, “Software itself does not fail; it is a 
design for a machine … Software-related computer [system] failures are always systematic 
[A4].” 

Software items are of a different nature than hardware items in the applicability of the concept of 
failure, as explained above.  If the software item does not perform a function under a specific 
condition, it was not able to do so from the beginning of operation.  “If the item is a software 
system or component and is able to perform its function correctly from inception, it will continue 
to perform its function; it will not break” [MB].  A software item either performs a function under a 
given condition or it does not; the ability to perform a function is never lost.  That is, software 
does not break down or wear out.  This is why the term “failure” as defined in the glossary 
should not be used for a software item. 

A.3. Fault 

The International Electrotechnical Vocabulary, in 191-05-01, defines “fault” as the state of an 
item characterized by inability to perform a required function, excluding the inability during 
preventive maintenance or other planned actions, or due to lack of external resources.”[A1] 

Note the close relationship of this definition with the definition of failure “termination of the ability 
of an item to perform a required function,” where “termination of the ability” is an EVENT.  Then, 
fault is the resulting STATE of the item.  Also, note that an item need not “fail” to reach a fault 
state.  It may be faulty (it may be in a state characterized by the inability to perform a required 
function) to begin with, as discussed in Section A.2 above in the case of software. 

The International Electrotechnical Vocabulary, in 191-05-20, defines “latent fault” as “an existing 
fault that has not yet been recognized” (i.e., discovered) [A1].  In software operating in a system 
of highest criticality (e.g., for nuclear reactor safety), one would not expect the system to be 
commissioned with a known fault in the safety critical software.  However, the system may still 
have a latent fault, particularly if it is complex.  In such a system, testing, by itself, cannot assure 
the absence of a fault.  For that reason, other approaches are needed to defend against a 
potential latent fault. 

In [A3] definition 14 characterizes “fault” as a defect32 in a hardware or software component, 
where the term “defect” connotes a deficiency or inadequacy that may impair the intended 
function.  However, some researchers distinguish between fault and defect as follows:  a fault is 

32  In software, it is “designed in” [DC, GH], i.e., resulting from some inadequacy in its engineering, 
rather than resulting from degradation.  In hardware, it may also be the result of some inadequacy 
in its manufacturing, fabrication, or construction. 
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a logical (function level) abstraction, whereas a defect is described in terms of some physical 
characteristic.  It may be possible to map many defects at the physical or implementation level 
into a single fault at the function level.  Then, the abstraction reduces the number of conditions 
or cases to be considered in an analysis.  On the other hand, a single defect at the physical or 
implementation level may lead to multiple faults at the function level.  Therefore, it would be 
more useful and less confusing to treat fault and defect as different concepts, and the definition 
of fault given in the International Electrotechnical Vocabulary should be used. 

Appendix B provides examples of faults and a discussion on potential classification schemes. 

A.4. Error 

Often, the term “error” is used in the sense of “defect” or “fault” as evident in many of the 
surveyed publications.  Furthermore, often, in the same system or the same publication, the 
term “error” is also used in other ways. 

The community interested in “fault tolerant systems” does not recommend using “error” to mean 
“fault” or “defect.”  In the context of this discussion, usage of the term “error” is limited to mean, 
“Any discrepancy between a computed, observed, or measured value or condition and the true, 
specified, or theoretically correct value or condition” (adapted from combination of definitions 1 
and 12 in [A3]).  This definition is consistent with definitions 3A, 4, 5, 6, 8A, 11, and 12 [A3].  
Note that even the selected definition allows for a wide range of usages.  For example, in a 
closed loop control system, the specified value may be the setpoint and the discrepancy 
between the observed value and the setpoint may not indicate any unwanted or undesirable 
behavior; in fact, it may be natural to the control scheme and the controlled system. 

Many of the surveyed publications have also used the term “error” to mean a human mistake.  
To avoid ambiguity, RIL-1002 avoids usage of the term “error” in that meaning.  A mistake is 
defined as a human action (or inaction) that produces an unintended or incorrect result (adapted 
from definitions 1 and 3 in [A3]). 

ISO/IEC/IEEE 24765:2010(E) in 3.1719 (definition of mistake) notes that “The fault tolerance 
discipline distinguishes between a human action (a mistake), its manifestation (a hardware or 
software fault), the result of the fault (a failure), and the amount by which the result is incorrect 
(the error).” [A5] 

A.5. Stimulus-Response, Event-Action, State-Mode - Concepts to 
Characterize Behavior 

The stimulus-response relationship is a useful paradigm to characterize behavior in many fields 
of science and provides the underpinning for conceiving, specifying, designing, analyzing, and 
evaluating engineered systems.  Discretization of the behavior space (e.g., into sub-behaviors) 
is a useful way of decomposing or organizing the problem space (or requirements space) for an 
engineered system.  For example, certain sub-behaviors can only occur under certain 
conditions or are required only under certain conditions.  The concept of discretizing the 
behavior space is used in engineering safety into engineered systems, e.g., detection of a 
hazardous condition, such as failure (a change in condition) of a critical valve, and using it as a 
stimulus to select (switch to) mitigating behavior. 
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An occurrence of some change33 in conditions can be abstracted into the concept, “event.”  
When this change serves as a stimulus to enable an action or to select some group of actions 
(i.e., change in sub-behavior) or to cause an action by an item, the concept of “event” is useful 
in understanding, describing, or specifying the behavior of the item.  Following are some other 
examples of an event, given in ISO/IEC/IEEE 24765-2010 (E) [A5]: 

• a timer expiration 
• an external interrupt 
• an internal signal 
• an internal message 

The existence of a certain set of stable conditions can be abstracted into the concept “state.” 
For example, the state may be an abstraction of the values of a set of variables that 
characterize the behavior of an item.  In the example of the valve, introduced earlier, its two 
stable states for normal operation are:  OPEN; CLOSED. 

Mode is defined (definition 8 in [A3] and definition 1 in ISO/IEC/IEEE 24765-2010 (E) §3.1806 
[A5]) as a set of related features or functional capabilities of a product.  Mapping into the 
vocabulary used in the discussion above, “product” maps into “item” and “set of related features 
or functional capabilities” maps into sub-behavior. 

These standards cite the following examples: 
• online mode 
• offline mode 
• maintenance mode 

Taking the example of an operating nuclear reactor, the term “mode” is used to refer to different 
sub-behaviors or groups of behaviors such as: 

• on power (starting up; raising power; operating at reduced power; operating at full 
power; reducing power) 

• hot shut down(reactor is sub-critical and coolant temperature is above a certain 
threshold) 

• cold shut down (reactor is sub-critical and coolant temperature is below a certain 
threshold) 

• etc. 

From these examples, it can be seen that the term “mode” and “state” are related, such that the 
term “mode” clusters a number of states into one region of related behaviors.  The term “state” 
can also be used in this manner (i.e., a state can be an abstraction of a set of finer-grained 
states).  Technically, “mode” and “state” have the same meaning; the differences lie in popular 
usage. 

With the various examples given above, it can be seen that the state-based event-driven 
paradigm34 provides a unified means to describe or specify normal operational, as well as 
off-normal non-operational behaviors.  The vocabulary used to characterize different kinds of 
conditions should be consistent with this paradigm. 

33  Example in the case of a normally functioning valve: Termination of its ability to perform its 
required function. 

34  Example formalisms: Finite state machine or automaton; extended finite state machine. 
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A.6. Failure Modes 

Although the term, “failure mode” is used very commonly, its usage is not supported by the 
International Electrotechnical Vocabulary 60050 Chapter 191:  Dependability and Quality of 
Service, amended, 1999-03 [A1]. 

IEEE Std 500-1984 P&V (withdrawn) defines “Failure Mode” as the effect35 by which a failure is 
observed to occur [A6].  However, even for components such as pumps, valves, and actuators, 
which are simpler than the DI&C systems being introduced in NPPs, the authors of this standard 
found differences in usage and intended meanings of the basic terms. 

IEEE Std 500-1984 P&V in Section 1.3, defines failure as “the termination of the ability of an 
item or equipment to perform a required function.”  Essentially this definition is the same as in 
Section A.1 above. 

In order to assist in a common understanding and usage of basic terms, IEEE Std 500-1984 
P&V published Appendix A [A7], discussing these terms.  In its Section A5, it recognized 
“failure” to be an event, as characterized in Section A.1 above.  IEEE Std 500-1984 P&V in 
Section 1.3 defines failure mode as “the effect by which a failure is observed to occur.” Then, 
IEEE Std 500-1984 P&V, in Section A5 of the Appendix, explains that “A failure mode provides 
a descriptive characterization of the failure event in generic terms” with the intent of 
distinguishing the term, “failure mode” from the mechanism causing the failure and from the 
effect36 propagated to a higher level assembly or other elements of a system with multiple levels 
of assembly. 

In contrast, the International Electrotechnical Vocabulary has deprecated the terms “failure 
mode,” “failure modes and effects analysis”, and “failure modes, effects and criticality analysis.”  
However, this discussion uses the term “failure mode” while referring to usage in cited 
publications [A1].  In the examples of failures given in Section A.1, each is an example of one 
“failure mode37” for each type of component.  For a given type of component, there may be 
several “failure modes,” e.g., the following “failure modes” of a fluid flow control (shut-off) valve, 
which has two stable states (open; closed), and changes state, responding to inputs (OPEN; 
CLOSE): 

1. No output upon demand:  If it receives input to change its state, it does not, i.e., it stays 
where it is 

2. Output without demand:  It changes state without input. 
3. Output at incorrect time:  State change is not completed within the required time interval 

after input. 
4. Output intermittent:  Upon receiving input, sometimes the valve responds correctly, but 

not at other times (exhibiting one of the other failure modes in this list38). 
5. Output flutters:  When the input signal OPEN is given, the valve does not change from 

the CLOSED state to a stable OPEN state, but its position fluctuates; or, when the input 

35  Effect does not have the same meaning here, as denoted by the letter E in FMEA. 
36  Here, effect has the meaning denoted by the letter E in FMEA. 
37  The term is used herein as used popularly, although inconsistent with ISO/IEC 60051-191 [A1]. 
38  Comparing this list with the failure modes L.1-L.8 in Table 13, L.5 and L.8 are not applicable to 

the 2-position valve: L.5 applies to an element with continuous control and L.8 applies to a 
distributed system. 
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signal CLOSE is given, the valve does not transition from the OPEN state to a stable 
CLOSED state, but its position fluctuates. 

In each of the five modes above, the behavior is exhibited in repeated occurrences of the input. 

A.7. Fault Modes 

A term related to fault is “fault mode” which is defined as “one of the possible states of a faulty 
item, for a given required function [A1].  Referring to the example of the valve given in Section 
A.3, according to IEC 60051-191 [A1] these are fault modes – not failure modes.  The subject of 
fault modes for software items is further discussed in Appendix B. 
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APPENDIX B. IDENTIFIED SOFTWARE FAULTS AND FAULT 
MODES SETS 

Section 6.1.1 reported digital system instrumentation and control (I&C) failure modes identified 
during the expert elicitation process and supplemental NRC research activities.  This appendix 
reports the software faults39, fault modes40, and classification and taxonomy schemes that were 
identified.41 

B.1. Software Faults and Fault Modes Identified by Source 

After analyzing the information available, more faults and fault modes were found than can be 
presented.42  This section presents some fault and fault mode sets found through the expert 
elicitation process and supplemental NRC research activities.  The staff found that faults, fault 
modes, and effects resulting from activated faults or fault modes were often identified in the 
technical literature as “failure modes” or “software failure modes.”  Because of the large number 
of faults and fault modes, correlation analysis and fault synthesis similar to failure mode 
correlation and synthesis in Sections 6.1.1.12 and 6.1.2 was not performed.  The staff also 
could not assemble a set of faults and fault modes of greatest concern for software that could 
be used for assurance of a digital safety system similar to those seen in recent new reactor 
licensing applications.  Experts indicated that it may not be possible to generate a complete list 
of suitable faults and fault modes [JK, GH, MH]. 

The faults and fault mode sets reported in this document are limited to references reviewed for 
the purposes listed in Section 1.1.  A section is dedicated to each source reviewed.  Faults and 
fault modes are reported in tables that consist of 3 columns.  The first column provides an 
identification number for each fault and fault mode.  The second and third columns present the 
faults and fault modes.  Faults and fault modes may be repeated in multiple sections.  Columns 
are shaded if no information was found for the respective category.  Other characterizations of 
the faults and fault mode sets presented are possible.  Faults and fault modes may exist that 
are not listed in this section. 

B.1.1. Fault/Fault Mode Set 1 

In his paper, “How FMEA Improves Hardware and Software Safety & Design Reuse”43 [B3], N. 
Bidokhti states that “there are many categories” of software faults and provides five example 

39  The state of an item characterized by inability to perform a required function, excluding the 
inability during preventive maintenance or other planned actions, or due to lack of external 
resources” [B1]. 

40  One of the possible states of a faulty item for a required function [B2]. 
41  Consistent definitions of the terms “failure”, “failure mode” and “fault” are not used in the technical 

literature.  This appendix reports “faults” as defined in this RIL.  The sources cited may have 
referred to faults as errors, failures, bugs, etc.  See the Glossary and Appendix A for information 
on the definitions chosen for RIL-1002. 

42  Terminology consistent with definitions used in this RIL replaces the original wording in this 
section where possible in the tables below.  It was not possible to replace the terminology by 
some authors. 

43  This is the same source of Failure Mode Set G in Section 6.1.1.7. 
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categories:  Requirements faults, Interface faults, Fault Tolerance faults, Resource Usage 
faults, and Data faults. 

Example faults and fault modes are provided in the paper, organized into two of the example 
categories:  Requirement Faults and Interface faults.  The author seems to acknowledge that 
his examples and definitions may not be suitable for every situation.  He states that it is 
essential that “definition of [faults], categories of [faults], and [fault] modes are well understood 
and accepted by all team members,” before any identification and analysis begins. 

Table B-1 Fault/Fault Mode Set 1 [B3]. 

ID Faults Fault Modes 

1.1 Incorrect requirements 

 

1.2 Ambiguous requirements 

1.3 Conflicting requirements 

1.4 Exceptional condition not 
specified 

1.5 Test points or monitors not 
specified 

1.6 

Message based interface 
fault 

No message received 

1.7 Invalid message received 

1.8 Message received out of 
sequence. 

1.9 Duplicate message received 

1.10 Message not acknowledged 

1.11 Message acknowledged out of 
sequence 

1.12 Duplicate acknowledge 
received 

B.1.2. Fault/Fault Mode Set 2  

In their paper titled “Failure Modes in Embedded Systems and Its Prevention” [B4], the authors 
stated that two main groups of faults are possible:  hardware and software.  The authors state 
that their list contains “some examples” of software faults. 
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Table B-2 Fault/Fault Mode Set 2 [B4]. 

ID Faults Fault Modes 

2.1 

Buffer overflow: 

computer memory is smaller 
than the programmer 
expected 

 

2.2 

Dangling pointers: 

Common in non-safe 
programming languages in 
which the human 
programmer is responsible 
for making sure every 
pointer points to the right 
memory location at all times. 

 

2.3 Resource leaks (such as 
memory leaks)  

2.4 
Race conditions:  specific 
relative timing events that 
lead to unexpected 
behavior. 

 

2.5 

Semantic design:  the 
meaning of an arrow 
between two subsystems in 
a visual software 
environment not interpreted 
the same way by the 
hardware. 

 

B.1.3. Fault/Fault Mode Set 3 

Czerny et al, in “Effective Application of Software Safety Techniques for Automotive Embedded 
Control Systems” [B5]44, provided a set of variable fault and fault modes.  The paper stated that 
“In addition to potential variable [fault] modes, potential processing logic fault modes may be 
considered.”  Analysis of processing logic faults and fault modes includes examining 
computational operators and operations (e.g., addition, subtraction, multiplication, comparison). 

 

44  This set of fault modes are from the same source as Failure Mode Set C. 
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Table B-3 Fault/Fault Mode Set 3 [B5]. 

ID Faults Fault Modes 

3.1 
Variable type – Analog 

Fault 

High 

Low 

3.2 
Variable Type – Boolean 

Fault 

True when False 

False when True 

3.3 

Enumerated Example 
Values 

Faults 

A when it should be B, 

B when it should be C, 

C when it should be A, or 

C when it should be B 

 

B.1.4. Fault/Fault Mode Set 4  

A paper by Vyas and Mittal, “Operation Level Safety Analysis for Object Oriented Software 
Design Using SFMEA” [B6], presents a bottom up approach to identifying faults and fault modes 
in methods used in object oriented code.  Four fault and fault mode cause types are listed as 
“failure modes”:  “Precondition Violation Failure Modes, Parametric Failure Modes, Method Call 
or Invoke Failure Modes, and Post Conditional Failure Modes.” 

Table B-4 Fault/Fault Mode Set 4 [B6]. 

ID Faults Fault Modes 

4.1 
Incorrect method 
response with 
precondition violated 

 

4.2 
Precondition satisfied but 
corresponding exception 
is raised. 

 

4.3 
Constraints on Parameter 
Value faults  

Constraint is false but 
exception is not raised, 
constraint is true but 
exception is raised. 
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Table B-4 Fault/Fault Mode Set 4 [B6]. 

ID Faults Fault Modes 

4.4 
Method m1 invokes m2 in 
wrong order (if invocation 
of m2 is condition based) 

 

4.5 
m1 invokes m2 by wrong 
parameters (if m2 is 
parameterized) 

 

4.6 
m1 (of class A) fails to 
invoke m2 (of class B) 
because lack of instance 
of class B 

 

4.7 
m1 invokes m2 in wrong 
order (if invocation of m2 
is condition based) 

 

4.8 
m1 invokes m2 by wrong 
parameters (if m2 is 
parameterized) 

 

B.1.5. Fault/Fault Mode Set 5 NUREG/CR – Appendix C (BNL) 

This fault set was obtained from a document that was originally an appendix to NRC 
NUREG/CR-6962 [B7].  The appendix did not appear in the final document but it was released 
publicly for feedback from the Advisory Committee on Reactor Safeguards [B8]. 

Table B-5 Fault/Fault Mode Set 5 [B8]. 

ID Faults Fault Modes 

5.1 

Software runs into an 
infinite loop 

Software stops generating 
outputs and deadlocks 
between processes.  More 
specific fault modes include: 

Halt/Termination with Clear 
message, and 

Halt/Termination without 
clear message. 
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Table B-5 Fault/Fault Mode Set 5 [B8]. 

ID Faults Fault Modes 

5.2 Software generates 
incorrect output. 

Runs with evidently wrong 
results, and 

Runs with wrong results that 
are not evident. 

5.3 

Software runs with 
misleading commands to 
the user, incomplete or 
incorrect display of 
information. 

Incomplete or incorrect 
information displayed. 

5.4 Timing/order fault  

5.5 Interrupt induced fault  

5.6 Omission of a function or 
attribute fault.  

5.7 Unintended function or 
attribute fault.  

5.8 
Incorrect implementation of 
a function or an attribute 
fault. 

 

5.9 Data faults.  

 

B.1.6. Fault/Fault Mode Set 6  

In their paper, “Experience Report:  Contributions of SFMEA to Requirements Analysis” [B9], 
Lutz and Woodhouse postulated four data faults types and four event fault types.  The data fault 
types are:  Absent Data, Incorrect Data, Timing of Data Wrong, and Duplicate Data.  The event 
fault types are:  Halt/Abnormal Termination, Omission, Incorrect Logic/Event, and Timing/Order. 
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Table B-6 Fault/Fault Mode Set 6 [B9]. 

ID Faults Fault Modes 

6.1 

Lost or missing messages, 
absence of sensor input 
data, lack of input or 
output, failure to receive 
needed data, missing 
commands, missing 
updates of data values, 
data loss due to hardware 
failures, software process 
or sensor does not send 
the data needed for correct 
functioning. 

 

6.2 

Bad data, flags or variables 
set to values that don’t 
accurately describe the 
spacecraft’s state or the 
operating environment, 
erroneous triggers, limits, 
deadbands, delay timers, 
erroneous parameters, 
wrong command outputs, 
or wrong parameters to the 
right commands, spurious 
or unexpected signals. 

 

6.3 

Data arrive too late to be 
used or be accurate, or too 
early to be used or be 
accurate; obsolete data are 
used in control decisions 
(data age), inadvertent, 
spurious (unexpected) or 
transient data. 

 

6.4 
Redundant copies of data, 
data overflow, data 
saturation. 

 

6.5 
Open, stuck, hung, and 
deadlocked at this point 
(event) in the process. 

 

6.6 
Event does not occur but 
process continues 
execution, jumps, skips, 
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Table B-6 Fault/Fault Mode Set 6 [B9]. 

ID Faults Fault Modes 
short. 

6.7 

Behavior is wrong, logic is 
wrong, branch logic is 
reversed, wrong 
assumptions about state, 
preconditions, “don’t cares” 
aren’t truly so; event (e.g., 
command issued) is wrong 
to implement the intent or 
requirement. 

 

6.8 

Event occurs at wrong time 
or in wrong order, event 
occurs too early, too late, 
the sequence of events is 
incorrect, an event that 
must precede another 
event doesn’t occur as it 
should, iterative events 
occur intermittently rather 
than regularly, events that 
should occur only once 
instead occur iteratively. 

 

B.1.7. Fault/Fault Mode Set 7 

In the paper titled “FMEA Performed on the Spinline3 Operational System Software as Part of 
the TIHANGE 1 NIS Refurbishment Safety Case” [B10], Ristord and Esmenjaud provided a list 
of “five general failure modes.”  This list of “five general failure modes” contains effects (as 
defined by this RIL):  the operating system stops, the program stops with a clear message, the 
program stops without a clear message, the program runs producing obviously wrong results, 
and the program runs producing apparently correct but wrong results.  The authors also defined 
“context specific” faults for code that was grouped into blocks of code instructions referred to as 
“block instructions.”  Correct behavior was defined first; the faults and fault modes identified 
were derived from the definition of correct behavior. 

Table B-7  Fault//Fault Mode Set 7 [B10]. 

ID Faults Fault Modes 

7.1 The block instructions 
execution does not end 
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Table B-7  Fault//Fault Mode Set 7 [B10]. 

ID Faults Fault Modes 
through the “exit” point 

7.2 
The block instruction 
execution time does not 
meet time limits 

 

7.3 

The block instruction does 
not perform the intended 

actions or performs 
unintended actions: 

It modifies code memory or 
constants 

It does not provide 
expected outputs. 

It modifies the variables that 
it shall not modify. 

It does not interact as 
expected with I/O boards. 

It does not interact as 
expected with CPU 

resources. 

It modifies code memory or 
constraints. 

B.1.8. Fault/Fault Mode Set 8 

Becker and Flick, in their paper “A Practical Approach to Failure Modes, Effects, and Criticality 
Analysis (FMECA) for Computing Systems” [B11], lists “some typical” faults and fault modes 
organized into categories describing the effect of the faults and fault modes.  The categories 
included effects at the software and hardware level.  Hardware effects not listed in Table B-8 
include:  slow response, startup failure, and loss of external system. 

Table B-8  Fault/Fault Mode Set 8 [B11] 

ID Faults Fault Modes 

8.1 
Unsolicited termination of the 
normal and correct 
processing  

No fault mode provided. 

8.2 
No fault provided. Termination of required 

processing without an 
associated notification of 
termination. 

8.3 
No fault provided. Process ceases to perform its 

required services but 
continues performing actions 
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Table B-8  Fault/Fault Mode Set 8 [B11] 

ID Faults Fault Modes 
and consumes resources 
without notification of its 
status. 

8.4 Duplicate messages  Application in a different end 
state. 

8.5 Application failing to send a 
message. No fault mode provided. 

8.6 
Fault (specific fault not 
provided) occurs while writing 
a checkpoint file. 

Checkpoint file not in a 
consistent state 

8.7 No fault provided. Design limit of size of a 
database is reached. 

8.8 No fault provided. Application is unable to send 
a service request message. 

B.1.9. Fault/Fault Mode Set 9 – WGRisk Activities 

Chu et al, in [B12], identified faults and fault modes by considering the architecture of an 
example digital system.  Table B-9 lists the faults and fault modes identified by examining “the 
software program running on a particular microprocessor.” 

Table B-9 Fault/Fault Mode Set 9 [B12]. 

ID Faults Fault Modes 

9.1 Erroneous operation of data 
acquisition 

Incorrect value 

Incorrect validity 

No value 

No validity 

9.2 Erroneous operation for logic 
processing 

Failure to actuate (including 
failure to hold) 

Spurious failure 

9.3 Erroneous operation for 
voting logic 

Incorrect voting 

No vote 
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Table B-9 Fault/Fault Mode Set 9 [B12]. 

ID Faults Fault Modes 

9.4 Erroneous operation for 
priority actuation logic 

Incorrect priority 

No priority 

B.1.10. Fault/Fault Mode Set 10  

The faults and fault modes found in IEEE Standard 1044TM-2009 [B1] standard are listed in 
Table B-10.  Examples of faults listed in the standard are for information only and are not 
exhaustive.  Additional information on this standard is provided in Section B.2.2. 

Table B-10 Fault/Fault Mode Set 10 [B1]. 

ID Fault Fault Modes 

10.1 

Defect in data definition, 
initialization, mapping, 
access, or use, as found in a 
model, specification or 
implementation. 

Variable not assigned initial 
value or flag 

Incorrect data type or 
column size 

Incorrect variable name 
used  

Valid range undefined  

Incorrect relationship 
cardinality in data model 

Missing or incorrect value in 
pick list 

10.2 

Defect in specification or 
implementation of an 
interface (e.g., between user 
and machine, between two 
internal software modules, 
between software module 
and database, between 
internal and external software 
components, between 
software and hardware) 

Incorrect module interface 
design or implementation 

Incorrect report layout 
(design or implementation) 

Incorrect or insufficient 
parameters passed 

Cryptic or unfamiliar label 
or message in user 
interface 

Incomplete or incorrect 
message sent or displayed 

Missing required field on 
data entry screen 
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Table B-10 Fault/Fault Mode Set 10 [B1]. 

ID Fault Fault Modes 

10.3 

Defect in decision logic, 
branching, sequencing, or 
computational algorithm, as 
found in natural language 
specifications or in 
implementation logic. 

Missing else clause  

Incorrect sequencing of 
operations 

Incorrect operator or 
operand in expression 

Missing logic to test for or 
respond to an error 
condition (e.g., return code, 
end of file, null value) 

Input value not compared 
with valid range 

Missing system response in 
sequence diagram 

Defect in description of 
software or its use, 
installation, or operation. 

Nonconformity with the 
defined rules of a language. 

10.4 
Defect in description of 
software or its use, 
installation or operation 

 

10.5 Nonconformity with the 
defined rules of a language 

 

10.6 Nonconformity with defined 
standard. 

 

10.7 Defect for which there is no 
defined type. 

 

10.8 Something is incorrect, 
inconsistent, or ambiguous 

 

10.9 Something is absent that 
should be present 

 

10.10 Something is present that 
need not be. 
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Table B-10 Fault/Fault Mode Set 10 [B1]. 

ID Fault Fault Modes 

10.11 

Defects inserted during 
requirements definition 
activities (e.g., elicitation, 
analysis or specification): 

Function required to meet 
customer goals omitted from 
requirements specification. 

Incomplete use case 
specification 

Performance requirements 
missing or incorrect 

Security requirements 
missing or incorrect 

Function incorrectly specified 
in requirements specifications 

Function not needed to meet 
customer goals specified in 
requirements specifications 

 

10.12 
Defects inserted during 
coding or analogous activities 

 

Incorrect variable typing. 

Incorrect data initialization 

Module interface not coded 
as designed. 

10.13 Defect inserted during 
product build or packaging 

Wrong source file included 
in build. 

Wrong .EXE file included in 
distribution/deployment 
package. 

Wrong localization 
parameters in .INI file 
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Table B-10 Fault/Fault Mode Set 10 [B1]. 

ID Fault Fault Modes 

10.14 
Defect inserted during 
documentation of instructions 
for installation or operation 

Incorrect menu choices 
listed in User Manual. 

Incorrect task or navigation 
instructions in online help. 

Missing installation 
pre-requisite in product 
specifications. 

Wrong version identifier in 
product release notes. 

B.2. Fault Classification and Taxonomy Schemes 

A complete list of software faults and fault modes was not found45.  The technical community 
has recognized that there is a need to establish a common language to improve communication 
about software faults and fault modes.  Computer scientists, companies, and standards 
organizations have developed several classification systems and taxonomies that seek to 
establish a framework for defining, characterizing, and cataloging faults and fault modes to 
support software design and development.  This section describes a few classification 
approaches and taxonomies46: 

a. Heisenbugs, Bohrbugs, and Mandlebug classifications  

b. IEEE STD 1044-2009, Standard Classification for Software Anomalies 

c. Boris Beizer’s Classification of Software Bugs 
 

d. IBM’s Orthogonal Defect Classification (ODC) 
 

e. Hewlett Packard’s Defect Origins, Types, and Modes 
 

f. MITRE’s Common Weakness Enumeration (CWE) 
 

g. Avizienis/Laprie/Randell/Landwehr Taxonomy47 
 

h. A Taxonomy Based on PRA Requirements 
 

i. EPRI’s Hierarchy of Software Interactions and Faults 

45  Many faults and fault modes are known but more are expected to be found in the future. 
46  This list is not exhaustive.  Other classification systems and taxonomies may exist. 
47  This taxonomy was used in NUREG/CR-7151 titled “Development of a Fault Injection-Based 

Dependability Assessment Methodology for Digital I&C Systems.” 
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B.2.1. Heisenbugs, Bohrbugs, and Mandelbugs 

This set of “software bugs”48 classifications originated in the paper “Why do Computers Stop 
and What Can be Done about It?” [B13] by Jim Gray.  Although no formal definition of the terms 
was provided, Gray said that bugs could be classified as either Heisenbugs or Bohrbugs.  
Heisenbugs were understood to be “soft” meaning that “they go away when you look at them.”  
That is, Heisenbugs are transient faults or bugs that change when one inspects the bug.  
Although the term “Mandelbugs” was adopted by computer scientists and is sometimes used as 
a synonym for Heisenbugs, others have used this term to mean that it is a very complex bug 
that has the appearance of being chaotic or that it changes when it is inspected (it’s a Bohrbug 
that appears to be a Heisenbug).  The other type of software bugs are Bohrbugs, which can be 
understood as “solid” and easily detectable by standard techniques.  A lesser used term is a 
“Schrodinger bug” which can be described as code that should have never worked.  This 
classification approach has been used to analyze faults in past JPL/NASA space missions 
[B14].  Although these terms are used by the software community, no standard definition was 
found for these terms. 

B.2.2. IEEE STD 1044-2009, Standard Classification for Software 
Anomalies  

IEEE Standard 1044TM-2009 [B1] provides an approach to “the classification of software 
anomalies, regardless of when they originate or when they are encountered within the project, 
product, or system life cycle.”  The main focus of the standard is to provide a list of attributes 
that can be used to classify identified defects in software products discovered by any 
organization.  The document recognizes that “there are other attributes of failures or defects that 
are of unique value to specific applications or business requirements,”; that is, it is expected that 
organizations and individuals may tailor the classification attribute values in this standard.  The 
classification process is also to be defined by the organization using a process provided in this 
standard.  Table B-11 lists the set of defect attributes in [B1]. 

Table B-11   Defect Attributes in [B1] 

Attribute Definition 

Defect ID Unique identifier 

Description Description of what is missing, wrong, or unnecessary 

Status Current state within defect report life cycle 

Asset The software asset (product, component, module, etc.) containing the defect. 

Artifact The specific software work product containing the defect. 

Version detected Identification of the software version in which the defect was detected. 

48  The term “software bugs” includes faults and failures as used by Gray. 
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Version corrected Identification of the software version in which the defect was corrected. 

Priority 
Ranking for processing assigned by the organization responsible for the 
evaluation, resolution, and closure of the defect relative to other reported 
defects. 

Severity 
The highest failure impact that the defect could (or did) cause, as determined 
by (from the perspective of) the organization responsible for software 
engineering. 

Probability Probability of recurring failure caused by this defect. 

Effect The class of requirement that is impacted by a failure caused by a defect. 

Type A categorization based on the class of code within which the defect is found 
or the work product within which the defect is found. 

Mode 
A categorization based on whether the defect is due to incorrect 
implementation or representation, the addition of something that is not 
needed or an omission. 

Insertion activity The activity during which the defect was injected/inserted. 

Detection activity The activity during which the defect was detected. 

Failure reference(s) Identifier of the failure(s) caused by the defect. 

Change reference Identifier of the corrective change request initiated to correct the defect. 

Disposition Final disposition of defect report upon closure. 

B.2.3. Boris Beizer’s Classification Scheme49 

In Chapter 2 of Boris Beizer’s book “Software Testing Techniques – Second Edition,” a 
“Taxonomy of Bugs” is presented [B15].  He chose the term “bug” because at the time he wrote 
the book word “standards [were] inconsistent with one another and with themselves in the 
definition of ‘fault,’ ‘error,’ and ‘failure.’”  Beizer acknowledged that “there is no universally 
correct way to categorize bugs … [and that] bugs are difficult to categorize.”  In addition, “the 
severity of a bug, for the same bug with the same symptoms, depends on context.”  That is, a 
uniquely identified bug will have context-based effects. 

In Table 2.1 of his book, Beizer provided the following major categories under which software 
bugs can be grouped: 

1. Requirements 

49  All quotes from Software Testing Techniques, Second edition, by Boris Beizer.  Copyright © 1990 
by Boris Beizer.  The information is reprinted with permission of Van Nostrand Reinhold, New 
York. 

B-16 

 

 

                                                



  

2. Features and Functionality 
3. Structural Bugs 
4. Data 
5. Implementation and Coding 
6. Integration 
7. System and Software Architecture 
8. Testing 
9. Other, Unspecified 

In the only Appendix to his book “Bug Statistics and Taxonomy,” he provided up to five levels of 
subcategories to express and detail the bug taxonomy for each major category.  His example of 
structural bugs (#3 above) demonstrates the taxonomy: 

1. 3xxx – Structural Bugs in Implemented Software 
2. 32xx – Processing bugs 
3. 322xx – Expression evaluations 
4. 3222 – Arithmetic expressions 
5. 3222.1 – Wrong operator 

Beizer noted that the taxonomy may grow to include more subcategories (with a suggested 
format of xxxx.x.x).  The author warned that “Bug statistics tell you nothing about the coming 
release, only the bugs of the previous release.” 

B.2.4. IBM’s Orthogonal Defect Classification (ODC) 

Orthogonal defect classification [B16][B17] is a classification based on a set of attributes defined 
by IBM (the technical lead was [RC]).  It is a classification approach intended to lie between 
Statistical Defect Models50 and Causal Analysis (quantitative and qualitative classification 
extremes).  The term “defect” is defined as “a necessary change” in ODC.  The definition of 
“defect” in ODC is not the same definition used in this RIL.  Faults, errors, and mistakes as 
defined in this RIL are all of “defects” according to ODC. 

The set of attributes used for this classification scheme are: 

1. Activity:  the activity that was being performed at the time the defect was discovered. 
2. Triggers:  The environment or condition that had to exist for the defect to surface. 
3. Impact:  The effect or issue that the defect complicates. 
4. Target:  The high level identity of the entity that was fixed. 
5. Defect Type:  The nature of the actual correction that was made. 
6. Qualifier:  Captures the element of either nonexistent or wrong or irrelevant 

implementation in relation to defect type. 
7. Source:  Identifies the origin of the target. 
8. Age:  The history of the target. 

50  Statistical Defect Models (SDM) are tools that attempt to predict the reliability of a software 
product.  SDMs attempt to measure the number of defects that remain after a software product 
has been deployed, the failure rate of that product, and the short term defect detection rate [B9]. 
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Defect types consist of: 

1. Assignment/Initialization 
2. Checking 
3. Algorithm/Method 
4. Function/Class/Object 
5. Timing/Serialization 
6. Interface/O-O Messages 
7. Relationship 
8. Documentation 

Defects are qualified by: 

1. Missing:  defect was caused by  an omission 
2. Incorrect:  defect was caused by a commission 
3. Extraneous:  defect was caused by to something not relevant or pertinent to the 

document or code. 

B.2.5. Hewlett Packard’s Defect Origins, Types and Modes 

This classification approach specifies defects via three dimensions:  origins, types, and modes 
[B18].  Origins are the source of the defect, not where the defect is discovered in the lifecycle 
process, but where it could have or should have first been corrected.  The possible origins are:  
specifications/requirements, design, code, environmental support, documentation, or other.  
Types are coarse-grained categorizations and differ for each origin (and also include “other”).  
The modes are:  missing, unclear, wrong, changed, better way.  In summary, the origin specifies 
“where”, the type specifies “what”, and the mode specifies “why.” 

B.2.6. MITRE’s Common Weakness Enumeration (CWE) 

CWE [B19] is a “dictionary of known software weaknesses51” [B20] intended for use by the 
cyber security community.  The dictionary was developed in order to establish a common 
language for describing cyber security weaknesses.  The project is sponsored by the National 
Cyber Security Division of the U.S. Department of Homeland Security and is maintained by the 
MITRE Corporation.  In addition to defining software weakness terms, the CWE project also 
includes entries and metadata, which have been used to create taxonomies of software 
weaknesses and to demonstrate the relationship between the defined terms. 

51  Weaknesses are defined as “a type of mistake in software that, in proper conditions, could 
contribute to the introduction of vulnerabilities within that software.  This term applies to mistakes 
regardless of whether they occur in implementation, design, or other phases of the SDLC.”  
Weaknesses include “flaws, faults, bugs, vulnerabilities, and other errors in software 
implementation, code, design, or architecture that if left unaddressed could result in systems and 
networks being vulnerable to attack” [http://cwe.mitre.org/about/faq.html#A.1]. 
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This dictionary includes a taxonomy which is evidence of how hard it is to obtain a list of known 
faults and categorize them.  As of November 1, 2011, the CWE listed 886 entries.  The entries 
defined include 157 categories52, 693 weaknesses, 27 views53 and 9 compound elements54.  
The level of detail for each weakness varies.  “Class Weaknesses” are the most abstract 
entries; they are independent of specific languages or technology.  “Base weaknesses” are 
described in an abstract fashion but with sufficient details for detection and prevention.  “Variant 
Weaknesses” are described at a very low level of detail, typically limited to a specific language 
or technology [B21]. 

Several organizations have adopted or are adhering to the definitions provided on the CWE 
Web site even though the dictionary shows the status of every entry listed on the CWE Web site 
as either “Draft” or “Incomplete.”  There is no guarantee that the list of terms is complete and 
that new weaknesses will not be found. 

The staff searched the CWE for faults and fault modes that may occur when software is used in 
digital safety systems.  Not all of the faults and fault modes listed in the CWE dictionary would 
apply to every case proposed by a licensee or applicant.  Eliminating the irrelevant known 
weaknesses was a challenge for the NRC staff because the CWE is so large.  The CWE Web 
site provides several graphical depictions of how the entries are related and how they can be 
categorized [B22].  For a depiction of just the categories with some vulnerabilities see [B23].  
Finding the faults that could apply to software used in digital safety systems was like searching 
for a “needle-in-a-haystack.”  Some entries that are relevant to digital safety systems in the 
CWE include:  Indicator of Poor Code Quality [B24], Resource Management Errors [B25], 
Improper Restriction of Operations within the Bounds of a Memory Buffer [B26], Improper Input 
Validation [B27], and Concurrent Execution using Shared Resource Synchronization (‘Race 
Condition’) [B28]. 

B.2.7. Avizienis/Laprie/Randell/Landwehr Taxonomy 

In their paper, “Basic Concepts and Taxonomy of Dependable and Secure Computing” [B29], 
Avizienis, Laprie, Randell, and Landwehr faults have eight “basic viewpoints”:  phase of 
creation, system boundaries, phenomenological cause, dimension, objective, intent, capability, 
and persistence.  There are “256 different combined fault classes” that are possible but not all 
fault classes can be classified by the eight viewpoints.  They identified “31 likely combinations” 
of fault classes but also state that “more combinations may be identified in the future.” 

B.2.8. A Taxonomy Based on PRA Requirements 

In the paper, “Integrating Software into PRA:  A Software-Related Failure Mode Taxonomy” 
[B30], Li et al. (authors from the University of Maryland and NASA), describe a taxonomy 
“established based on the principles derived from taxonomy theory, other classifications, and 
the PRA requirements” as described in the paper.  The taxonomy presented consists of four 

52  Category is defined as “a CWE entry that contains a set of other entries that share a common 
characteristic.” 

53  A View is a “subset of CWE entries that provide a way of examining CWE content.” 
54  Compound Element is defined as a CWE entry “that closely associates two or more CWE 

entries.” 
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levels.  It begins from two general types of software faults:  internal faults and interaction faults.  
More specific types of faults and fault modes are described through a four level hierarchy. 

B.2.9. EPRI’S Hierarchy of Software Interactions and Faults 

In Appendix B of [B31], EPRI researchers propose a digital failure analysis taxonomy that 
includes examples of failure modes, failure mechanisms, faults, and defensive measures for 
generic hardware and software implemented at various levels of abstraction.  The taxonomy 
proposes organizing software faults into four levels of a hierarchy:  Binaries (Level 1), Tools 
(Level 2), Application and Operating System Software (Level 3), and System Architecture (Level 
4).  Example fault modes (called Failure Modes), their causes (Failure Mechanisms), and ways 
to address them (Defensive Measures) in [B31] do not form a comprehensive listing. 

B.3. Summary of Software Faults and Fault Modes Found 

This Appendix presents the software faults and fault modes identified during the expert 
elicitation process and in the technical literature reviewed.  In addition, several taxonomy and 
classification schemes were discussed.  The potential fault and fault mode space for software in 
it is large.  Some faults and fault modes reported in this Appendix may be applicable to some 
digital systems containing software but not to others.  Critical faults and fault modes that are not 
listed may also exist.  Further analysis of the fault modes listed in this chapter using any of the 
techniques discussed in Appendix C will not provide assurance that the software is fault free.  
The benefits of further analysis of the faults and fault modes reported (See Appendix C) are 
marginal. 
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APPENDIX C. SOFTWARE FAULT MODES AND EFFECTS 
ANALYSIS METHODS 

This appendix presents more details on staff findings on the efficacy of Software Fault55 Modes 
and Effects Analysis (SFMEA) as a method for identifying faults leading to system failure, i.e., 
performance-degradation of a safety function.  Although no accepted or proposed standards 
were found for SFMEA56, “companies have taken the traditional methods used for hardware and 
modified them for software” [C9].  Methods that are based on Failure Modes and Effects 
Analysis (FMEA) are referred to as SFMEA and are documented in technical literature.  
Representative SFMEA processes and applications found in the literature are presented in this 
appendix.  Observations on the similarities and differences are presented with conclusions 
pertinent to the efficacy of SFMEA as a method for identifying faults leading to system failures 
impairing a safety function. 

C.1. SFMEA in Literature Reviewed 

C.1.1. System and Detailed Level SFMEA 

In his paper “Software FMEA Techniques” [C10], Goddard described two types of SFMEA:  
System level and Detailed level SFMEA.  Both techniques are described as being applied 
during system design stages. 

System level is applied early in the software design after the architecture has been developed 
and functions have been assigned to separate software elements in the architecture.  This 
analysis is focused on top level software design - that is software elements are treated as black 
boxes, the code has not yet been written.  The authors state that system level SFMEA should 
be updated as the top level software design progresses and in parallel with detailed design 
SFMEA. 

Detailed SFMEA is applied late in the design process when, at minimum, pseudo code is 
available.  Software requirements documentation, top level design descriptions, and detailed 
design descriptions should also be available.  In performing the analysis, fault modes for each 
variable and each algorithm in each software element needs to be postulated.  The effects of 
each postulated fault mode must then be traced through the code to the output signals.  In both 
the article and his interview with the NRC, [PG] stated that “detailed level SFMEA is becoming 
moot”57 because it is labor intensive.  In particular, detailed SFMEA “may not be cost effective 
for systems with adequate hardware protections. [C10]”  

55  Whereas the term, “failure modes and effects analysis (FMEA)” is used in the context of the 
overall DI&C system, the corresponding concept for software (and other forms of complex logic) 
in a DI&C system is “fault modes and effects analysis.”  Logic does not fail in the traditional sense 
of degradation of a hardware component but the system could fail, due to a pre-existing logic 
fault, triggered by some combination of inputs and system-internal conditions.” [C1] 

56  The staff did find FMEA standards used for analysis of hardware that includes references:  the 
following references to this footnote:  [C2],[C3],[C4],[C5],[C6],[C7], and [C8]. 

57  Tele-meeting between NRC and [PG] held on September 10, 2010. 
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During his interview, [PG] stated that “the intent of the software FMEA is not to verify the quality 
of the software … the entire intent of the software FMEA is to demonstrate that should 
something go wrong whether it’s hardware induced or software induced that the software 
architecture is such that it will catch that something went wrong and that it will handle it in a safe 
manner.”  The important assumption is that it is possible to move to a safe state once something 
goes wrong.  [PG] further noted that “showing that you can detect something, a discrepancy, is 
miles away from showing that you can isolate it correctly, make some kind of recovery 
technique and push forward.”  There is no indication that the SFMEA methods in this reference 
are suitable for assurance or for identifying faults that lead to system failures impairing a safety 
function. 

C.1.2. Functional, Interface, and Detailed SFMEA 

Bowles and Wan built on the work of Goddard and provided an example of the SFMEA process 
applied to a ball-in-a-tube system in their paper “Software Failure Modes and Effect Analysis for 
a Small Embedded Control System” [C11].  Bowles and Wan described three types of SFMEA:  
functional, interface, and detailed (compared to system and detailed SFMEA as described by 
Goddard [C10]). 

In performing the functional SFMEA, Bowles and Wan divided their program into four distinct 
software functions.  The paper identified three fault modes each for two of the software 
functions and traced the effects of the fault modes (the local effect, next-level effect, and system 
effect).  The local effect is the immediate consequence of the activated fault.  The next-level 
effect is the consequence of the local effect.  The system level effect is the failure that occurs at 
the system level.  For example, the ball-in-tube system in this paper is designed to keep a small 
ball suspended at a predetermined height.  Activated faults have local effects that lead to other 
effects which ultimately result in the system not being able to maintain the ball at the 
predetermined height. 

For the interface SFMEA, Bowles and Wan identified three interfaces either between software 
modules or software-hardware elements of the system and provided four fault modes for one of 
the interfaces.  For their example, local and system effects were identified for each of the four 
faults of one interface identified. 

The detailed SFMEA was described as analyzing “the effect of individual software variable 
[faults] on the system output.”  The paper listed faults applicable to a few possible variable types 
and provided a table example of detailed SFMEA for one computation used in their example 
system. 

In this paper, Bowles and Wan caution that “detailed SFMEA can be most effectively applied to 
software for systems which do not have effective hardware memory protection, processing 
results protection, and memory transfer protection.”  The SFMEA tables provided in Bowles’ and 
Wan’s paper include remarks suggesting that design changes are needed.  There is no 
indication that the SFMEA methods in this reference are suitable for assurance or for identifying 
faults that lead to system failures impairing a safety function. 
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C.1.3. SFMEA for Requirements Analysis 

Lutz and Woodhouse, in the paper “Experience Report:  Contributions of SFMEA to 
Requirements Analysis”[C12] describe their use of SFMEA process in combination with a 
process similar to Fault Tree Analysis (FTA) during the requirements analysis stage of the 
software lifecycle on 24 software modules on two spacecraft systems.  The SFMEA process is 
described as “forward searching to identify Cause/Effect relationships” in which data or software 
behavior can result in unwanted effects.  Fault modes were analyzed through two tables:  A 
Data Table for analyzing communication faults (data read or received by the software process) 
and an Events Table to analyze software process faults (single actions such as “perform a 
calculation, sample a sensor value, and command an antenna to slew to another position”).  
The tables were used to identify concerns and vulnerable areas with sufficient detail so a reader 
could determine whether a requirement needed to be changed.  Each table contained four 
columns.  The data table columns consisted of:  Data Item, Data Fault Type, Description, and 
Effect.  The event table columns consisted of:  Event, Event Fault Type, Description, and Effect.  
The data and event fault types are listed in Appendix B, which discusses fault modes. 

Lutz and Woodhouse noted that “like most failure analysis methods, SFMEA is time consuming; 
much of it is tedious; and it depends on the domain knowledge of the analyst and accuracy of 
the documentation” and that “unlike hardware, a complete list of failure modes for software 
cannot be assembled.”  Despite the detractions, Lutz and Woodhouse “found that SFMEA was 
feasible and useful for requirements analysis in a large well-documented system.”  There is no 
indication in this work that SFMEA is appropriate for assurance or for identifying faults leading to 
system failures impairing a safety function. 

C.1.4. SFMEA for Model-Based and Object Oriented Environments 

H. Hecht, in collaboration with X. An and M. Hecht, found SFMEA useful in model-based or 
object oriented design environments, specifically when Unified Modeling Language tools are 
used [C13][C14].  The approach is described for two lifecycle phases:  concept and 
design/implementation.  The authors also state that the techniques (with the aid of a computer) 
can be used to organize Verification and Validation activities.  These authors stated that there 
are fundamentally “two approaches for partitioning software for a system FMEA:  functional or 
by output variables, considering one variable at a time.”  Both approaches are problematic 
because “functional partitions of a program are subjective and different analysts can come up 
with different lists of functions for a given program” and that “generating a software FMEA based 
on failures of a single output variable misses conditions in which a programming error affects 
multiple variables.”  In light of these issues, Hecht et al, sought to automate the SFMEA process 
for use in the concept, design/implementation, and verification and validation (V&V) phases of 
the software lifecycle of model based or object oriented designed software. 

The analysis process discussed in Hecht’s work is derived from MIL STD-1629 [C4].  The 
SFMEA worksheet lists the following columns:  ID, Component, Fault Mode58, Local Effect, 
Next-Higher-Level Effect, System Effect, Severity, Detection Method, Compensation, and 
Remarks.  In this process, components are the methods of the object oriented structures in a 

58  The article uses the column “Failure Mode.”  The column heading was replaced for this appendix 
with “Fault Mode” for terminology consistency. 
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software program.  The Fault Modes used are a compressed set based on fault mode set 
provided in the STUK report [C15] but others can be defined by the analyst.  The analyst is also 
to provide the information for the compensation and remarks columns. 

C.1.5. Code Level SFMEA 

Nathaniel Ozarin in three papers:  [C16][C17][C18], argued that SFMEA is best performed at the 
code level (comparable to detail level as described by Goddard in [C10]).  He argued that 
“moving from the lowest level of analysis to the highest level – typically from the method level to 
the module or package level – a FMEA becomes less accurate, less precise, less tedious, and 
less time-consuming … a FMEA is based increasingly on the stated intent … and less on the 
actual product behavior”[C16].  Ozarin used his technique to determine if a single software 
variable can cause catastrophic events or other serious effects.  The result of his analysis is to 
make the source code “more robust in specific areas before deployment.”  Ozarin provides no 
indication that SFMEA can be used to identify faults leading to system failures impairing a safety 
function. 

The details of the process are articulated in reference [C16] of this appendix.  Ozarin specifically 
looks at situations where “a software variable is assigned an unintended value” and follows six 
steps for the SFMEA process.  The six steps are: 
 

1) System and Software Familiarization 
2) Database Tool Development 
3) Developing Rules and Assumptions 
4) Developing Descriptive [Fault]59 Modes 
5) Determining System Effects of Individual [Faults] 60 
6) Generating the Report  

 
The system and software familiarization is the first step because he recommends that SFMEA 
“should not be performed by the people who developed the code.”  The purpose of the database 
tool development stage is to develop tables to organize the information obtained through the 
SFMEA process.  The proposed tables include a table to organize the different parts of the 
software program (for example, classes could be considered parts of the program).  A second 
table defines the functions of each subroutine.  The third table lists the appropriate variables 
(both input and output).  A third table organizes the input and output variables of the program.  
In step 4 rules and assumptions are outlined for performing the analysis.  In step 5, fault modes 
are developed that specify how a variable can take on a value that negatively affects the 
subroutines that use the variable.  The effects of each fault are considered in step 5.  In step 6, 
the findings and conclusions of the analysis are presented in report format. 
 

59  The word used in the reference is “failure.”  It was replaced in this appendix for consistency 
based on the definitions provided in the Glossary. 

60  The word used in the reference is “failure.”  It was replaced in this appendix for consistency 
based on the definitions provided in the Glossary. 
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C.1.6. Automated Code Level SFMEA 

Snooke et al., through references [C20], [C21], [C22], [C23], has explored automating his 
version of a SFMEA process.  Snooke’s work stems from the observation that “code level 
software FMEA has been performed for some years, but has been considered impractical 
except when applied to small pieces of highly critical code” [C22].  Snooke proposes a three 
step process.  The first step is that “the source code of the software to be analyzed [be] parsed 
and transformed into a fault propagation model” [C22].  The second step involves injection and 
propagation of faulty input and output variables.  The third step is identification of system level 
effects by mapping the functions of the software program to variables that implement the 
functions.  Snooke notes that “this work is clearly program language dependent … model 
construction has been achieved for a large subset of the JAVA language.”  Furthermore, the 
work he describes “does not cover all constructs in all languages.”  Snooke states that other 
tools and processes could be used to make modifications after performance of an SFMEA 
[C23].  Snooke also writes that “generally the response might be to identify and remove 
unintended interactions and improve error checking” [C23]. 

C.1.7. Other Versions of the SFMEA Process 

A few other sources were found describing a SFMEA process (See [C24],[C25],[C26],[C27]).  
These are not discussed to the extent of the examples above because they contained no new 
information.  Reference [C24] provided an example of SFMEA for an object oriented software 
framework that utilized a block diagram of the code to develop a list of possible fault modes 
which would be traced from lower level effects up to system level effects.  Reference [C25] “did 
not involve a detailed analysis of the software.”  The process used in [C26] is similar to 
Goddard’s work [C10].  Park et al, in “Software FMEA Analysis for Safety Software” [C27], used 
SFMEA to analyze an Automatic Test and Interface Processor for a reactor protection system.  
Details about the process used in [C27] were not provided.  The article did state that function 
blocks were used to represent the code and that the fault modes considered fell under 
functional, input, and output categories.  The process, as described, in [C27] has elements of 
the detailed process descriptions provided in this appendix.  Other non-public documents were 
also reviewed but are not discussed.  No new information was obtained in these non-public 
documents. 

C.1.8. Similarities and Differences among Sources Cited 

Each of the versions of the “SFMEA” process found shared some similarities but also had some 
differences.  All of the examples describe a process where the software is broken down into 
more manageable parts for analysis, they evaluated fault modes (see Appendix B for a listing of 
the fault modes found), and traced the effects of activating those fault modes.  The level of 
abstraction of the software considered was different and ranged from very high level (e.g,, 
system-level, functional) to more detailed (e.g., code level, interface level).  The extent to which 
the effects were traced also differed.  The software lifecycle stages in which the SFMEA 
process was applied ranged from the requirements stage to late in the design stage.  The 
processes described all had limitations to specific software languages, design environments, or 
were not to be used under certain conditions (such as software systems with memory 
protection) [C10]. 
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C.2. Efficacy of SFMEA in Identifying Faults 

The staff acknowledges that the variations of the SFMEA process reviewed have been useful in 
various stages of the software lifecycle61; however, the staff also found that: 

 
• The potential fault space in software of moderate complexity is large [C1].  Many 

faults and fault propagation paths are difficult to identify because they “may be 
masked by some other functionality.” [JM].62   

• No standard process for performing an SFMEA was found.  The variations of the 
SFMEA process reviewed were not applicable to all coding languages or 
software systems. 

• It is difficult to consider all the possible effects of any identified fault on the 
system.  That is, analysis of a fault mode may not provide certainty that any 
system will fail in any particular way because the effects can depend on time or 
situation dependent conditions that may apply only under very specific 
circumstances. 

• The techniques reviewed do not identify faults resulting from system-system and 
system-environment interactions [C19]63 

In summary, the contribution of the reviewed SFMEA techniques toward assurance of software 
would be marginal. 
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APPENDIX D. OPERATING EXPERIENCE AND FAILURE MODES 

Consistent with regulations and regulatory guidance, failure mode identification and analysis 
has been useful, as applied in the past by licensees and accepted by the NRC licensing staff for 
regulatory evaluation (for example, FMEA documentation has been reviewed64 to ensure that  
the single failure criterion was satisfied65 and has resulted in operational interactions controls 
such as testing and maintenance66)67. 

For new reactor designs, the staff has continued the practice accepting and reviewing FMEAs to 
ensure that the single failure criterion has been met.  FMEAs can be a part of Inspections, 
Tests, Analyses, and Acceptance Criteria (ITAAC) for systems under development.  For 
example, the U.S. EPR design, U.S. EPR Tier 1, Table 2.4.1-7 (PS ITAAC), Item 4.18 requires 
the performance of an FMEA for the Protection System [D1]. 

This appendix discusses practice in the organization of operating experience for a “traditional68” 
electromechanical device, a 3-phase AC, squirrel cage induction motor, and suitability of a 
similar approach for complex software. 

D.1. Failure Modes of Induction Motors:  Example usage 

Three-phase AC squirrel cage induction motors vary over a wide range in combinations of size, 
power, and speed, but the engineering principles and key functional elements are the same, 
namely: 

1. stator; stator winding 
2. rotor; armature  
3. casing or housing 
4. shaft 
5. bearings 

Because the functional elements are the same across the whole range of motors, the 
associated failure mechanisms are the same, and their effect on the behavior of the whole 
motor is the same; thus, a compact, complete set of well-defined failure modes that apply to all 
squirrel cage induction motors can be identified.  The following failure69 modes are from 

64  Information reviewed for these purposes is not limited to FMEA documentation. 
65  ISG-06[ML11014010] states that “an FMEA is a method for document a single failure analysis 

which is in accordance with IEEE Std 379-2000 as endorsed by RG 1.53 Revision. 2.”   
66  Internal NRC experts stated that FMEA has been used to demonstrate that necessary 

surveillances were identified for credible failures [Norbert Carte].  This information is supported by 
SECY-77-439 [ML060260236].  Supporting evidence can also be found by searching licensee 
provided License Amendment Requests. 

67  FMEA does not address common cause failure (CCF) when a CCF is rooted in a systemic cause 
such as an engineering deficiency, it is pervasive (i.e., its effects cannot be pinpointed or isolated, 
but could occur at many hard-to-find places). 

68  Characterized by long-term stability in engineering principles and design realizations. 
69  Note: Usage of the term, failure mode, across guidance documents is not consistent with the 

definition selected in RIL-1002.  In this case, it is mixed up with failure mechanisms. 
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Chapter 14 of the Handbook of Reliability Prediction Procedures for Mechanical Equipment on 
the U.S. Navy’s Naval Sea System Command Web site [D2]: 

1. open winding 
2. shorted winding 
3. worn bearing; worn sleeve bearing 
4. cracked Housing 
5. sheared (armature) shaft 
6. cracked rotor laminations 
7. worn brushes (applicable to a direct current (DC) motor with brushes; not applicable to 

an induction motor) 

Yet, operating-experience data for the specific failure modes listed above was not found.  A 
literature search revealed that frequency of failure data is most often organized by component.  
This organization was found useful, because the key functional elements, their failure 
mechanisms, the dominant, failure modes manifested at the motor-level remained the same for 
all 3-phase AC squirrel cage induction motors.  The underlying reasons are (1) the same 
engineered principles and key functional elements are used in all these motors, and (2) their 
dominant conditions of use fall in the same general pattern. 

For example, data for large (200 hp) motors can be found in the IEEE Recommended Practice 
for the Design of Reliable Industrial and Commercial Power Systems (IEEE Std 493-1997) [D3].  
Specifically, Table 3-17 presents the raw number of failures for each component, and Table 
3-19 presents the percentage of failures that pertain to failure initiators, failure contributors, and 
underlying causes. 

D.2. Digital System Failure Modes:  Utility in organizing operating 
experience data 

Digital safety systems emerging in NPPs are complex, the underlying engineering, design, and 
implementation paradigms vary widely, and even for similar systems, conditions of use are 
sufficiently different to challenge meaningful aggregation and organization of data from 
operating experience according to system level failure modes such as those characterized in 
Section 6.1.  Furthermore, when a system failure is caused by software or by some other 
systemic factor, “part replacement” (as in traditional electromechanical devices) does not correct 
the problem.  The cause has to be removed or corrected; then, it is not the same system 
anymore.  Aggregation of failure data across such changes would not support meaningful 
analysis as simply as it does for replaced parts. 
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APPENDIX E. FAILURE MODE RELATED EFFORTS BY NRC PRA 
STAFF AND OTHER STAKEHOLDERS 

There is additional work related to identification of digital safety system failure modes that is 
directly sponsored by the NRC, indirectly sponsored through NRC international collaborative 
efforts70, or sponsored by other stakeholders with interests in the nuclear industry.  These 
efforts are ongoing and are not expected to impact or change the results presented in this RIL.  
A summary of these efforts is presented in this appendix. 

E.1. Probabilistic Risk Assessment Research 

As described in the background of this RIL, the Commission, through its 1995 PRA Policy 
Statement, has encouraged the use of PRA technology in all regulatory matters to the extent 
supported by the state of the art in PRA methods and data.  Because there is no consensus on 
how to quantify the reliability of digital systems, the NRC is performing research on the 
development of probabilistic models for digital I&C for inclusion in nuclear power plant (NPP) 
probabilistic risk assessments (PRAs). 

Brookhaven National Laboratory (BNL) is supporting the NRC in this research through a series 
of projects on digital I&C system reliability modeling and quantification.  Previous BNL projects 
have focused on reliability modeling and quantification of digital system hardware and on a 
review of available quantitative software reliability methods (QSRMs) that can be used to 
quantify software failure rates and probabilities of digital systems at NPPs.  In addition, this 
previous work involved identification of a set of desirable characteristics for QSRMs.  In current 
work, two candidate QSRMs have been selected based on a structured comparison of the 
previously identified QSRMs against the set of identified desirable characteristics for further 
investigation through a case study. 

While these two areas of research (i.e., digital I&C PRA and analytical assessment of digital I&C 
systems) are closely related, they address different regulatory objectives.  The findings and 
conclusions in the body of this RIL are focused toward assurance of safety critical digital 
systems.  The PRA research is focused on developing methods and tools to support future risk 
informed approaches.  The evaluation of appropriate failure modes for probabilistic risk 
assessment will be discussed in future NRC reports.71   

E.2. Working Group on Risk Assessment (WGRisk) Activities and 
Results 

The U.S. Government actively participates in Organisation for Economic Co-operation and 
Development (OECD) activities.  The NRC specifically collaborates through the Nuclear Energy 
Agency (NEA), which is a specialized agency within OECD [E1].  The Committee on the Safety 
of Nuclear Installations (CSNI), which is a committee under the NEA [E2] created and directed 

70  The staff has also been exposed to relevant information through presentations at conferences 
and other meetings with experts from other organizations interested in the digital safety systems.  
These other organizations include NASA, Society of Automotive Engineers, etc. 

71  PRA experts in the RES staff have indicated that the failure modes, faults, and fault modes, and 
SFMEA approaches discussed in this RIL may have potential uses for PRA applications.  Staff 
working on both the PRA related failure mode research and failure mode research for safety 
assurance are coordinating to ensure technical consistency between the two efforts. 
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the Working Group on Risk Assessment to set up a task group to coordinate an activity on DI&C 
system risk.72  The NRC joined this effort to complement the work previously described in 
Section E.1above. 

One workshop has been held and two others are scheduled73 to discuss and share experiences 
with modeling and quantifying NPP DI&C systems in a PRA context.  A resulting action from this 
interaction has been to develop a taxonomy of failure modes of digital components for the 
purposes of performing PRA.74  Preliminary work has been done to create the taxonomy but this 
work is not complete or publicly available, however, some papers based on the work have been 
presented at the Probabilistic Safety Assessment International Conference (PSAM 11, 2012) in 
Helsinki.  The NRC will continue participating in this effort.  All learning from this working group 
will be shared with other internal NRC research efforts considering the use of digital system 
failure modes. 

Relevant failure modes identified in the WGRisk published papers are in Table 10, “Failure 
Mode Set J - Summary of Failure Mode Taxonomies,” in Section 6.1.1.10.  Relevant fault 
modes are located in Appendix B.  The failure and fault mode examples provided for Failure 
Mode Set J and Fault Mode Set 9 are from the following 10 organizations: 

• Brookhaven National Laboratory (BNL) 
• Canadian Nuclear Safety Commission (CNSC) 
• Electricity of France (EDF) 
• Institut de Radioprotection et de Suerte Nucleaire (IRSN) 
• Japan Nuclear Energy Safety Organization (JNES) 
• Korean Atomic Energy Research Institute (KAERI) 
• Nuclear Research and Consultancy Group (NRG) 
• Nordic Nuclear Energy Research (NKS) 
• Ohio State University (OSU) 
• Technical Research Centre of Finland (VTT) 

E.3. Halden Research Project Efforts  

The NRC actively collaborates with the Halden Reactor Project (HRP)75 in Norway on topics of 
mutual interest.76  The staff regularly attends meetings organized by the HRP that update all 
stakeholders on ongoing research projects and closely related research by other organizations. 

At the meeting held on October 1-7, 2011, at Sandefjord, Norway, NRC staff attended a 
presentation of ongoing research on cost-efficient methods and processes for safety relevant 
embedded systems (CESAR)77 [E3], which contained information relevant to SRM M080605B 
and the recommendations resulting from the ACRS 576th meeting  (October 20, 2010).  
Relevant information from this interaction is presented in the main body of this RIL. 

72  This information obtained via email/conversation with Gabriel Taylor 
73  As of this writing. 
74  Note that the WGRisk Group has not adopted the terminology used in this RIL.  Their efforts are 

producing both failure modes and fault modes. 
75  Like the WGRisk Group, the HRP is also operates under the auspices of OECD’s NEA. 
76  The U.S. has participated (and been one source of funding) in the Halden Research Project since 

1958. 
77  CESAR is a European project funded under the ARTEMIS Joint Undertaking.  See references for 

more information 
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