ATTACHMENT 1

STRUCTURAL INTEGRITY ASSOCIATES, INC. REPORT NO. 0901132.401

EVALUATION OF SURVEILLANCE DATA FOR WELD HEAT NO. W5214 FOR APPLICATION TO PALISADES PTS ANALYSIS

Report No. 0901132.401 Revision 0 Project No. 0901132 April 2010

Evaluation of Surveillance Data for Weld Heat No. W5214 for Application to Palisades PTS Analysis

 \langle

Prepared for:

Entergy Nuclear Corp. Palisades Nuclear Power Plant

Prepared by:

Structural Integrity Associates, Inc. San Jose, California

Prepared by:

Prinotty J. Suesbah Timothy J. Griesbach

Prepared by:

Reviewed by:

Vihran Machadam Vikram Marthandam

Clark Oberembt

Approved by: Prinothy J. Silesbah Timothy J. Griesbach

Date: <u>4/20/2010</u>

Date: 4/20/2010

4/20/2010

Date:

Date: 4/20/2010

		I	REVISION	CONTROL	SHEET			
Docume	ent Numbe	er: 0901132.	401		·			
Title:	Evaluati	on of Surveilla	nce Data fo	r Weld Heat N	No. W5214 for Application to			
Palisades PTS Analysis								
Client: Entergy Nuclear Corp.								
SI Project Number: 0901132 Quality Program: Nuclear Commercial								
Sec	tion	Pages	Revision	Date	Comments			
· 1.	.0	1	0	4/20/2010	Initial Issue			
2	.0	1 - 2						
3	.0	2 - 6						
4	.0	6 - 12						
5.	.0	13 - 23						
6.0		23 - 29						
7.0		. 29						
8.0		30 - 33						
Apper	ndix A	A1 - A2						
Apper	ndix B	B1 - B7						
Apper	ndix C	C1 - C22						
Apper	ndix D	D1 - D19						
Àpper	ndix E	E1 - E27						
Apper	ndix F	F1 - F24						
Apper	ndix G	G1 - G23						
Apper	ndix H	H1 - H6						
Appendix I		I1 - I4						
				r				
				,				

:

EXECUTIVE SUMMARY

This evaluation was performed as part of a review of the Palisades Pressurized Thermal Shock (PTS) re-evaluation. A previous analysis performed for the Palisades vessel in 2000 determined that the PTS screening criteria limit of 270°F for weld heat No. W5214 would not be reached until January 2014. That evaluation was based on the fluence projections and weld material chemistry for weld heat No. W5214 available at that time; no credit was given for surveillance data to improve the RT_{PTS} projection. In the fall of 2009 it became apparent to Entergy that new information was available that could affect the RT_{NDT} of the limiting Palisades vessel beltline material. The new data included revised fluence calculations and a total of eleven irradiated surveillance capsules that contain Charpy V-notch data for weld heat No. W5214. This report examines the updated fluence calculations performed by Westinghouse and all the available surveillance data relevant to the Palisades reactor pressure vessel weld heat No. W5214. Using the revised fluences and chemistry factors based on the refitted surveillance data for this weld heat, this re-evaluation shows that the projected date to reach the PTS screening criteria limit using the surveillance weld data would be approximately April 2017 or later.

Structural Integrity Associates, Inc.

Table of Contents

Section	<u>n</u>	<u>Page</u>
1.0		1
2.0	APPLICABILITY	1
3.0	METHODOLOGY	2
4.0	DATA EVALUATION RESULTS	6
5.0	DATA CREDIBILITY ASSESSMENT AND FLUENCE EVALUATION	13
6.0	DISCUSSION	23
7.0	SUMMARY AND CONCLUSIONS.	29
8.0	REFERENCES	30
APPEN WELD	NDIX A: CEOG DETERMINATION OF BEST-ESTIMATE CHEMISTRY FOR D HEAT NUMBER W5214	A- 1
APPEN ASSES	NDIX B: EXCERPT FROM GENERIC LETTER 92-01 AND RPV INTEGRITY SSMENT NRC/INDUSTRY WORKSHOP ON RPV INTEGRITY ISSUES	B-1
APPEN PROG	NDIX C: PALISADES SUPPLEMENTAL MATERIALS SURVEILLANCE RAM RESULTS FOR WELD NO. W5214	C-1
APPEN SURV	NDIX D: INDIAN POINT 2 REACTOR VESSEL MATERIALS EILLANCE PROGRAM RESULTS FOR WELD NO. W5214	D -1
APPEN SURV	NDIX E: INDIAN POINT 3 REACTOR VESSEL MATERIALS EILLANCE PROGRAM RESULTS FOR WELD NO. W5214	<u>E</u> -1
APPEN SURV	NDIX F: H. B. ROBINSON 2 REACTOR VESSEL MATERIALS EILLANCE PROGRAM RESULTS FOR WELD NO. W5214	F-1
APPEI DATA	NDIX G: CVGRAPH TANH CURVE-FITS FOR W5214 SURVEILLANCE WELD	G-1
APPEN FOR S	NDIX H: CALCULATION OF TIME-WEIGHTED AVERAGE TEMPERATURES SURVEILLANCE CAPSULES CONTAINING WELD HEAT NO. W5214	H-1
APPEN SURV	NDIX I: LISTING OF DESIGN INPUTS FOR WELD HEAT NO. W5214 EILLANCE DATA RE-EVALUATION	I-1

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

List of Tables

Table Page
Table 1: Results of all W5214 Surveillance Data with Reported Fluence and Vendor Shift Results
Table 2: Summary of Revised Capsule Fluences and Time-Weighted Average Temperatures for Surveillance Capsules Containing Weld Heat No. W521411
Table 3: Summary of Revised (Refitted) Surveillance Capsule Results for Weld Heat No. W5214
Table 4: Test Specimens Contained in Palisades Capsules SA-60-1 and SA-240-115
Table 5: Evaluation of Palisades Surveillance Data Results for Weld Heat No. W521417
Table 6: Evaluation of all Surveillance Capsule Results Containing Weld Heat No. W5214
Table 7: Scatter in Fit to all Surveillance Capsule Results Containing Weld Heat No. W5214
Table 8: History of Time-Weighted Operating Temperature for Palisades
Table 9: Correlation Monitor Material HSST Plate 02 Calculation of Fitted CF
Table 10: Correlation Monitor Material HSST Plate 02 Calculation of Measured - Predicted Scatter
Table 11: Calculated and Projected Fluence Values at 60° Weld Location
Table 12: Limiting Fluence Determination for Current Licensing Basis (Case 1)
Table 13: Limiting Fluence Determination for Revised Best-Estimate CF Value (Case 2)25
Table 14: Limiting Fluence Determination for Case 4a
Table 15: Limiting Fluence Determination for Case 4b
Table 16: Interpolation of PTS Limit Date Based on Current Licensing Basis and Revised Fluence

iii

Table 17:	Interpolation of PTS Limit Date Based on Limiting Fluence for Case 4b28
Table 18:	Projected Maximum Fluence and Estimated PTS Limit Dates for Palisades Weld W5214

List of Figures

<u>Figure</u>		<u>Page</u>
Figure 1.	Best Fit to Data for all W5214 Surveillance Data with Reported Fluence and Vendor Shift Values	34
Figure 2.	Palisades Supplemental Surveillance Data (W5214) with Revised Fluence and Refitted Shift (Case 4a)	35
Figure 3.	Best Fit for all W5214 Surveillance Data with Revised Fluence and Refitted Shift (Case 4b)	36
Figure 4.	Plot of Residual vs. Fast Fluence for A533B-1 HSST-01/HSST-02 CMM with Companion Materials, the Overall 2-Sigma Scatter is 50°F [24]	.37
Figure 5:	Projected Peak Fluence at 60° Weld Location (from [18]) and RT _{PTS} Limit Dates	.38

,

iv

EVALUATION OF SURVEILLANCE DATA FOR WELD HEAT NO. W5214 FOR APPLICATION TO PALISADES PTS ANALYSIS

1.0 INTRODUCTION

The Palisades Nuclear Plant submitted to NRC a Pressurized Thermal Shock (PTS) evaluation in 2000 that projected the value for RT_{PTS} , or maximum Adjusted Reference Temperature (ART) of the limiting vessel weld or plate, based on the calculated fluences and material properties available at that time [1]. The limiting vessel beltline material was determined to be weld heat No. W5214, and the projected ART value was based on the method in the PTS Rule given in 10CFR50.61, Paragraph (c)(1) [2] using the best estimate chemistry for this weld, the corresponding chemistry factor, CF, and the fluence values from the vessel fluence evaluation in WCAP-15353 [3]. These inputs to the PTS Rule equations were used to calculate RT_{PTS} , and the Palisades vessel was projected to reach the screening criterion limit of 270°F for the limiting weld in January 2014.

Since the time that the previous PTS evaluation was performed for the Palisades vessel, ten years have passed and more data and information are available now to update the projected RT_{NDT} value for the limiting Palisades vessel beltline material. In particular, this evaluation considers all the available surveillance data for weld heat No. W5214 that can be used to refine the projected RT_{NDT} in accordance with 10CFR50.61, Paragraph (c)(2) [2]. This evaluation is being updated now because there is new information that changes the projected values of RT_{PTS} for the Palisades vessel.

The new information was generated by performing a survey of all relevant surveillance data for weld heat No. W5214. Eleven irradiated surveillance capsule reports were found containing this weld, and the Charpy data contained in these capsules was compiled and refitted consistently using the CVGRAPH hyperbolic tangent curve-fitting methodology [4]. Also, the eleven capsule fluence values have been updated (over time) by Westinghouse using their NRC approved fluence methodology for implementing the Regulatory Guide 1.190 benchmarking procedure [5]. All data was evaluated in accordance with the PTS Rule approach to determine the shift values, fitted CF from the surveillance data, scatter from the mean predicted shift, and credibility of the data. It was determined that this new evaluation provides the most technically complete and sound assessment for the Palisades weld heat No. W5214 and allows for more accurate life projections of the limiting material in the Palisades vessel. The latest W5214 life projection provides improvement (i.e., more time) from the previous prediction to reach the PTS screening criterion limit.

2.0 APPLICABILITY

This evaluation is applicable to the Palisades Reactor vessel PTS analysis relative to intermediate shell axial welds 2-112A/B/C fabricated from weld heat No. W5214 [1]. The results of this evaluation are used to revise the RT_{PTS} projection to determine the maximum fluence, or

equivalent date, to reach the PTS screening criteron of 270°F for the limiting axial weld at the 60° azimuthal location. Evaluation of other beltline region materials was not performed at this time because they are not projected or expected to exceed the PTS screening criterion over the next several years. A complete PTS analysis for all of the vessel beltline materials will be performed at a later time per 10CFR50.61.

3.0 METHODOLOGY

3.1 Charpy TANH Curve-Fitting Method

All Charpy data has been re-evaluated to assure that the Charpy curve fits and the 30 ft-lb shift values from the surveillance capsule reports are performed in a consistent manner. The general shape of Charpy test data (energy versus temperature, or lateral expansion versus temperature) is that of an "S", generally with definable lower and upper shelves and a connecting region between the shelves called the transition region. The hyperbolic tangent (TANH) function has been used for some time as a simple statistical curve-fit tool to describe this "S"-shaped response [25]. Other functional relationships could have been used to produce a similar shape (e.g., an error function), but the benefit of the TANH function is that the curve fit parameters defining the "S" shape have physical meaning relative to what is generally evaluated from the test results. As a result, the hyperbolic TANH curve fitting of Charpy V-notch (CV) impact energy data has been a standard practice within the industry.

The TANH model used for modeling Charpy V-notch curves is given by Equation (1) [25]:

$$C_{\rm V} = A + B \tanh\left[\left(T - T_{\rm o}\right) / C\right] \tag{1}$$

where,

 C_V = Charpy V-notch impact energy

- T = test temperature
- A = the mean energy level between the upper and lower shelves
- B = the + or deviation from the mean energy level
- $T_o = a$ parameter that represents the mid-energy transition temperature
- C = the + or deviation of the intercepts of the tangent to the transition of T_o and the upper and lower shelves

The lower shelf (A - B) was fixed at 2.2 ft-lb, and the upper shelf (A + B) was fixed in accordance with standard practice for applying hyperbolic tangent fits to Charpy V-notch data [24].

Structural Integrity Associates, Inc.

3.2 Fluence Analysis Method

The surveillance capsule fluence values were re-evaluated by Westinghouse using the DORT neutron transport calculation method which has been benchmarked to meet the criteria in NRC Regulatory Guide 1.190 [5], shows close agreement between calculations and neutron dosimetry measurements, and has been approved for use by NRC. The capsule fluence values were provided as design inputs by Westinghouse [18].

3.3 10CFR50.61 (PTS Rule) Embrittlement Prediction Methods

The PTS Rule in 10CFR50.61 [2] provides two methods for determining the reference temperature. The first method considers only the copper and nickel chemistry, fluence, and initial RT_{NDT} of the weld, plate, or forging material in the reactor vessel beltline. For those beltline materials, Equation (2) is used to determine the adjusted RT_{NDT} for comparison to the PTS screening criteria limits.

$$RT_{NDT} = Initial RT_{NDT} + \Delta RT_{NDT} + Margin$$
(2)

where ΔRT_{NDT} is the mean value of the transition temperature due to irradiation, and must be calculated using the Equation (3):

$$\Delta R T_{NDT} = (CF) f^{(0.28-0.10 \log f)}$$
(3)

where CF (°F) is the chemistry factor, which is a function of the copper and nickel content. CF is determined by using Table 1 (from 10CFR50.61) for welds and by using Table 2 (from 10CFR50.61) for base metals (plates and forgings). "Wt % copper" and "Wt % nickel" are the best-estimate values for the material, which will normally be the mean of the measured values for a plate or forging. For a weld, the best estimate values will normally be the mean of the measured values for a weld deposit made using the same weld wire heat number as the critical vessel weld. For weld heat number W5214, the best-estimate chemistry, as determined by the industry best-estimate results from the CEOG report [20], is Cu = 0.213 wt%, Ni = 1.007 wt%. The best-estimate chemistry values for the C-E fabricated welds are shown in Appendix A. The corresponding chemistry factor for this weld heat is CF = 230.73°F. This value for best-estimate nickel content varies slightly from the value used previously in the PTS submittal (Ni = 1.01%) [1]. It is noted that the basis for the best estimate Cu and Ni values came from the CEOG report [20] which is considered to be the industry standard for the C-E fabricated welds, but Palisades chose to round up the nickel content from 1.007% to 1.01% in the 1998 RAI response to Generic Letter 92-01 [19]. For the current analysis we have also used the CEOG determined actual nickel best estimate chemistry which gives a CF value of 230.73°F for comparison to a CF value of 231.08°F for the rounded up nickel content.

Structural Integrity Associates, Inc.

The Initial RT_{NDT} for weld heat No. W5214 is determined from the generic value of -56°F for C-E fabricated Linde 1092 flux type welds [31], and the margin term is determined from Equation 4:

$$Margin = 2\sqrt{\sigma_1^2 + \sigma_{\Delta}^2}$$
(4)

where σ_I is the standard deviation for the initial RT_{NDT}. If the generic mean Initial RT_{NDT} value for a Linde 1092 weld is used, then $\sigma_I = 17^{\circ}F$ [2]. The (1-sigma) standard deviation for ΔRT_{NDT} , σ_{Δ} , is 28°F for welds, so the margin term for this case is 65.5°F.

Using this approach to determine the RT_{PTS} at the screening criteria limit for axial welds (i.e., 270°F) yields a maximum allowable fluence at the 60° azimuthal weld location of:

$$RT_{PTS} = 270^{\circ}F = Initial RT_{NDT} + \Delta RT_{NDT} + Margin = -56 + \Delta RT_{NDT} + 65.5^{\circ}F$$
(5)

$$\Delta RT_{NDT} = 260.5^{\circ}F = (CF) f^{(0.28-0.10 \log f)} = (230.73) f^{(0.28-0.10 \log f)}$$
(6)

and
$$f = 1.595 \times 10^{19} \text{ n/cm}^2$$

The second method for determining the chemistry factor and the RT_{NDT} states that, "To verify that RT_{NDT} for each vessel beltline material is a bounding value for the specific reactor vessel, licensees shall consider plant-specific information that could affect the level of embrittlement. This information includes but is not limited to the reactor vessel operating temperature and any related surveillance program results." Surveillance program results means any data that demonstrates the embrittlement trends for the limiting beltline material, including but not limited to data from test reactors or from surveillance programs at other plants with or without surveillance program integrated per 10 CFR Part 50, appendix H. This is the case for Palisades; eleven previously tested surveillance capsules are now available that contain the limiting vessel weld heat No. W5214. The axial weld in the Palisades vessel made from weld heat No. W5214 was determined to be the limiting vessel beltline material [1].

Results from the plant-specific surveillance program must be integrated into the RT_{NDT} estimate if the plant-specific surveillance data has been deemed credible as judged by the following criteria [2]:

- (A) The materials in the surveillance capsules must be those which are the controlling materials with regard to radiation embrittlement,
- (B) Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions must be small enough to permit the determination of the 30-foot-pound temperature unambiguously,
- (C) Where there are two or more sets of surveillance data from one reactor, the scatter of RT_{NDT} values must be less than 28°F for welds and 17°F for base metal. Even if the range

4

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

(7)

in the capsule fluences is large (two or more orders of magnitude), the scatter may not exceed twice those values (i.e., 56°F),

- (D) The irradiation temperature of the Charpy specimens in the capsule must equal the vessel wall temperature at the cladding/base metal interface within 25°F, and
- (E) The surveillance data for the correlation monitor material in the capsule, if present, must fall within the scatter band of the data base for the material.

Surveillance data deemed credible according to these criteria must be used to determine a material-specific value of CF for use in Equation (2). A material-specific value of CF is determined from Equation (8) [19].

$$CF = \frac{\sum_{i=1}^{n} \left[A_i \times f_i^{(0.26 - 0.10 \log f_i)} \right]}{\sum_{i=1}^{n} \left[f_i^{(0.66 - 0.20 \log f_i)} \right]}$$

where "*n*" is the number of surveillance data points,

" A_i " is the measured value of ΔT_{30} from the Charpy specimens, and

" f_i " is the fluence for each surveillance capsule data point.

If there is clear evidence that the copper and nickel content of the surveillance weld differs from the vessel weld (i.e. differs from the average for the weld wire heat number associated with the vessel weld and the surveillance weld), the measured values of ΔT_{30} must be adjusted for differences in copper and nickel content by multiplying them by the ratio of the chemistry factor for the vessel material to that for the surveillance weld [2].

For cases in which the results from a credible plant-specific surveillance program are used, the value of σ_{Δ} to be used in the margin term of Equation (4) is 14°F for welds; this is called a reduced margin term. The value of σ_{Δ} need not exceed one-half of ΔRT_{NDT} [2].

The use of results from the plant-specific surveillance program method may result in a RT_{NDT} that is higher or lower than that determined from the first (chemistry table) method. If the resulting RT_{NDT} from using the surveillance data gives a higher value it must be used. If the resulting RT_{NDT} from using the surveillance data gives a lower value it may be used.

NRC provided additional guidance for evaluation and use of surveillance data in Reference 19. The guidance provides examples of Case 4 that may be used for evaluating the Palisades related surveillance data, as shown in Appendix B. Two cases are considered, Case 4a considers surveillance data from the plant of interest, and Case 4b for use of surveillance capsule data from both the plant of interest and also from its sister plants containing the same weld heat.

Š

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

(8)

Also, if there is clear evidence that the copper or nickel content of the surveillance weld differs from that of the vessel weld, i.e., differs from the average of the weld wire heat number associated with the vessel weld and the surveillance weld, the measured values of ΔRT_{NDT} should be adjusted by multiplying them by the ratio of the chemistry factor of the vessel weld to that of the surveillance weld using the equation [19]:

Ratio Adjusted
$$\Delta RT_{NDT} = (\frac{Table \ CF_{Vessel \ Chem.}}{Table \ CF_{Surv. \ Chem.}}) * Measured \ \Delta RT_{NDT}$$
(9)

According to the NRC guidance [19], further adjustment to the ΔRT_{NDT} data from other sources is needed if there is a difference between the capsule temperature from the other plant and the plant of interest. A temperature correction of $1^{\circ}F/^{\circ}F$ is made to the ΔRT_{NDT} values to account for this difference; a positive temperature adjustment is made to capsules exposed to (time-weighted average) temperatures below the mean vessel temperature, and a negative temperature adjustment is made to capsules exposed to (time-weighted average) temperatures above the mean vessel temperature. The mean vessel temperature for the Palisades vessel, using a time-weighted average for the plant operating cycles, is determined to be 535.2°F, as shown in Table 8.

Guidance from Reference 19, Case 4, "Surveillance Data from Plant and Other Sources," and 10CFR50.61, method 2 for inclusion of plant-specific surveillance data, has been applied to evaluation of the W5214 surveillance data as described in Section 5.0.

4.0 **DATA EVALUATION RESULTS**

In 1998, Consumers Energy provided a response to a Request for Information from NRC regarding pressure vessel integrity for the Palisades vessel [26]. That response evaluated seven surveillance capsules containing weld heat No. W5214 which were available at that time (two capsules from H. B. Robinson 2, two capsules from Indian Point 2, and three capsules from Indian Point 3) and determined those data were not credible and, therefore, the data was not used to improve the projected RT_{PTS} for the Palisades vessel. Since then, four more capsules containing this weld heat can be included in the analysis for use of surveillance data related to the Palisades limiting weld material. An evaluation of these data starts with the original capsule reports.

The new data survey was performed to gather all the unirradiated and irradiated capsule test results for the Palisades limiting weld material. The data from all related surveillance capsules containing weld heat No. W5214 were compiled and the results were reviewed for applicability to the Palisades vessel weld. New data were discovered in the process of compiling these capsule reports. For example, there are two capsules from the Palisades supplemental

Structural Integrity Associates, Inc.

surveillance program that were previously unreported (References 14 – 17). In addition, three capsules from the H. B. Robinson 2 surveillance program (References 12), two capsules from the Indian Point 2 surveillance program (References 6 – 8), and four capsules from the Indian Point 3 surveillance program (References 9, 10, 11 and 13) were compiled and the Charpy V-notch test results were reviewed. These reports include surveillance capsule fluences and comparisons between the unirradiated and irradiated Charpy V-notch curves to determine the ΔRT_{NDT} (or ΔT_{30}) shifts. The reported fluence values from these capsule reports, the average of measured surveillance weld copper and nickel chemistries, and the (measured and reported) ΔT_{30} shift results for these eleven capsules are shown in Table 1. The capsule reports are included in Appendix C (Palisades), Appendix D (Indian Point Unit 2), Appendix E (Indian Point Unit 3) and Appendix F (H. B. Robinson Unit 2). These are considered to be the reported data (or original data), with the exception of the Palisades capsule reports that were considered to be supplemental capsule test results.

It is useful to first combine these data without any adjustments for chemistry or irradiation temperature to determine the mean trend in irradiation damage behavior. The mean trend, or average chemistry factor, can be calculated directly from a least squares fit to the data using Equation (8). The least squares fit method was used and a best fit chemistry factor (CF) of 217.67°F was determined from these data, as shown in Table 1. The results are plotted in Figure 1 and are shown here for information only. The scatter in the measured – predicted results show that the scatter exceeds the 28°F (1-sigma) margin for two out of eleven points, but these two points are within the 56°F (2-sigma) margin. The average copper content for these surveillance materials is Cu = 0.243 wt%, and the average nickel content for these surveillance materials is Ni = 0.965 wt%. The predicted (average) chemistry factor for the surveillance specimens based on chemistry (from the PTS Rule Table 1) is CF = 234.37°F. The mean fit to the data shows that the CF value and the fitted trend for these data is well below that predicted by the PTS Rule method 1 (i.e., surveillance data not available).

4.1 Original and Re-evaluated Surveillance Capsule Fluence

Westinghouse recalculated the capsule fluences from Palisades, Indian Point 2, Indian Point 3, and H. B. Robinson 2 using a consistent methodology to establish a common basis for the fluence values. This was an essential step so that all the surveillance capsule data could be evaluated properly for credibility and applicability to the Palisades vessel limiting weld material. The revised fluence values for capsules containing weld heat No. W5214 are shown in Table 2 [18]. It is noted that there were changes in the fluence results (shown in Table 1), and the new calculated fluence results (shown in Table 2) that were used to re-evaluate all the relevant surveillance data. The same Westinghouse fluence methodology was used to calculate fluence in the wall of the Palisades vessel for prediction of 'the vessel embrittlement.

Structural Integrity Associates, Inc.

4.2 Surveillance Capsule Temperatures

Surveillance capsule temperatures are necessary for the temperature corrections of the surveillance data when applying these data to the plant of interest. Time-weighted average temperatures were determined for the Palisades, Indian Point 2, Indian Point 3, and H. B. Robinson 2 capsules containing weld heat No. W5214. The data and method for determining the time-weighted average temperatures is given in Appendix H. The time-weighted average temperatures for the Indian Point Units 2 & 3 capsules were verified in Reference 33.

4.3 Original and Re-evaluated Charpy V-notch Surveillance Data

The surveillance capsule test results for weld heat No. W5214 from the Palisades supplemental capsules SA-60-1 and SA-240-1 are provided in Appendix C. The supplemental capsules with this weld heat were irradiated for a number of cycles, and removed and tested; capsule SA-60-1 was removed at the end of cycle 13, and capsule SA-240-1 was removed at the end of cycle 14. The specimens containing weld metal inserts were reconstituted to full size Charpy V-notch specimens. The capsule materials were tested by Framatome in 2001 [14, 15]. The unirradiated Charpy energy values for the weld metals are documented in a letter from John R. Kneeland to Matthew J. DeVan dated February 2, 1999 [16]. The baseline (unirradiated) curve and weld metal chemistry data for these specimens are also provided in Appendix C.

The surveillance capsule test results for weld heat No. W5214 from the Indian Point Unit 2 reactor surveillance capsule program are provided in Appendix D. The unirradiated data is contained in a Westinghouse report [8]. Southwest Research Institute tested two irradiated capsules, capsule Y [7] and capsule V [6]. The Indian Point 2 surveillance weld metal chemistry is also contained in these reports.

There are four irradiated surveillance capsules containing weld heat No. W5214 and one baseline test report for the Indian Point Unit 3 plant, as shown in Appendix E. The baseline capsule report from Westinghouse contains the unirradiated data and one chemistry measurement for the surveillance weld [9]. The results for the four irradiated capsules are also given in one Westinghouse (WCAP-16251-NP) report [13]. This WCAP report contains the surveillance weld Charpy V-notch test results and measured chemistry data for the Indian Point Unit 3 plant.

The surveillance capsule test results for weld heat No. W5214 from the H. B. Robinson Unit 2 reactor surveillance capsule program are provided in Appendix F. The unirradiated data is contained in a Westinghouse report [27]. There are three irradiated capsules from H. B. Robinson Unit 2 which contain weld heat No. W5214, capsule T, capsule V, and capsule X. The Charpy V-notch test results from these three capsules are contained in one Westinghouse (WCAP-15805) report [12]. This WCAP report also documents the measured surveillance weld chemistry for H. B. Robinson Unit 2.

Report No. 0901132.401, Rev. 0

These original Charpy V-notch energy data were refitted using the CVGRAPH 5.0 hyperbolic tangent curve-fitting method [4]. The data were carefully fitted to obtain the best TANH fits. The CVGRAPH curve-fit results are shown in Appendix G from Reference 32. The results of the refitted and reanalyzed weld heat No. W5214 data for 30 ft-lb shift (ΔT_{30}) are shown in Table 3. These refitted Charpy data results have been verified for use in the new credibility evaluation [32].

The results presented here are considered to be "new data" because of the updated fluences and refitted ΔT_{30} values and because several additional capsules containing weld heat No. W5214 were uncovered in this survey that had not been previously evaluated together with the other data. The results from these new data were evaluated for applicability to the prediction of the RT_{PTS} value for weld heat No. W5214 per 10CFR50.61 [2] and the NRC guidance shown in Appendix B [19].

An evaluation of the credibility for the use of these data for the Palisades limiting weld is given in Section 5.0.

Structural Integrity Associates, Inc.

	Га	ble	1.	
--	----	-----	----	--

Results for all W5214 Surveillance Data with Reported Fluence and Vendor Reported Shift Results

Capsule	%Cu ^(a)	%Ni ^(a)	CF (F)	Reported Fluence ^(b) (n/cm^2)	FF	Reported ∆RTndt (F)	Predicted ∆RTndt (F)	Measured - Predicted ∆RTndt (F)
SA-60-1	0.307	1.045	266.5	1.61E+19	1.13	259	246.3	12.7
SA-240-1	0.307	1.045	266.5	2.60E+19	1.26	280.1	273.4	6.7
HB2 T	0.34	0.66	217.7	3.87E+19	/1.35	288.15	293.6	-5.5
HB2 V	0.34	0.66	217.7	5.30E+18	0.82	209.32	179.1	30.3
HB2 X	0.34	0.66	217.7	4.49E+19	1.38	265.93	300.5	-34.6
IP2 V	0.20	1.03	226.3	5.59E+18	0.84	204	182.3	21.7
IP2 Y	0.20	1.03	226.3	5.89E+18	0.85	195	185.4	9.6
IP3 T	0.16	1.12	206.2	2.63E+18	0.64	151.6	138.6	13.0
IP3 Y	0.16	1.12	206.2	6.92E+18	0.90	172	195.2	-23.2
IP3 Z	0.16	1.12	206.2	1.04E+19	1.01	229.2	220.1	9.1
IP3 X	0.16	1.12	206.2	8.74E+18	0.96	193.2	209.4	-16.2
Average =	0.243	0.965	Table CF =	234.37°F		Best fit CF =	217.67°F	

(a) Measured capsule weld materials Cu and Ni values obtained from [6, 12, 13, 14, 15, 20, 26]

5

(b) Reported capsule fluence values from [6, 7, 12, 13, 28]

Table 2.

Summary of Revised Capsule Fluences and Time-Weighted Average Temperatures for Surveillance Capsules Containing Weld Heat No. W5214

Reactor	Surveillance Capsule Designation	Time-Weighted Average Temperature (°F)	Fluence ^(a) (E > 1 MeV) [n/cm ²]
Palisades	SA-60-1	535.0 [from Table 8]	1.50E19
Palisades	SA-240-1	535.7 [from Table 8]	2.38E19
H. B. Robinson 2	Т	547 [12]	3.87E19
H. B. Robinson 2	· · V	547 [12]	5.30E18
H. B. Robinson 2	X	547 [12]	4.49E19
Indian Point 2	V	524 [12]	4.92E18
Indian Point 2	Y	529.1 [from App. H]	4.55E18
Indian Point 3	Т	539.4 [from App. H]	2.63E18
Indian Point 3	Ý	539.5 [from App. H]	6.92E18
Indian Point 3	Z	538.9 [from App. H]	1.04E19
Indian Point 3	x	539.7 [from App. H]	8.74E18

(a) Revised capsule fluence values from Reference 18.

Capsule	Unirradiated (Refitted) T ₃₀ (F) ^(a)	Irradiated (Refitted) T ₃₀ (F) ^(a)	Revised (Refitted) ∆T ₃₀ (F)	Upper Shelf Energy (ft-lbs) ^(a)
SA-60-1	-60.1	198.9	259	54.5
SA-240-1	-60.1	220	280.1	52.5
HB2 T	-85.8	203.3	289.1	60.5
HB2 V	-85.8	123	208.8	70.5
HB2 X	-85.8	179.8	265.6	79.8
IP2 V	-65.4	132.1	197.5	76
IP2 Y	-65.4	128.5	193.9	66.5
IP3 T	-63.8	86	149.8	90.5
IP3 Y	-63.8	107.3	171.1	69
IP3 Z	-63.8	164.5	228.3	76
IP3 X	-63.8	128.7	192.5	75

Table 3.

Summary of Revised (Refitted) Surveillance Capsule Results for Weld Heat No. W5214

(a) Charpy TANH curve-fit parameters, T_{30} values and plots are shown in Appendix G [32]

5.0 DATA CREDIBILITY ASSESSMENT AND FLUENCE EVALUATION

The purpose of this evaluation is to apply the credibility requirements in 10CFR50.61 to the Palisades, H.B Robinson Unit 2, Indian Point Unit 2, and Indian Point Unit 3 surveillance capsule data and to determine if the surveillance capsule data is credible and can be used to improve the RT_{NDT} predictions for the limiting vessel weld heat No. W5214.

10CFR50.61 describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of low-alloy steels currently used for light-water-cooled reactor vessels. 10CFR50.61 provides two methods for calculating the adjusted reference temperature of the reactor vessel beltline materials. The first method is described in paragraph (c)(1). The second method is described in paragraphs (c)(2) and (c)(3). The procedures in paragraphs (c)(2) and (c)(3) can only be applied when two or more credible surveillance data sets become available. These tests of surveillance data credibility are also stated in Section 3.3.

NRC provided additional guidance for evaluation and use of surveillance data in Attachment 3 of Reference 19. The evaluation presented herein is organized like Case 4 from this guidance document, the case for plants with surveillance data for their plant and from other sources.

5.1 Credibility Evaluation:

Criterion 1: The materials in the surveillance capsules must be those which are the controlling materials with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR 50, "Fracture Toughness Requirements" as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material and regard to radiation damage."

The Palisades reactor vessel consists of the following beltline region materials [1, 31]:

- Intermediate Shell, Axial Welds 2-112 A/B/C, material heat No. W5214,
- Lower Shell, Axial Welds 3-112 A/B/C, material heat No. W5214 and 34B009,
- Intermediate to Lower Shell, Circumferential Weld 9-112, material heat No. 27204,
- Intermediate Shell, Plate D-3803-1, material heat No. C-1279,
- Intermediate Shell, Plate D-3803-2, material heat No. A-0313,
- Intermediate Shell, Plate D-3803-3, material heat No. C-1279,

Report No. 0901132.401, Rev. 0

13

Structural Integrity Associates, Inc.

- Lower Shell, Plate D-3804-1, material heat No. C-1308A,
- Lower Shell, Plate D-3804-2, material heat No. C-1308B,
- Lower Shell, Plate D-3804-3, material heat No. B-5294.

The Palisades reactor vessel was designed and fabricated in accordance with the ASME Boiler and Pressure Vessel Code, Section III, 1965 Edition, including all addenda through Winter 1965 [21]. The Palisades reactor vessel surveillance program was originally developed with the intent to comply, where possible, with the guidance of ASTM E185-66, "Recommended Practice for Surveillance Tests on Structural Materials in Nuclear Reactors" [22]. At the time that the Palisades surveillance capsules were built, 10 CFR50 Appendices G and H did not exist.

5.1.1 Description of Original Palisades Surveillance Capsule Program

ASTM E 185-66 [22] describes the requirements for test specimens. ASTM E 185-66 requires the base metal specimen be from "…one heat with the highest initial ductile-brittle transition temperature", also known as the nil-ductility transition temperature (NDTT). Drop weight tests of Palisade's beltline samples identified five of the plates in contention for the highest initial NDTT at -30° F. The base material from shell plate D-3803-1 was selected over the other base metal specimens for the capsule base metal because it had the highest initial RT_{NDT} temperature [31]. ASTM E 185-66 requires a sample to represent one vessel weld if a weld occurs in the irradiated region. The original Palisades surveillance weld specimens were fabricated with the same procedure used to fabricate the reactor vessel axial welds, and were fabricated with a similar filler wire and fluxes as the reactor vessel beltline welds. However, the original Palisades surveillance capsules did not contain limiting axial weld heat No. W5214.

5.1.2 Description of Supplemental Surveillance Capsules SA-60-1 and SA-240-1

At the end of Cycle 11, the Palisades surveillance capsule program was augmented to contain two supplemental surveillance capsules, designated as SA-60-1 and SA-240-1, installed in the capsule holders located on the core support barrel. The new surveillance capsules, SA-60-1 and SA-240-1, included welds fabricated with weld wires of identical heats to those of the Palisades reactor vessel beltline welds. Surveillance capsule SA-60-1 and SA-240-1 contained test specimens from the following material heat No.'s: W5214, 34B009, 27204, and standard reference material HSST-02. All of these materials are the same heats as the materials used to fabricate portions of the reactor vessel that surround the active core and adjacent regions of the reactor vessel.

Table 4 provides a tabulation of the specimens included in the Palisades supplemental surveillance capsules SA-60-1 and SA-240-1.

Material Description	Tension	Standard Charpy V- Notch Impact	18 mm Charpy V-Notch Inserts
Weld Metal W5214			42 (39)*
Weld Metal 34B009			36 (39)*
Weld Metal 27204	3	12	36
Correlation Monitor		12	
Material, HSST Plate 02			
(Heat No. A1195-1)			

Table 4.	
Test Specimens Contained in Palisades Capsules SA-60-1 and SA-2	40-1

* number of specimens in SA-60-1 capsule [15]

Capsules SA-60-1 and SA-240-1 were removed from the Palisades reactor vessel at the end of cycles 13 and 14, respectively. Twelve Charpy V-notch specimens made from weld heat No. W5214 were tested in capsule SA-60-1 [15], and twelve Charpy specimens from heat No. W5214 were tested in capsule SA-240-1 [14]. Twelve Charpy V-notch specimens made from the HSST-02 correlation monitor material were tested from capsule SA-240-1 [14].

Because weld heat No. W5214 in the supplemental capsules matches the limiting axial welds, Criterion 1 is met for the Palisades reactor vessel.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Criterion 2 is satisfied if the Charpy energy data for the surveillance capsules containing weld heat No. W5214 can be fitted to determine the 30 ft-lb temperature (T_{30}) and upper shelf energy (USE) unambiguously. An accurate determination of the 30 ft-lb shift (ΔT_{30}) values is the reason these data were re-evaluated. The TANH curve fit method provides an accurate and reproducible determination of these values and can be used to establish the T_{30} and USE values for a given Charpy data set [24]. Unirradiated and irradiated Charpy energy versus temperature data for the weld metal were fitted and plotted using the CVGRAPH hyperbolic tangent curve fitting program [4]. The Charpy energy fitted results for the eleven surveillance capsules, including the calculated 30 ft-lb temperatures and upper shelf energy values, are shown in the Appendix G and summarized in Table 3. Based on engineering judgment by looking at the fitting parameters and the plots, the scatter in the data is small enough, and the correlation coefficients are high enough, to permit the determination of the 30 ft-lb temperature and upper shelf energy of the surveillance weld materials unambiguously. Hence, Criterion 2 is met for all the surveillance capsules evaluated here which contain weld metal heat No. W5214.

Report No. 0901132.401, Rev. 0

Criterion 3:

When there are two or more sets of surveillance data from one reactor, the scatter of ΔRT_{NDT} values about a best-fit line drawn as described in Position 2 (surveillance data available) normally should be less than 28°F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fails this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition in ASTM E185.

The functional form of the least squares method as described in paragraph (c)(2) of 10CFR 50.61 will be utilized. A best-fit line is generated for this data to determine if the scatter of the ΔRT_{NDT} values about this line is less than 28°F for weld metal heat No. W5214.

The Palisades limiting weld metal will be evaluated for credibility. This weld is made from weld heat No. W5214. This weld metal is also contained in the Indian Point Unit 2, Indian Point Unit 3, and H. B. Robinson Unit 2 surveillance programs. Since the welds in question utilized data from other surveillance programs, the recommended NRC methods for determining creditability will be followed. Of the recommended methods, Case 4 most closely represents the situation listed above for the Palisades surveillance weld metal.

Case 4a Credibility Assessment – Palisades W5214 Data Only

The data most representative for the Palisades limiting vessel weld are the supplemental surveillance capsules containing weld heat No. W5214 since the irradiation environment of the surveillance capsules and the reactor vessel are the same. The data requires the least adjustment. An adjustment can be made for the difference between the chemistry of the capsule specimens $(CF = 266.5^{\circ}F)$ and the best estimate chemistry of the vessel $(CF = 230.73^{\circ}F)$ using the ratio procedure. The updated fluence and ratio adjusted shift values were used to calculate a new least-squares fitted chemistry factor. The Palisades capsule data are shown in Table 5 along with the fitted solution (i.e., mean shift prediction) result, and the comparison of the measured – predicted scatter from the fitted CF of 198.8°F. A plot of the measured ΔT_{30} vs. fluence results for the Palisades supplemental capsule weld (W5214) is shown in Figure 2 along with the +/- 1 σ bounds for credible data scatter. The data clearly fall within the 1-sigma scatter band for credible surveillance data and the margin term can be reduced when using credible data.

Based on criterion 3, the Palisades surveillance data is credible since the scatter is less than 28°F for both of these surveillance capsules.

Table 5.

		Weld Heat No. W5214 Surveillance Data							
					1	1	APT IN (C)		
Palisades				Kevised			AKINGT (F)	Predicted	Measured -
Capsule	Cu	Nİ	Table CF	Fluence		Refitted	Adjusted to	∆RTndt .	Predicted
Number	(wt%)	(wt%)	(F)	(n/cm^2)	FF	∆RTndt (F)	Vessel CF (F)	(F)	ΔRTndt (F)
SA-60-1	0.307	1.045	266.5	1.50E+19	1.11	259.0	224.2	221.13	3.11
SA-240-1	0.307	1.045	266.5	2.38E+19	1.23	280.1	242.5	245.30	-2.80
					-			Fitted CF =	198.8°F

Evaluation of Palisades Surveillance Data Results for Weld Heat No. W5214

Case 4b Credibility Assessment - All W5214 Surveillance Capsule Data

Following the guidance in Case 4 [19], the data from all sources should also be considered. For weld heat No. W5214 there are a total of eleven surveillance capsules from Palisades, Indian Point Unit 2, Indian Point Unit 3, and H.B. Robinson Unit 2. Since data are from multiple sources, the data must be adjusted first for chemical composition differences and then for irradiation temperature differences before determining the least-squares fit.

For a credibility determination, the measured and refitted T_{30} shift data for all the relevant plant data was normalized to the mean chemistry factor of the vessel (230.73°F) using the ratio procedure and then to the mean operating temperature (535.2°F) for the Palisades vessel (see Table H-7). The fitted CF value, shown in Table 6, is determined to be 227.74°F for this case. The results for (measured – predicted) scatter for all the W5214 surveillance data results are shown in Table 7. The results for all the surveillance capsule data are plotted in Figure 3 along with the +/- 2σ scatter bands. The scatter in the measured – predicted values exceeds 28°F (1sigma) for a few points. Four of the measured - predicted ΔRT_{NDT} values are outside the 1-sigma band of 28°F, but all data points are within the 56°F (2-sigma) scatter band for welds. According to 10CFR50.61 paragraph (c)(2)(iv), the use of results from the plant-specific surveillance program may result in an RT_{NDT} that is higher or lower than that determined from the chemistry of the weld and a chemistry factor using the tables. If the CF value is higher, it must be used for vessel RT_{PTS} predictions, if the CF value is lower, it may be used.

The chemistry factor from paragraph (c)(1) is 230.73° F, and the adjusted chemistry factor using the Palisades surveillance capsule data is 227.74° F. It is noted that per NRC guidance that it is possible to use a lower value of chemistry factor based upon all sources of surveillance capsule data with a full margin term (i.e., 56° F) if the data is credible in all other ways but the scatter.

In summary, the (measured – predicted) scatter for all the W5214 weld data is within the acceptable range of 56°F for a wide range of fluence. For this case, the surveillance capsule fluence ranges between $2.63 \times 10^{18} \text{ n/cm}^2$ to $4.49 \times 10^{19} \text{ n/cm}^2$. Therefore, the weld data meets this criterion, and the Palisades surveillance program weld metal chemistry factor to be used for determining RT_{PTS} and RT_{NDT} is 227.74°F in combination with a full (2-sigma) margin term.

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

	· · ·		i								· · · · · · · · · · · · · · · · · · ·
							Measured	Katio	Chem. &		
			Table	Revised	Fluence	Irrad.	(Refitted)	Adjusted	Temp. Adj.		
Capsule	%Cu	%Ni	CF (F)	Fluence	Factor	Temp.	∆RTndt	∆RTndt	∆RTndt	FF^2	ΔT30 x FF
				(n/cm^2)	FF	Ti (F)	(F)	(F)	(F)		
SA-60-1	0.307	1.045	266.5	1.50E+19	1.11	535.0	259	224.2	224.0	1.237	249.186
SA-240-1	0.307	1.045	266.5	2.38E+19	1.23	535.7	280.1	242.5	243.0	1.522	299.830
HB2 T	0.34	0.66	217.7	3.87E+19	1.35	547	289.1	306.4	318.2	1.820	429.263
HB2 V	0.34	0.66	217.7	5.30E+18	0.82	547	208.8	221.3	233.1	0.677	191.749
HB2 X	0.34	0.66	217.7	4.49E+19	1.38	547	265.6	281.5	293.3	1.906	404.943
IP2 V	0.20	1.03	,226.3	4.92E+18	0.80	524.0	197.5	201.4	190.2	0.643	152.544
IP2 Y	0.20	1.03	226.3	4.55E+18	0.78	529.1	193.9	197.7	191.6	0.610	149.601
IP3 T	0.16	1.12	206.2	2.63E+18	0.64	539.4	149.8	167.6	171.8	0.405	109.400
IP3 Y	0.16	1.12	206.2	6.92E+18	0.90	539.5	171.1	191.5	195.8	0.804	175.543
IP3 Z	0.16	1.12	206.2	1.04E+19	1.01	538.9	228.3	255.5	259.2	1.022	262.003
IP3 X	0.16	1.12	206.2	8.74E+18	0.96	539.7	192.5	215.4	219.9	0.926	211.596
		Þ					:		SUM	11.573	2635.658
Ves	sel Best E	stimate CF =	230.73°F		Mean	Vessel T =	535.2°F				
				Least				Least Squa	res Fitted CF =	227.74°F	
(a) Measured capsule weld materials Cu and Ni values obtained from [6, 12, 13, 14, 15,				3, 14, 15, 20	, 26]						
(b) Fluenc	e values o	btained from	Reference	18		•		•	-	~~	
(c) Time-v	veighted a	verage temp	eratures ol	otained from	n Referenc	es 23 and 3	33 and Appe	ndix H	·		
(d) Refitted Charpy V-notch shift data obtained from Reference 32 and Appendix G						ndix G					

Table 6.Evaluation of all Surveillance Capsule Results Containing Weld Heat No. W5214

Report No. 0901132.401, Rev. 0

Capsule	Irrad. Temp. Ti (F)	Revised Fluence (n/cm^2)	Fluence Factor FF	Adjusted ∆RTndt (F)	Predicted ∆RTndt (F)	Adjusted - Predicted (F)
SA-60-1	- 535	1.50E+19	1.11	224.0	253.31	-29.27
SA-240-1	535.7	2.38E+19	1.23	243.0	281.00	-38.00
НВ2 Т	547	3.87E+19	1.35	318.2	307.23	10.97
HB2 V	547	5.30E+18	0.82	233.1	187.34	45.75
НВ2 Х	547	4.49E+19	1.38	293.3	314.44	-21.14
IP2 V	524	4.92E+18	0.80	190.2	182.69	7.48
IP2 Y	529.1	4.55E+18	0.78	191.6	177.83	13.77
ІРЗ Т	539.4	2.63E+18	0.64	171.8	145.01	26.81
IP3 Y	539.5	6.92E+18	0.90	195.8	204.23	-8.48
IP3 Z	538.9	1.04E+19	1.01	259.2	230.24	28.92
IP3 X	539.7	8.74E+18	0.96	219.9	219.14	0.76

 Table 7.

 Scatter in Fit to all Surveillance Capsule Results Containing Weld Heat No. W5214

Note: four of the eleven (measured – predicted) data points exceed the 1 standard deviation of 28°F for credible data for welds. All eleven (measured – predicted) data points fall within 2 standard deviations of 56°F for welds.

Structural Integrity Associates, Inc.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The Palisades supplemental surveillance capsules SA-60-1 and SA-240-1 were located in the reactor vessel between the core barrel and the vessel wall opposite the center of the core. These supplemental surveillance capsules were installed in the capsule holders located on the core support barrel. Table 8 provides a history of the time-weighted temperature for the Palisades supplemental surveillance capsules and reactor vessel wall.

Operating Cycle Number	Cycle Length ^(a) (EFPD)	Cycle Average Vessel Temp. ^(b) (°F)	Surveillance Capsule Removed	Time Weighted Capsule Avg. T (°F)	
1	371.7	523			
2	440.1	529			
3	342.5	534			
4	321.0	536			
5	386.7	536			
. 6	326.7	536			
7	362.5	536			
8	366.1	537			
9	292.5	534			
10	349.7	534	1		
11	421.9	533			· · · · ·
12	399.3	534			
13	419.6	536	SA-60-1	535.0	
14	449.3	537	SA-240-1	535.7	
15	401.3	537			
16	444.3	537			н. -
17	493.1	537			
18	472	537			
19	459.2	537			Time Weighted
20	499.8	537			Vessel Ava. T
21	519.2	537			(°F)
22	498.8	537			535.2

History of Time-Weighted Operating Temperature for Palisades

Table 8.

(a) Cycle length (EFPD) values obtained from Reference 23

(b) Cycle average vessel temperatures obtained from Reference 28

ŗ

The location of the specimens with respect to the reactor vessel beltline assured that the reactor vessel wall and the specimens have experienced equivalent operating conditions such that the temperatures did not differ by more than 25°F. Therefore, this criterion is satisfied for the Palisades capsules.

The Indian Point Unit 2 and Indian Point Unit 3 average surveillance capsule temperatures have been also reviewed and updated. The H. B. Robinson Unit 2 average capsule temperature was confirmed by the utility. The time-weighted average temperature values for these capsules are listed in Table 2, and the method for calculating these temperatures is given in Appendix H.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band for that material.

The Palisades supplemental surveillance capsules, SA-60-1 and SA-240-1, both contain standard reference material HSST02 plate. Plots of the Charpy energy versus temperature for the irradiated condition of correlation monitoring material (HSST Plate 02, Heat A1195-1) from SA-60-1 and SA-240-1 are documented in BAW-2341 Rev 2 [15] and BAW-2398 [14], respectively. Charpy energy versus temperature for the unirradiated correlation monitoring material (HSST Plate 02, Heat A1195-1) is taken from NUREG/CR-6413, ORNL/TM-13133 [24]. Tables 9 and 10 provide the updated calculation of (measured – predicted) scatter versus fast fluence in the correlation monitor material (HSST 02) data. Figure 4 (from Reference 24) shows that the measured scatter band for the correlation monitor materials is 50°F.

Capsule	Fluence (x 10 ¹⁹) ^(a)	Fluence Factor (FF) ^(b)	∆RT _{NDT} ^(c) (°F)	FF * ∆RT _{NDT}	FF ²
SA-60-1	1.5	1.112	113.7	126.4344	1.2365
SA-240-1	2.38	1.234	140.9	173.871	1.5223
			Sum	300.305	2.7588
CF Surveillance v Slope of best fit	weld = Σ (FF x RT _N line is 108.853	_{DT}) / Σ (FF ²)= 300.30	05/2.7588 = 108	3.853	
lotes: a) Calculated flue b) FF = fluence fa c) Irradiated valu	ence (x 10^{19} n/cm^2 , ctor = f ^(0.28 - 0.1*logf) es of 30 ft-lb Trans	E>1.0 MeV) ition Temperature Fro	om BAW-2341 Re	ev 2 and BAW-2398	[15, 14]

Table 9. **Correlation Monitor Material HSST Plate 02 Calculation of Fitted CF**

Table 10.

Correlation Monitor Material HSST Plate 02 Calculation of Measured – Predicted Scatter

Capsule	Fluence (x 10 ¹⁹) ^(a)	Fluence Factor (FF) ^(b)	$\Delta RT_{NDT}^{(c)}$	Predicted ∆RT _{NDT}	(Measured – Predicted) ∆RT _{NDT}
SA-60-1	1.5	1.112	113.7	121.044	-7.344
SA-240-1	2.38	1.234	140.9	134.324	6.575
				"L	

Where predicted ΔRT_{NDT} = (slope _{best fit})*(Fluence Factor)

Slope of best fit line is 108.853

Notes:

(a) Calculated fluence (x 10^{19} n/cm², E>1.0 MeV)

(b) FF = fluence factor = $f^{(0.28 - 0.1*\log f)}$

(c) Irradiated values of 30 ft-lb Transition Temperature From BAW-2341 Rev 2 and BAW-2398 [15, 14]

Table 10 shows that the scatter in these data is less than 50°F, which is the allowable scatter in NUREG/CR-6413, ORNL/TM-13133 [24]. Thus, criterion 5 is satisfied for the correlation monitor materials.

5.2 Palisades Vessel Fluence Evaluation

Fluence in the Palisades vessel beltline has been tracked to manage the PTS issue. The fluence projections are important to be able to predict the future levels of embrittlement in the vessel beltline materials. Calculations of the neutron exposure of the Palisades reactor pressure vessel were previously completed and documented in WCAP-15353, Revision 0 [3]. That evaluation, along with the benchmarking method, was submitted for review by the NRC Staff and the methodology and the final results were approved as part of the PTS evaluation in 2000 [1]. The previous evaluation determined that the peak fluence at the clad-to-base-metal interface at the 60° limiting axial weld was $1.158 \times 10^{19} \,\text{n/cm}^2$ (E > 1 MeV) at the end of Cycle 14 (i.e., October 1999) [34]. Since then, ten more years of plant operation has occurred and, as a result, the vessel has accumulated additional fluence. Recently, Westinghouse provided an updated fluence assessment for the Palisades vessel beltline region that includes cycle specific analysis for additional operating cycles for which the design has been finalized and operations are known (Cycles 15 through 21) and projections for future operation based on the best available knowledge as a function of EFPY and estimated calendar dates [18]. The calculated and projected neutron fluence values for the limiting 60° weld location are given in Table 11. Note: the cycle specific projections for the designs of Cycles 21 and beyond were provided by Entergy and include an assumed load factor of 95% for future plant operation [18].

Structural Integrity Associates, Inc.

Table 11.

End of Fuel	Estimated Calendar	Cumulative Time	Neutron Fluence @ 60°
Cycle	Date	(EFPY)	n/cm² (E > 1 MeV)
14	October 1999	14.4	1.158E+19
15	March 2001	15.5	1.196E+19
16	March 2003	16.7	1.240E+19
17	September 2004	18.0	1.282E+19
18	April 2006	19.3	1.326E+19
19	September 2007	20.6	1.369E+19
20	March 2009	22.0	1.419E+19
_ 21	October 2010	23.4	1.472E+19
22	April 2012	24.7	1.520E+19
23	October 2013	26.1	1.571E+19
24	April 2015	27.4	1.619E+19
25	October 2016	28.8	1.670E+19
26	April 2018	30.2	1.721E+19

Calculated and Projected Fluence Values at 60° Weld Location [18]

6.0 **DISCUSSION**

The results for the surveillance capsules containing weld heat No. W5214 have been re-evaluated for applicability to the Palisades vessel. The refitted Charpy data results have been incorporated along with updates to the average capsule irradiation temperatures, corrections to account for chemistry differences, and results of the revised fluence calculations for the capsules and for the Palisades vessel have been included. Four cases are considered for prediction of the date to reach the PTS screening criteria limit.

The first case is Position 1 of the PTS Rule using the current licensing basis method and considering the revised fluence calculations and projections, as shown in Table 11. The chemistry factor for the weld heat No. W5214 was based on best-estimate Cu = .213%, Ni = 1.01%, and a CF = 231.08°F. The maximum fluence limit was calculated to be $1.584 \times 10^{19} \text{ n/cm}^2$ according to the embrittlement prediction method when surveillance data is not available. That prediction of RT_{NDT} shift is shown in Table 12, and the corresponding date to reach the PTS screening criteria limit of 270°F for axial welds is March 2014 using the fluence interpolation given in Table 16. The current licensing basis date to reach the PTS screening criteria date is

January 2014 as given in Reference 1. It has been determined that the Palisades plant is still operating within that licensing basis.

The second case follows Position 1 of the PTS Rule but considers that the actual best-estimate chemistry for weld heat No. W5214 has slightly lower nickel as determined by the CEOG report in 1998 [20]. This evaluation was performed after the initial PTS submittal in 1995 and, using this information, the revised Ni = 1.007% which gives a new value of CF = 230.73°F. It is permitted under the PTS Rule in 10CFR50.61 to use the best-estimate values for Cu and Ni, however there is only a slight difference in the maximum fluence to reach the PTS screening criteria limit (i.e., $1.595 \times 10^{19} \text{ n/cm}^2$) as shown in Table 13. The projected date to reach that limit using the interpolated fluence projections is July 2014 as shown in Table 16. Although this case does not show much additional margin from the January 2014 date, it is provided here to show that there is still slightly more time to be gained within the Position 1 approach of the PTS Rule method before the vessel reaches the 270° F screening criteria limit.

The third case considered plant-specific surveillance data from the Palisades supplemental capsules containing weld heat No. W5214. This case is labeled as Case 4a per the guidance document for use of surveillance data [19]. The Case 4a credibility assessment calculated a fitted chemistry factor of 198.8°F from the two Palisades capsule data points., The data were deemed to be credible based on meeting all the credibility criteria including scatter within the 1-sigma (i.e., 28°F) scatter bounds. The limiting fluence for the vessel for this case is shown in Table 14. Using these results and a reduced margin term to account for credible data, the projected date to reach the PTS screening criteria limit would be beyond 2034 for the limiting vessel weld heat No. W5214, as shown in Table 18. Note: It is likely that some other beltline material would become limiting if this case was used for weld heat No. W5214. However, this case demonstrates that surveillance data can provide significant improvement in determining the effects of embrittlement on the limiting vessel beltline weld material.

The fourth case, permitted under the PTS Rule, is to use all sources of surveillance data that match the limiting weld heat No. W5214. This is designated as Case 4b, and the credibility assessment determined the fitted CF = 227.74°F. The data meet credibility criteria 1, 2, 4, & 5, and the scatter of the (measured – predicted) data was within 2-sigma (i.e., 56°F) such that it can be considered to be credible data for the chemistry factor, however the margin term, σ_{Δ} , cannot be reduced in half. Use of Case 4b for the Palisades vessel is acceptable because the (measured – predicted) scatter in the weld data is within the acceptable range of 56°F for a wide range of fluence. The limiting fluence for Case 4b is 1.685×10^{19} n/cm² (E > 1 MeV) as shown in Table 15. Table 17 interpolates the vessel fluence and shows the projected date to reach the screening criteria limit is April 2017, a difference of three years compared to the first case using the current licensing basis and Position 1 approach. A summary of the four cases considered in this analysis is given in Table 18.

Structural Integrity Associates, Inc.

Table 12.

Limiting Fluence Determination for Current Licensing Basis (Case 1)

FLUENCE=	1.584E+19	n/cm ²
f =	1.584	
f FACTOR=	f^(0.28-0.1*(@LOG(f))
=	1.1270	
CHEM FACTOR =	231.08	°F
∆RTNDT =	260.5	°F
RTNDT0=	-56.0	°F
MARGIN=	65.5	°F
TOTAL RTNDT =	270.0	°F

Table 13.

Limiting Fluence Determination for Revised Best-Estimate CF Value (Case 2)

FLUENCE=	1.595E+19	n/cm ²
f =	1.595	
f FACTOR=	f^(0.28-0.1*(@LOG(f))
=	1.1289	
CHEM FACTOR =	230.73	°F
∆RTNDT =	260.5	°F
RTNDT0=	-56.0	°F
MARGIN=	65.5	°F
TOTAL RTNDT =	270.0	°F

Table 14.

Limiting Fluence Determination for Case 4a

FLUENCE=	5.438E+19	n/cm²
f =	5.438	
f FACTOR=	f^(0.28-0.1*(@LOG(f))
=	1.4185	
CHEM FACTOR =	198.8	°F
Δ RTNDT =	282.0	°F
RTNDT0=	-56.0	°F
MARGIN=	44.0*	°F
TOTAL RTNDT =	270.0	°F

* reduced margin term based on credible surveillance data

Table 15.

Limiting Fluence Determination for Case 4b

FLUENCE=	1.685E+19	n/cm ²
f =	1.685	
f FACTOR=	f^(0.28-0.1*(@LOG(f))
=	1.1437	
CHEM FACTOR =	227.74	°F
Δ RTNDT =	260.5	°F
RTNDT0=	-56.0	°F
MARGIN=	65.5	°۴
TOTAL RTNDT =	270.0	°F

Table 16.

Interpolation of PTS Limit Date Based on Current Licensing Basis and Revised Fluence

Date	Neutron Fluence @ 60° n/cm ² (E > 1 MeV)
November 2013	1.571E+19
December 2013	1.574E+19
January 2014	1.577E+19
February 2014	1.579E+19
March 2014	1.582E+19*
April 2014	1.585E+19
May 2014	1.588E+19
June 2014	1.591E+19
July 2014	1.594E+19**
August 2014	1.596E+19
September 2014	1.599E+19
October 2014	1.602E+19
November 2014	1.605E+19
December 2014	1.608E+19
January 2015	1.611E+19
February 2015	1.613E+19
March 2015	1.616E+19
April 2015	1.619E+19

* Maximum fluence limit = 1.584×10^{19} n/cm² for current licensing basis material case, CF = 231.08°F **Maximum fluence limit = 1.595×10^{19} n/cm² for revised best-estimate weld, CF = 230.73°F

Table 17.

Interpolation of PTS Limit Date Based on Limiting Fluence for Case 4b

Date	Neutron Fluence @ 60° n/cm² (E > 1 MeV)
November 2016	1.670E+19
December 2016	1.673E+19
January 2017	1.676E+19
February 2017	1.679E+19
March 2017	1.682E+19
April 2017	1.685E+19*
May 2017	1.688E+19
June 2017	1.691E+19
July 2017	1.694E+19
August 2017	1.697E+19
September 2017	1.700E+19
October 2017	1.703E+19
November 2017	1.706E+19
December 2017	1.709E+19
January 2018	1.712E+19
February 2018	1.715E+19
March 2018	1.718E+19
April 2018	1.721E+19

* Maximum fluence limit = 1.685×10^{19} n/cm² for Case 4b using revised fluence and W5214 surveillance data $CF = 227.74^{\circ}F$ and full (2-sigma) margin term

Table 18.

Case No.	CF	IRTNDT	Fluence	FF		Margin	RTPTS	Est. PTS Date
	(°F)	(°F)	(10 ¹⁹ n/cm ²)		(°F)	(°F)	(°F)	
(1) Current LB			•					
w/revised	231.08	-56	1.584	1.1270	260.5	65.5	270	March 2014
fluence								
(2) Current LB								
w/revised	220 22	56	1 605	1 1 2 2 0	260 5	65 5	270	1.1.1.2014
fluence and	250.75	-50	1.595	1.1289	200.5	03.5	270 .	July 2014
revised CF value								
4a	198.80	-56	5.438	1.4185	282	44 I	270	> 2034*
4b	227.74	-56	1.685	1.1437	260.5	65.5	270	April 2017
* Other heltline	matarials							

Projected Maximum Fluence and Estimated PTS Limit Dates for Palisades Weld W5214

Case 1 – Current licensing basis CF value for W5214 weld and revised fluence calculation

Case 2 – CEOG best estimate chemistry and CF value for W5214 weld and revised inderce calculation

Case 4a – Use of credible Palisades W5214 surveillance data and revised fluence with reduced margin term Case 4b – Use of all W5214 surveillance data and revised fluence with full margin term

7.0 SUMMARY AND CONCLUSIONS

The results for all available surveillance capsules containing weld heat No. W5214 have been evaluated for applicability to the Palisades limiting vessel weld. Updates to the surveillance capsule fluences and the projected fluence in the Palisades vessel were also reviewed and included in these analyses. The methods of 10CFR50.61 were applied including options for considering the effects of surveillance data on the projected RT_{NDT} values. Using Position 1 of the PTS Rule (without the use of surveillance data) shows a projected date to reach the PTS screening criteria limit as late as July 2014. However, use of the weld heat No. W214 surveillance data can improve the projections of embrittlement and significantly changes the date to reach the screening criteria limit. Since weld heat no. W5214 is currently identified as the limiting material, the projections using Case 4a with the credible Palisades supplemental surveillance data show that the PTS screening criteria limit of 270°F would not be reached until after 2034; however, other vessel beltline materials would become limiting and that would change that date. For Case 4b, the surveillance data for weld heat No. W5214 were shown to be credible for determination of the CF value, but the scatter in the data would not permit a reduction in the margin term. However, use of the fitted chemistry factor for Case 4b with the revised fluence projections and the full margin term provides a better determination of the vessel embrittlement prediction for the limiting vessel weld. Using all the available weld heat No. W5214 surveillance data, a CF value of 227.74°F was determined for Case 4b and a projected date to reach the screening criteria limit of approximately April 2017 was estimated using the updated fluence projections from Westinghouse.

Structural Integrity Associates, Inc.
8.0 REFERENCES

- Letter from Darl S. Hood (USNRC) to Nathan Haskall (Palisades), "Palisades Plant Reactor Vessel Neutron Fluence Evaluation and Revised Schedule for Reaching Pressurized Thermal Shock Screening Criteria (TAC No. MA8250)," November 14, 2000. (SI File No. 0901025.206).
- Code of Federal Regulations, Title 10, Part 50, Section 50.61, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events," U. S. Nuclear Regulatory Commission. (SI File No. 0901025.201).
- 3. Westinghouse Report, "Palisades Reactor Pressure Vessel Neutron Fluence Evaluation," WCAP-15353, Rev. 0, January, 2000. (SI File No. 0901025.203).
- 4. CVGRAPH Version 5.0.2, Hyperbolic Tangent Curve-Fitting Program, Developed by ATI Consulting, 2000.
- 5. Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, March 2001.
- SWRI Report, "Reactor Vessel Material Surveillance Program for Indian Point Unit No. 2 Analysis of Capsule V," SWRI Project No. 17-2108, October 1988. (SI File No. 0901132.201).
- SWRI Report, "Reactor Vessel Material Surveillance Program for Indian Point Unit No. 2 Analysis of Capsule Y," SWRI Project No. 02-5212, November 1980. (SI File No. 0901132.202).
- 8. Westinghouse Report, "Consolidated Edison Co. Indian Point Unit No. 2 Reactor Vessel Radiation Surveillance Program," WCAP-7323, May 1969. (SI File No. 0901132.203).
- Westinghouse Report, "Consolidated Edison Co. of New York Indian Point Unit No. 3 Reactor Vessel Radiation Surveillance Program," WCAP-8475, January 1975. (SI File No. 0901132.204).
- Westinghouse Report, "Analysis of Capsule T from the Indian Point Unit No. 3 Reactor Vessel Radiation Surveillance Program," WCAP-9491, April 1979. (SI File No. 0901132.205).

Structural Integrity Associates, Inc.

- Westinghouse Report, "Analysis of Capsule Y from the Power Authority of the State of New York Indian Point Unit 3 Reactor Vessel Radiation Surveillance Program," WCAP-10300, March 1983. (SI File No. 0901132.206).
- Westinghouse Report, "Analysis of Capsule X from the Carolina Power & Light Company H. B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program," WCAP-15805, March 2002. (SI File No. 0901132.207).
- Westinghouse Report, "Analysis of Capsule X from Entergy's Indian Point Unit 3 Reactor Vessel Radiation Surveillance Program," WCAP-16251-NP, Revision 0, July 2004. (SI File No. 0901132.208).
- Framatome ANP Report, "Test Results of Capsule SA-240-1 Consumers Energy Palisades Nuclear Plant – Reactor Vessel Material Surveillance Program," BAW-2398, May 2001. (SI File No. 0901132.209).
- Framatome ANP Report, "Test Results of Capsule SA-60-1 Consumers Energy Palisades Nuclear Plant – Reactor Vessel Material Surveillance Program," BAW-2341, Revision 2, May 2001. (SI File No. 0901132.210).
- 16. Letter from J. Kneeland to M. J. DeVan dated February 2, 1999, Enclosure. (SI File No. 0901132.211).
- 17. Westinghouse Report, "Neutron Fluence Analysis for Palisades Surveillance Capsule SA-240-1," CPAL-01-009, April 30, 2001. (SI File No. 0901132.212).
- Email Transmittal from Stanwood L. Anderson (Westinghouse) to Timothy Griesbach, Subject: Revised Fluence Values for Design Inputs to PTS Evaluation, April 15, 2010. (SI File No. 0901132.223)
- 19. "Generic Letter 92-01 and RPV Integrity Assessment," NRC/Industry Workshop on RPV Integrity Issues, February 12, 1998. (SI File No. 0901132.213).
- "Updated Analysis for Combustion Engineering Fabricated Reactor Vessel Welds Best Estimate Copper and Nickel Content," Combustion Engineering Owners Group, CEOG Task 1054, CE NPSD-1119, Rev. 01, July 1998. (SI File No. 0901025.204)
- 21. ASME Boiler and Pressure Vessel Code, Section III, 1965 Edition, including all addenda through Winter 1965, American Society of Mechanical Engineers.

31

- 22. ASTM E185-66, "Recommended Practice for Surveillance Tests on Structural Materials in Nuclear Reactors."
- Design Input Record from Thomas Allen (Entergy) to Timothy Griesbach (SIA) for basis/reference for adjusting the Palisades Cycle 1 through 12's cycle length expressed as Effective Full Power Day (EFPD) & unadjusted cycle lengths and operating dates, Attachments LAR of 2-21-2000, and EA-DOR-09-01, Rev. 0, April 15, 2010. (SI File No. 0901132.224)
- ORNL Report, "Analysis of the Irradiation Data for A302B and A533B Correlation Monitor Materials," Oak Ridge National Laboratory, NUREG/CR-6413, ORNL/TM-13133, April 1996.
- 25. EricksonKirk, M. A., EricksonKirk, M. T., Rosinski, S., Spanner, J., "A Comparison of the tanh and Exponential Fitting Methods for Charpy V-Notch Energy Data," Journal of Pressure Vessel Technology, Volume 131, June 2009. (SI File No. 0901132.225)
- 26. Haskell (Consumers Energy) to NRC, "Docket 50-255 -License DPR-20 -Palisades Plant Response to Request for Additional Information Regarding Reactor Pressure Vessel Integrity (TAC No. MA0560)," September 8, 1998. (SI File No. 0901132.217)
- 27. Westinghouse Report, "Carolina Power & Light Co. H. B. Robinson Unit No. 2 Reactor Vessel Radiation Surveillance Program," WCAP-7373, January 1970. (SI File No. 0901132.218)
- "Evaluation of Palisades Nuclear Plant Reactor Pressure Vessel Through the Period of Extended Operation," Constellation Nuclear Services Report, CNS-04-02-01, Rev. 1, June 2004. (SI File No. 0901132.219)
- 29. "Estimation of EDYS for IP2 Reactor Vessel Head by 2R17 and 2R18," Entergy Nuclear Calculation Number FCX-00538, 7/20/05. (SI File No. 0901132.220)
- 30. Entergy Nuclear Calculation Number IP3-CALC-RV-03720, Rev. 2, Page 7 of 8. (SI File No. 0901132.221)
- 31. RVID2, NRC Reactor Vessel Integrity Database, U. S. Nuclear Regulatory Commission, Version 2.0.1, 2000.
- 32. "Determination of 30 ft-lb Shift (ΔT₃₀) Values for the Palisades Reactor Vessel Heat No. W5214," Structural Integrity Associates Calculation No. 0901132.301, Rev. 0, 4/15/10. (SI File No. 0901132.301)

Structural Integrity Associates, Inc.

- 33. "Verification of the Time Weighted Average Temperatures for Indian Point Units 2 and 3 Vessel Weld Surveillance Capsules," Structural Integrity Associates Calculation No. 0901132.302, Rev. 0, 4/15/10. (SI File No. 0901132.302)
- Letter from Nathan Haskall (Palisades) to U. S. Nuclear Regulatory Commission, "Reply to Request for Additional Information Regarding Reactor Pressure Vessel Neutron Fluence Evaluation (TAC No. MA8250)," July 6, 2000. (SI File No. 0901132.226).

Figure 1. Best Fit to Data for all W5214 Surveillance Data with Reported Fluence and Vendor Shift Values

Report No. 0901132.401, Rev. 0

Figure 2. Palisades Supplemental Surveillance Data (W5214) with Revised Fluence and Refitted Shift (Case 4a)

Report No. 0901132.401, Rev. 0

Figure 3. Best Fit for all W5214 Surveillance Data with Revised Fluence and Refitted Shift (Case 4b)

Report No. 0901132.401, Rev. 0

Report No. 0901132.401, Rev. 0

Figure 5. Projected Peak Fluence at 60° Weld Location (from [18]) and Revised RT_{PTS} Limit Dates

Report No. 0901132.401, Rev. 0

APPENDIX A

CEOG DETERMINATION OF BEST-ESTIMATE CHEMISTRY FOR WELD HEAT NUMBER W5214 (from CE NPSD-1119, Rev. 1 [20])

Report No. 0901132.401, Rev. 0

A-1

Heat Number	Copper, %	Nickel, %	Basis
51912	0.156	0.059	weighted mean
51989	0.170	0.165	simple mean
5P5622	0.153	0.077	simple mean
6329637	0.205	0.105	simple Cu, bare wire Ni
83637	0.048	0.066	weighted mean
83640	0.051	0.096	simple mean
83642	0.046	0.086	simple mean
83648	0.042	0.136	simple mean
83650	0.045	0.087	weighted mean
83653	0.042	0.102	weighted mean
86054B	0.214	0.046	simple mean
86054B, 9565	0.213	0.052	mean of indeterminate data
87005	0.054	0.151	weighted mean
88112	0.045	0.200	simple mean
88114	0.043	0.189	simple mean
89476	0.022	0.071	simple mean
89833	0.046	0.059	simple mean
90069	0.040	0.075	weighted mean
90071	0.035	0.079	simple mean
90077	0.036	0.057	simple mean
90099	0.197	0.060	simple Cu, bare wire Ni
90130	C.044	0.133	simple mean
90136	0 269	0.070	weighted mean
90144	0.042	0.075	simple mean
90146	0.039	0.082	weighted mean
90209	0.044	0.126	simple mean
9565	0.213	0.052	Ht. 86045B/9565 data
A8746	0.150	0.13	Avg. Cu with bare wire data; generic Ni
BOLA	0.027	0.913	simple mean
HODA	0.027	0.947	simple mean
W5214 w/Ni200	0.213	1.007	coil wgt'd Cu, Ni200 BE

Table 5 (continued) Best Estimate Copper and Nickel by Heat Number

* See Report CE NPSD-1039, Rev. 02 for method of determination.

ABB Combustion Engineering Nuclear Operations Copyright (C) 1998, Combustion Engineering, Inc.

CE NPSD-1119, Rev. 01 Page 32 of 39

APPENDIX B

EXCERPT FROM GENERIC LETTER 92-01 AND RPV INTEGRITY ASSESSMENT NRC/INDUSTRY WORKSHOP ON RPV INTEGRITY ISSUES

Report No. 0901132.401, Rev. 0

REQUIREMENTS AND RECOMMENDATIONS IN 10 CFR 50.61 & RG 1.99 REV. 2

Per 10 CFR 50.61(c)(2):

"To verify that RT_{NDT} for each vessel beltline material is a **bounding** value for the specific reactor vessel, licensees shall consider plantspecific information that could affect the level of embrittlement. This information includes but is not limited to the reactor vessel operating temperature and any related surveillance program⁵ results."

Per Footnote 5:

⁵ Surveillance program results means any data that demon-strates the embrittlement trends for the limiting beltline material, including but not limited to data from test reactors or from surveillance programs at other plants with or without surveil-lance program integrated per 10 CFR Part 50, Appendix H.

Per RG 1.99 Rev. 2 Position 2.1 and 10 CFR 50.61(c)(2)(ii)(B):

"if there is clear evidence that the copper or nickel content of the surveillance weld differs from that of the vessel weld, i.e., differs from the average for the weld wire heat number associated with the vessel weld and the surveillance weld, the measured values of $\Delta RT_{\rm NDT}$ should be adjusted by multiplying them by the ratio of the chemistry factor for the vessel weld to that for the surveillance weld"

Ratio Adjusted $\Delta RT_{NDT} = (\frac{Table CF_{Vestal Chem.}}{Table CF_{Surv. Chem.}}) * Measured <math>\Delta RT_{NDT}$

Report No. 0901132.401, Rev. 0

IRRADIATION ENVIRONMENT ADJUSTMENTS

irradiation temperature and fluence are first order environmental variables in assessing irradiation damage

- Other variables are believed to be less significant contributors
- Must account for differences in temperature between surveillance specimens and vessel
- Studies have shown that for temperatures near 550°F, a 1°F decrease in irradiation temperature will result in approximately a 1°F increase in ΔRT_{NDT}

RECENT ISSUES ON USE OF SURVEILLANCE DATA

- "Best-fit line" through surveillance data (plot of △RT_{NDT} vs. fluence) must go through origin
- Using a CF determined from non-credible surveillance data
- Correcting for chemical composition (ratio procedure)
- Correcting for irradiation environment (temperature)
- Appropriate chemical composition for multiple surveillance capsules from a single source (i.e., mean value for all capsules from that source)
- Appropriate normalizing parameters for surveillance data when assessing credibility (i.e., mean of surveillance data) and determining CF (i.e., best estimate of vessel)

B-4

CASE 4: SURVEILLANCE DATA FROM PLANT AND OTHER SOURCES

Surveillance data (Weld metal)

Capsula	NGSS Vendor	Cu	NI	tread. Temp. (°F)	Fluence (10 ¹⁹ n/cm ²)	Measured ART _{NDT} ("F)	Adjusted ART _{NDT} [using Ratio and Temperature (650°F)] (°F)
Plant A - 1	B&W	0.37	0.70	656.0	0.779	214.0	196.0
Plant B - 1	BSW	0.33	0.67	656.0	0.107	124.0	126.0
Plant B - 2	B&W	0,33	0.87	656.0	0.966	203.0	202.5
Plant C - 1	B&W	0.33	0.67	556.0	0.530	182.0	182.2
Plant C - 2	B&W	0.33	0.87	556. 0	0.968	222.0	221.0
Plant X + 1	West.	0.24	0.66	836.0	0.281	165.0	172.1
Plant X + 2	West.	0.24	0.66	536.0	1.940	240.0	257.6

Vessel being analyzed is Plant X

Best estimate chemistry for heat (Weld metal)

0.34% Cu, 0.68% Ni → Table CF_{Vessel Chem.} = 220.6°F

Credibility assessment - Using Plant "X" data only

No temperature adjustment needed

Determine Surveillance CF for Plant X data only (214.8°F)

Capsule	Ċu	Mi	irrad. Temp. (°F)	Fluence (10 ¹⁹ n/cm ²)	Moasurad ART _{NDT} ('F)	Prodicted <u>ART_{NDT}</u> (*F)	(Measured - Predicted)
Plant x - 1	0.24	0.68	6.963	0.261	165.0	140.3	24.7
Plant x - 2	0.24	0.66	536.0	1.940	240.0	253.6	-\$3.8

Data are credible since scatter is less than σ_{Δ} (28°F) for all surveillance specimens

CASE 4: SURVEILLANCE DATA FROM PLANT AND OTHER SOURCES (cont'd)

Determination of CF - Plant "X" data only

No temperature adjustments needed

Adjust measured ΔRT_{NDT} to chemical composition of VESSEL

Table CF_{Surv. chem.} = 182.9°F

Determine Surveillance CF

No temperature adjustment needed

Surveillance CF = 259.0°F

Final Result: assuming $RT_{NDT(U)} = -7.0^{\circ}F$; M = 49.8; F = 0.8745

 $RT_{NDT} = -7.0 + 49.8 + (259.0 * 0.8745) = 269.2°F$

Report No. 0901132.401, Rev. 0

CASE 4: SURVEILLANCE DATA FROM PLANT AND OTHER SOURCES (cont'd)

Credibility assessment - All data

Data adjusted to mean chemical comp. of surveillance capsules

Cu = 0.31% Ni = 0.67%

Data adjusted to mean temperature of surveillance capsules

Temp. = 550°F

Determine Surveillance CF (218.4°F)

Capsule	Ċu	Ni	irrad. Temp. ("F)	Fluence (10 ¹⁹ n/cm ²)	Adjusted ∆RT _{NDT} [using Ratio and Temperature (550°F)] (°F)	Predicted ART _{NDT} (*F)	(Adjusted - Predicted) ART _{NDT} (°F)
Plant A - 1	0.37	0.70	559.0	0.779	198.0	203.1	-7.1
Plant B - 1	0.33	0.67	668.0	0.107	128.0	84.1	31.9
Plant B - 2	0.33	0.67	658.0	0.866	202.5	209.6	-7.1
Plant C - 1	0.33	0.67	556.0	0.830	182.2	207.0	-24.8
Plant C - 2	0.33	0.67	656.0	0.968	221.0	216.4	4.5
Plant X - 1	0.24	0.66	636.0	0.281	172.1	142.8	29,4
Plant X - 2	0.24	0.66	536.0	1.940	257.6	268.0	-0.4

Data are not credible since scatter is greater than σ_{Δ} (28°F) for several surveillance specimens

B-7

APPENDIX C

PALISADES SUPPLEMENTAL MATERIALS SURVEILLANCE PROGRAM RESULTS FOR WELD NO. W5214

Report No. 0901132.401, Rev. 0

BAW-2398 May 2001

Test Results of Capsule SA-240-1 Consumers Energy Palisades Nuclear Plant

-- Reactor Vessel Material Surveillance Program --

by

M. J. DeVan.

FTI Document No. 77-2398-00 (See Section 7 for document signatures.)

.....

Prepared for

Consumers Energy

Prepared by

Framatome ANP, Inc. 3315 Old Forest Road P. O. Box 10935 Lynchburg, Virginia 24506-0935

FRAMATOME ANP

Executive Summary

This report describes the results of the tests performed on the specimens contained in the second supplemental reactor vessel surveillance capsule (Capsule SA-240-1) from the Consumers Energy Palisades Nuclear Plant. The objective of the program is to monitor the effects of neutron irradiation on the mechanical properties of the reactor vessel materials by testing and evaluation of Charpy impact specimens.

Supplemental Capsule SA-240-1 was removed from the Palisades reactor vessel at the end-ofcycle 14 (EOC-14) for testing and evaluation. The test specimens included modified 18mm Charpy V-notch inserts for three weld metals fabricated with weld wire heats W5214, 34B009, and 27204 and standard Charpy V-notch specimens fabricated from the correlation monitor plate material, HSST Plate 02. The weld metal Charpy inserts were reconstituted to full size Charpy V-notch specimens. The reconstituted weld metals along with HSST Plate 02 material were Charpy impact tested. The results of these tests are presented in this document.

	Chemical Composition, wt%							
Element	Weld Metal W5214 ^(a)	Weld Metal 34B009 ^(a)	Weld Metal 27204 ^(b)	Correlation Monitor Plate Heat No. A1195-1 ^(c)				
С	0.094	0.110	0.142	0.23				
Mn	1.161	1.269	1.281	1.39				
Р	0.009	0.012	0.009	0.013				
S	0.012	0.016	0.008	0.013				
Si	0.252	0.181	0.217	0.21				
Ni	1.045 ^(b)	1.121 ^(b)	1.067	0.64				
Cr	0.040	0.040	0.071					
Мо	0.510	0.543	0.525	0.50				
Cu	0.307 ^(b)	0.185 ^(b)	0.194	0.17				

Table 3-2. Chemical Composition of Palisades Capsule SA-240-1 Surveillance Materials

(a) AEA Technology analysis.^[9]

(b) Analysis provided by Consumers Energy^[10]

(c) ORNL analysis.^[11]

Specimen ID	Test Temperature, °F	Impact Energy, ft-lbs	Lateral Expansion, mil	Shear Fracture, %
2AL1	70	14	9	· 0
2AH3	125	15.5	6	20
AW5	175	24.5	15	10
2AJ1	200	13	10	40
AU4	200	26.5	15	35
2AL3	225	25	11	50
AP1	250	40	· 26	65
AU5	300	54.5	47	95
2AE5	350	49	42	95 、
2AK5	400	50.5*	35	100
AP5	450	52.5*	45	100
AS2	500	54.5*	43	100

Table 4-3. Charpy Impact Results for Palisades Capsule SA-240-1 Irradiated Weld Metal W5214

* Value used to determine upper-shelf energy (USE) in accordance with ASTM Standard E 185-82.^[17]

Specimen ID	Test Temperature, °F	Impact Energy, ft-lbs	Lateral Expansion, mil	Shear Fracture, %
O2D2-10	70	6.5	4	0
02D2-13	125	15.5	10	20
O2D2-23	175	27.5	24	30
O2D2-17	200	26	19	35
O2D2-2	200	44.5	29	55
OCD2-22	225	44.5	30	55
O2D2-19	240	54	40	70
O2D2-8	250	70	50	80
O2D2-5	300	83*	66	100
O2D2-15	350	82.5*	72	100
O2D2-24	400	89.5*	67	100
O2D2-11	500	82.5*	65	100

Table 4-6. Charpy Impact Results for Palisades Capsule SA-240-1 Irradiated Correlation Monitor Plate Material (HSST Plate 02) Heat No. A1195-1

 * Value used to determine upper-shelf energy (USE) in accordance with ASTM Standard E 185-82.^[17]

Material	Hyperbolic Tangent Curve Fit Coefficients						
Description	Absorbed Energy	Lateral Expansion	Percent Shear Fracture				
Weld Metal W5214	A: 27.4 B: 25.2 C: 111.6 T0: 208.1	A: 22.8 B: 21.8 C: 83.5 T0: 231.7	A: 50.0 B: 50.0 C: 72.5 T0: 223.2				
Weld Metal 34B009	A: 29.8 B: 27.6 C: 111.7 T0: 176.6	A: 22.9 B: 21.9 C: 88.0 T0: 184.3	A: 50.0 B: 50.0 C: 109.8 T0: 192.6				
Weld Metal 27204	A: 28.0 B: 25.8 C: 145.7 T0: 215.3	A: 25.6 B: 24.6 C: 169.2 T0: 225.9	A: 50.0 B: 50.0 C: 118.4 T0: 210.1				
Correlation Monitor Plate, HSST Plate 02 (Heat No. A1195-1)	A: 43.3 B: 41.1 C: 75.3 T0: 211.8	A: 35.8 B: 34.8 C: 83.1 T0: 222.2	A: 50.0 B: 50.0 C: 75.9 T0: 206.5				

Table 4-11. Hyperbolic Tangent Curve Fit Coefficients for the Palisades Capsule SA-240-1 Surveillance Materials

Material	30 ft-lb Transition Temperature, °F			50 ft-lb Transition Temperature, °F		35 mil Lateral Expansion Transition Temperature, °F			Upper-Shelf Energy, ft-lb			
Description	Unirradiated	Irradiated	ΔΤ	Unirradiated	Irradiated	ΔΤ	Unirradiated	Irradiated	ΔT	Unirradiated	Irradiated	Decrease
Weld Metal W5214	-60.2 ^(a)	219.9	280.1	-17.4 ⁽²⁾	372.7	390.1	-29.6 ^(a)	284.3	313.9	102.7 ^(a)	52.5	50.2
Weld Metal 34B009	-82.0 ^(a)	177.4	259.4	-45.0(*)	280.8	325.8	-51.6 ^(a)	238.6	290.2	113.9 ^(a)	57.4	56.5
Weld Metal 27204	-41.2 ^(b)	226.6	267.8	-6.1 ^(b)	399.7	405.8	Not available.	293.7		108.4 ^(b)	53.8	54.6
HSST Plate 02 Heat No A1195-1	45.7 ^(c)	186.6	140.9	78.3 ^(e)	224.2	145.9	Not available.	220.3		120.3 ^(c)	84.4	35.9

· 1

ł

1 . .

Table 4-12. Summary of Charpy Impact Test Results for the Palisades Capsule SA-240-1 Surveillance Materials

4-16

(a) Data reported in AEA Technology Report AEA-TSD-0774.^[9]

1

1

(b) Data reported in CE Report No. TR-MCC-189.^[18]

(c) Data reported in NUREG/CR-6413.[11]

ł

Figure 4-2. Palisades Capsule SA-240-1 Charpy Impact Data for Irradiated Weld Metal W5214

Figure 4-5. Palisades Capsule SA-240-1 Charpy Impact Data for Irradiated Correlation Monitor Plate Material (HSST Plate 02), Heat No. A1195-1

6.0 Summary of Results

The investigation of the post-irradiation test results of the materials contained in the second supplemental surveillance capsule, Capsule SA-240-1 removed from the Consumers Power Company Palisades reactor vessel, led to the following conclusions:

- 1. Observation of the Capsule SA-240-1 thermal monitors indicated that the irradiated test specimens were exposed to a maximum irradiation temperature less than 558°F.
- 2. Thirty-six pre-machined irradiated 18mm Charpy inserts were successfully reconstituted and machined to Type A Charpy impact specimens. The reconstituted Charpy specimens were subsequently impact tested.
- The 30 ft-lb and 50 ft-lb transition temperatures for the weld metal W5214 increased 280.1°F and 390.1°F, respectively. In addition, the C_vUSE for this material decreased 48.9%.
- The 30 ft-lb and 50 ft-lb transition temperatures for the weld metal 34B009 increased 259.4°F and 325.8°F, respectively. In addition, the C_vUSE for this material decreased 49.6%.
- The 30 ft-lb and 50 ft-lb transition temperatures for the weld metal 27204 increased 267.8°F and 399.7°F, respectively. In addition, the C_vUSE for this material decreased 50.4%.
- The correlation monitor plate demonstrated similar behavior with an increase in the 30 ft-lb and 50 ft-lb transition temperatures of 140.9°F and 145.9°F, respectively. The percent decrease in the C_vUSE for this material is 29.8%.

FRAMATOME ANP

BAW-2341, Revision 2 May 2001

Test Results of Capsule SA-60-1 Consumers Energy Palisades Nuclear Plant

i.

Г і

1

Π

Ì

-- Reactor Vessel Material Surveillance Program --

by

M. J. DeVan

FTI Document No. 77-2341-02 (See Section 7 for document signatures.)

Prepared for

Consumers Energy

Prepared by

Framatome ANP, Inc. 3315 Old Forest Road P. O. Box 10935 Lynchburg, Virginia 24506-0935

Executive Summary

This report describes the results of the test specimens from the first supplemental capsule (Capsule SA-60-1) of the Consumers Energy Palisades Nuclear Plant as part of their reactor vessel surveillance program. The objective of the program is to monitor the effects of neutron \checkmark irradiation on the mechanical properties of the reactor vessel materials by testing and evaluation of Charpy impact specimens.

Supplemental Capsule SA-60-1 was removed from the Palisades reactor vessel at the end-ofcycle 13 (EOC-13) for testing and evaluation. The capsule contents were removed from Capsule SA-60-1 for testing and examination. The test specimens included modified 18mm Charpy Vnotch inserts for three weld metals fabricated with weld wire heats W5214, 34B009, and 27204 and standard Charpy V-notch specimens fabricated from the correlation monitor plate material, HSST Plate 02. The weld metal Charpy inserts were reconstituted to full size Charpy V-notch specimens. The reconstituted weld metals along with HSST Plate 02 material were Charpy impact tested.

Following the initial Charpy V-notch impact testing, the laboratory performed a calibration of the temperature indicator used in the Palisades Capsule SA-60-1 testing. The results of the laboratory calibration indicated the instrument was out-of-tolerance. Based on the results of this calibration test, the laboratory revised the Charpy impact test temperatures accordingly. Revision 1 corrects the test temperatures for the Supplemental Capsule SA-60-1 reconstituted weld metal Charpy V-notch impact specimens and the HSST Plate 02 Charpy V-notch impact specimens.

Revision 2 provides an update to the hyperbolic tangent curve fits of the Charpy impact curves by restraining the upper-shelf energy. For these curve fits, the lower-shelf energy was fixed at 2.2 ft-lbs for all cases, and for each materials the upper-shelf energy was fixed at the average of all test energies exhibiting 100% shear, consistent with ASTM Standard E 185-82.

FRAMATOME ANP

	Chemical Composition, wt%							
Element	Weld Metal W5214 ^(a)	Weld Metal 34B009 ^(a)	Weld Metal 27204 ^(b)	Correlation Monitor Plate Heat No. A1195-1 ^(c)				
С	0.094	0.110	0.142	0.23				
Mn	1.161	1.269	1.281	1.39				
Р	0.009	0.012	0.009	0.013				
S	0.012	0.016	0.008	0.013				
Si	0.252	0.181	0.217	0.21				
Ni	- 1.045 ^(b)	1.121 ^(b)	1.067	0.64				
Cr	0.040	0.040	0.071					
Мо	0.510	0.543	0.525	0.50				
Cu	0.307 ^(b)	0.185 ^(b)	0.194	0.17				

Table 3-2.	Chemical Composition of Palisades Capsule SA-60-1
	Surveillance Materials

(a) AEA Technology analysis.⁸

(b) Analysis provided by Consumers Energy.⁹

(c) ORNL analysis.¹⁰

 $\left[\right]$

 $\left[\right]$

 $\left[\right]$

 \int

 $\left[\right]$

 \Box

[

 $\left| \right|$

Specimen ID	Test Temperature, °F	Impact Energy, ft-lbs	Lateral Expansion, mil	Shear Fracture, %
AA2	74	10	4	0
AW1	129	24	15	5
AW2	154	23.5	15	15
2AF5	204	30	16	50
AL3	229	33.5	23	65
AA4	254	28	19	60
2AL6	279	43.5	35	80
2AE2	279	48.5	38	90
2AH6	329	47.5	35	90
AR94	404	51.5*	43	100
2AH1	454	55*	47	100
AV4	479	57*	46	100

Table 4-3. Charpy Impact Results for Palisades Capsule SA-60-1Irradiated Weld Metal W5214

 * Value used to determine upper-shelf energy (USE) in accordance with ASTM Standard E 185-82.¹⁵

Specimen ID	Test Temperature, °F	Impact Energy, ft-lbs	Lateral Expansion, mil	Shear Fracture, %
O2D2-9	74	8	. 3	5
O2D2-3	104	20.5	16	10 🕤
O2D2-1	129	24.5	18	20
O2D2-7	154	26.5	23	40
O2D2-18	179	35.5	28	45
OCD2-21	204	48.5	40	7 0
O2D2-14	229	53.5	43	65
O2D2-16	229	51.5	43	70
O2D2-4	254	73.5	65	80
O2D2-6	279	85*	70	100
O2D2-12	329	·87 . 5*	74	100
O2D2-20	404	86.5*	7 7	100

Table 4-6. Charpy Impact Results for Palisades Capsule SA-60-1Irradiated Correlation Monitor Plate Material(HSST Plate 02) Heat No. A1195-1

[

[

......

2

\$

* Value used to determine upper-shelf energy (USE) in accordance with ASTM Standard E 185-82.¹⁵

Material	Hyperbolic Tangent Curve Fit Coefficients							
Description	Absorbed Energy	Lateral Expansion	Percent Shear Fracture					
Weld Metal W5214	A: 28.4 B: 26.2 C: 158.1 T0: 188.8	A: 25.0 B: 24.0 C: 160.0 T0: 239.6	A: 50.0 B: 50.0 C: 80.5 T0: 214.9					
Weld Metal 34B009	A: 28.7 B: 26.5 C: 123.8 T0: 161.8	A: 25.3 B: 24.3 C: 97.6 T0: 196.4	A: 50.0 B: 50.0 C: 89.6 T0: 179.6					
Weld Metal 27204	A: 27.6 B: 25.4 C: 111.4 T0: 201.4	A: 25.9 B: 24.9 C: 101.8 T0: 214.4	A: 50.0 B: 50.0 C: 92.1 T0: 187.1					
Correlation Monitor Plate, HSST Plate 02 (Heat No. A1195-1)	A: 44.3 B: 42.1 C: 95.1 T0: 193.0	A: 41.3 B: 40.3 C: 104.9 T0: 208.6	A: 50.0 B: 50.0 C: 85.2 T0: 183.7					

Table 4-11. Hyperbolic Tangent Curve Fit Coefficients for the Palisades Capsule SA-60-1 Surveillance Materials

1.

2

ŝ.,

i.

Material	30 ft-lb Transition Temperature, °F		50 ft-lb Transition Temperature, °F		35 mil Lateral Expansion Transition Temperature, °F		Upper-Shelf Energy, ft-lb					
Description	Unirradiated	Irradiated	ΔT	Unirradiated	Irradiated	ΔΤ	Unirradiated	Irradiated	ΔТ	Unirradiated	Irradiated	Decrease
Weld Metal W5214	-60.2 ^(a)	198.8	259.0	-17.4 ^(a)	375.6	393.0	-29.6 ^(a)	310.1	339.7	102.7 ^(a)	54.5	48.2
Weld Metal 34B009	-82.0 ^(a)	167.8	249.8	-45.0 ^(a)	298.6	343.6	-51.6 ⁽⁰⁾	237.5	289.1	113.9 ^(a)	55.25	58.65
Weld Metal 27204	-41.2 ^(b)	211.9	253.1	-6.1 ^(b)	355.6	361.7	Not available.	249.4		108.4 ^(b)	53.0	55.4
HSST Plate 02 Heat No A1195-1	45.7 ^(c)	159.4	113.7	78.3 ^(c)	206.0	127.7	Not available.	187.9	·	120.3 ^(e)	86.3	34.0

Table 4-12.	Summary of Charpy Impact Test Results for the	Palisades
	Capsule SA-60-1 Surveillance Materials	

(a) Data reported in AEA Technology Report AEA-TSD-0774.⁸
 (b) Data reported in CE Report No. TR-MCC-189.¹⁶

(c) Data reported in NUREG/CR-6413.¹⁰

ر

FRAMATOME ANP

Figure 4-2. Charpy Impact Data for Irradiated Weld Metal W5214

2

Figure 4-5. Charpy Impact Data for Irradiated Correlation Monitor Plate Material (HSST Plate 02), Heat No. A1195-1

2

	Palisades Nuclea	r Plan Pa	.t — ge 2	Weld/W5214	(Unirr)		
	Material: WELD	Неа	at Numb	er: W5214 Orientatio	on: TL		
	Caps	ule: Unirr	Total	Fluence: 0.0			
	Charpy	V-Notch	Data	(Continued)			
Temperature 0 20 20 30 40 60 60 110 110 210 300 300	Input CVN Ene 64.19 39.09 62.7 60.5 78.19 61.2 87 75.19 111.4 110.59 98.8 110.59 95.9 97.4 94.4	rgy	<i>_1</i>	Computed CVN Energy 58.8 58.8 68.4 68.4 72.8 76.86 83.82 83.82 94.88 94.88 101.58 101.58 102.51 102.51	UM of RESIDUAL	Differential 5.39 -19.7 -5.7 -7.9 5.39 -15.66 3.17 -8.62 27.57 15.71 3.91 9.01 -5.68 -5.11 -8.11 S = 10.77	

APPENDIX D

INDIAN POINT 2 REACTOR VESSEL MATERIALS SURVEILLANCE PROGRAM RESULTS FOR WELD NO. W5214

Report No. 0901132.401, Rev. 0

D-1

Structural Integrity Associates, Inc.

FOR UNRESTRICTED DISTRIBUTION DATE: SEP 29 1977 WNES

÷.

WCAP 7323

CONSOLIDATED EDISON CO. INDIAN POINT UNIT NO. 2 REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM

C.

By

S. E. Yanichko

May 1969

IPP 106

Approved:

E. Landerman

Westinghouse Electric Corporation Nuclear Energy Systems Division Box 355 Pittsburgh, Pa. 15230

WCAP 7323

SECTION 4

POST-IRRADIATION TESTING

Specimen capsules will be removed from the reactor only during normal refueling periods. The recommended schedule for removal of capsules is as follows:

	Capsule	
Capsule Type	Identification	Exposure Time
I	T	(Replacement of 1st Region)
II	S	(Replacement of 2nd Region)
I	. Z	(Replacement of 4th Region)
II	V	10 years
I	υ,	
I	w (Extra capsules for complementary
I ·	X	testing or additional exposure
II	Y)	

Each specimen capsule upon removal after radiation exposure will be transferred to a post-irradiation test facility for disassembly of the capsule and testing of all specimens.

4.1 CHARPY V-NOTCH IMPACT TESTS

The testing of the eight Charpy impact specimens from each of the IPP vessel plates, the weld and HAZ metal, and the correlation monitor material in the capsules can be done singulary, making possible the performance of Charpy impact tests at five different temperatures, with three extra specimens to provide an optimum curve for each plate. The initial Charpy specimen from the first capsule removed should be tested at room temperature. The impact energy value for this test temperature should be compared with preirradiation test data. The testing temperatures for the remaining specimen should then be appropriately raised or lowered. The test temperatures of

9.

specimens from capsules exposed to longer irradiation periods should be determined by the test results for the previous capsule.

4.2 TENSILE TESTS

The two tensile specimens per plate or weld from each of the capsules should be tested at room temperature and the approximate operating temperature of the reactor ($550^{\circ}F$).

4.3 WEDGE OPENING LOADING TESTS

The WOL specimens from each individual capsule should be tested at a temperature based on the transition temperature shift obtained from the associated Charpy impact specimens. A mean temperature of -200 °F plus the transition temperature shift should be the initial test temperature.

- 4.4 POST-IRRADIATION TEST EQUIPMENT
- 1. Milling machine or special cut-off wheel for opening capsules and dosimeter blocks.
- 2. Hot-cell tensile testing machine with:
 - a. pin-type adapter for pulling tensile tests
 - b. clevis and extensometer for pulling WOL specimens.
- 3. Hot-cell Charpy impact testing machine.
- 4. NaI scintillation detector and pulse height analyzer for gamma counting of the specific activities of the dosimeters.

WCAP 7323

TABLE 7

PRE-IRRADIATION TENSILE PROPERTIES FOR THE INDIAN POINT UNIT NO. 2 PRESSURE VESSEL PLATE MATERIAL AND WELD METAL

Plate No.	Test Temp., °F	0.2% Yield Strength, psi	Tensile Strength, 	Total Elongation %	Reduction ' In Area,
B2002-1	Room	68,500	89,000	25.1	67.8
B2002-1	Room	65,850	87,800	25.3	67.4
B2002-1	200	61,550	79,900	24.1	68,6
B2002-1	200	67,950	89,400	23.8	67.6
B2002-1	400	57,900	79,900	23.1	64.7
B2002-1	400	59,800	82,200	22.2	67,8
B2002-1	600	56,750	80,550	21.9	64.3
B2002-1	600	57,750	85,700	22.9	64.2
B2002-2	Room	62,350	83,800	27.1	70.0
B2002-2	Room	66,750	90,500	28.2	69.6
B2002-2	200	63,650	84,450	24.8	70.5
B2002-2	200	63,200	83,800	25.5	67.3
B2002-2	400	53,800	77,900	23.1	68.5
B2002-2	400	52,650	73,150	22.4	67.6
B2002-2	600	53,500	78,800	22.7	64.4
B2002-2	600	54,700	81,450	24.7	64.4
B2002-3	Room	65,650	87,300	27.6	67.3
B2002-3	Room	65,000	87,350	24.8	66.7
B2002-3	200	67,800	88,900	23.4	68.6
B2002-3	200	67,700	89,150	22.1	64.9
B2002-3	400	57,950	79,550	22.3	68.7
B2002-3	400	55,350	77,100	23.2	64.9
B2002-3	600	57,750	83,850	24.9	68.2
B2002-3	600	58,350	86,500	24.9	64.7
Weld	Room	64,500	80,700	28.5	73.9
Weld	Room	65,000	81,000	26.9	71.5
Weld	200	63,450	76,100	28,4	72,9
Weld	200	61,050	75,200	25.2	73,0
Weld	400	57,550	75,000	22.9	68.1
Weld	400	58,300	75,800	22,6	69.6
Weld	600	56,650	79,800	24.4	62.0
Weld	600	56,650	79,200	24.0	66.9

Figure 10. Pre-Irradiation Charpy V-Notch Impact Energy for the Indian Point Unit #2 Reactor Pressure Vessel Weld Metal

SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284

REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR INDIAN POINT UNIT NO. 2 ANALYSIS OF CAPSULE Y

by E. B. Norris

FINAL REPORT SwRI Project No. 02-5212

Prepared for Consolidated Edison Company of New York, Inc. 4 Irving Place New York, New York 10003

November 1980

Approved:

U.S. Lindholm, Director

U. S. Lindholm, Director Department of Materials Sciences

TABLE VII

CHARPY V-NOTCH IMPACT DATA INDIAN FOINT UNIT NO. 2 PRESSURE VESSEL WELD METAL

Condition	Spec. No.	Temp. (°F)	Energy (ft-lbs)	5hear (7)	Lateral Expansion (mils)
Baseline	(a)	-150	12.5	10	10
	1	-150	10.5	15	11
		-100	35.0	25	29
		-100	9.0	20	9
•		-100	18.0	[°] 30	19
	Ì	-80	13.0	20	12
		- 80	32.5	20 v	27
		-80	25.0	20	23
		-40	34.0	30	30
·		-40	35.5	35	31
i `		-40	48.0	35	40
· .		10	78.5	60	64
•	•	10	74.0	60	60
	× -	10	81.0	70	68
1		60	102.5	80	, 78
		60	100	85	82
	•	60	100.0	85	80
		110	112.5	. 99	× 88
		110	108.5	90	87.
· · · · · · · · · · · · · · · · · · ·	:	110	108.5	98	88
		160	115.5	100	90
ł		160	113.0	100	92
		160	120.0	100	93
		210	121.0	100	92
	L.	210	123.5	100	91
T	1 • •	210	117.5	100	92 `
Capsule Y	W-17	74	17.5	ail	14
ł	W-19	110	23.0	5	19
	-1-20	160	40.0	· 25	34
ł ·	W-21	190	47.0	50	43
	W-23	210	55.0	(60	53
	x-24	260	71.5	100	51
: •	W-18(b)	300	51.0	100	45
Y	W-22	350	57.0	· 100 ·	52

(a)

Not reported. Specimen number stamped on impact side. (Ծ)

24

TABLE VIII

CHARPY V-NOTCH IMPACT DATA CORRELATION MONITOR MATERIAL (SUPPLIED BY U.S. STEEL)

Condition	Spec. No.	Temp. (°F)	Ecergy (ft-1bs)	Shear (%)	Lateral Expansion (mils)
Baseline	(a)	-80	4	2	6
	1	-80	. 4	2	6
		-60	8 .	3	6
		-60	6 、	3	6
		-40	12	10	14
	•	-40	10	5	10
		-40	6	5	- 7
		-20	14	15	14
•		<u>–</u> 20	13	- 15	14
		0	22	30	22
1		0	18	25	18
ļ		20	29	35	28
	1	20	23	35	23
		40	36	45	33
		40	26	45	26
	•	60	36	50	40
	ļ	60	33	45	35
	· • •	80	67	100	. 60
		80	50	70	48
		100	68	98	60
¥	Ĭ	100	. 62	85	58
Capsule Y	R-60	40	5.0	nil	4
	. R57	74	26.0	5	22
	R-62	90	30.5	10	26
:	R-58	110	23.0	15	26
]	R-39	135	36.0	20	32
	R-63	160	51.5	40	43
1	R-64	210	60.0	90 ·	53
Y	3-61	260	68.5	100	58

(a) Not reported.

FIGURE 6. EFFECT OF IRRADIATION ON C., DEPACT PROPERTIES OF INDIAN POINT UNIT NO. 2 WELD METAL

23

FIGURE 1. EFFECT OF IRRADIATION IN L. IMPACT PROPERTIES OF INDIAN POINT UNIT NO. 2 CORRELATION MONITOR MATERIAL

REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR INDIAN POINT UNIT NO. 2 ANALYSIS OF CAPSULE V

N. Kan P.

FINAL REPORT SwRI Project No. 17-2108

Prepared for

Consolidated Edison Company of New York, Inc. 4 Irving Place New York, New York 10008

October 1988

1

SOUTHWEST RESEARCH INSTITUTE

REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR INDIAN POINT UNIT NO. 2 ANALYSIS OF CAPSULE V

FINAL REPORT SwRI Project No. 17-2108

Prepared for

Consolidated Edison Company of New York, Inc. 4 Irving Place New York, New York 10003

October 1988

Written by

ې . زر

; .

:

:..

F. A. Iddings 2 D. G. Cadena Mark Williams (Consultant) Approved by

1 de

B. T. Cross Director Department of NDE Science and Research Southwest Research Institute

-

.

ι.,

[]]

L SUMMARY OF RESULTS AND CONCLUSIONS

The analysis of the fourth material surveillance capsule removed from the Indian Point Unit No. 2 reactor pressure vessel led to the following conclusions:

- (1) Based on a calculated neutron spectral distribution, Capsule V received a fast fluence of $5.3 \times 10^{18} \text{ n/cm}^2$ (E > 1 MeV) at its radial center line.
- (2) The surveillance specimens of the core beltline plate materials experienced shifts in RT_{NDT} (50 ft-lb. values) over the range of 79°F (Plate B2002-2) to 239°F (Weld) as a result of fast neutron exposure up to the 1987 refueling outage.
- (3) The core beltline weld exhibited the largest shift in RT_{NDT} and is projected to control the heatup and cooldown limitations throughout the design lifetime of the pressure vessel.
- (4) From the previous capsule, Z, the estimated maximum neutron fluence of 3.33 x 10^{18*} neutrons/cm² (E > 1 MeV) was received by the vessel wall in 5.17 effective full power years (EFPY) through Cycle 5, which is equal to a fluence rate of 6.44 x 10^{17*} per EFPY. At the end of Cycle 8 (8.6 EFPY) the neutron fluence was 4.45 x 10¹⁸ n/cm² giving 3.26 x 10¹⁷ n/cm² per EFPY for Cycles 6 through 8. This calculated value for the decrease in fluence per EFPY agrees well with the experimental value for the decrease in fluence rate; i.e., 50.6% vs. 48.9%. The use of a low leakage core loading pattern beginning with Cycle 6 did significantly reduce the fluence rate on the pressure vessel wall.

^{*}Revised from Capsule Z report using the latest plant specific lead factors.

TABLE IV-5

CHARPY IMPACT DATA WITH PHOTOS OF FRACTURE FACES

MATERIAL - (WELD)

 \bigcap

. . .

ي . ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹

، - ب

Date June 2, 1988

SPECIMEN NO.	TEMP °F	ENERGY FT-LBS	LATERAL EXPANSION	FRACTURE APPEARANCE	PHOTOGRAPH <u>1</u> X
W- 9	74°F	24.0	.019	0	
w-10	+130	26.5	. 023	20	
₩-11	+180	40.5	. 035	40	
₩ - 12	+220	53.0	. 048		
W-13	+260	62.5	.054	95	
W-14	+300	76.0	.064	95	
W-16	+325	72.5	.065	95	
W-15	+350 .	76.0	.067	100	
		-			

IV-20

(<u>4</u> 0

Table IV-9

SUMMARY OF $RT_{\mbox{NDT}}$ SHIFTS AND UPPER SHELF ENERGY REDUCTION (C_v) FOR MATERIALS IN CAPSULE V

A. Summary of Fluence and Measured $\triangle RT_{NDT}$ Values for Test Specimens in Capsule V

Type of	Fluence <u>Neutron</u>	Measured ΔRT_{NDT} (°F)				
Material	cm ²	50 Ft-Lbs	30 Ft-Lbs	35 mils*		
Weld	5.59E18	239	204	230		
		77 Ft-Lbs	46 Ft-Lbs			
Plate B2002-2	4.57E18	85	80	97		
HAZ	5.59E18	190	162	184		
Correlation Monitor	4.57E18	NA*≈	104	108		

B. Decrease in Upper Shelf Energy (C_v)

9

. . .

n

زا

ļ. ;

Material	Initial Shelf <u>Ft-lb</u>	Capsule V*** <u>Ft-lb</u>	C _v Ft-lb	% Decrease
B2002-2	117	111	6	5
Weld Metal	118	75	43	36
HAZ	100	98	2 (nil)	2
Correlation Monitor	118	70	48	41

*35 mil + 20°F included in table.

**The upper shelf energy for this capsule was below 77 ft lbs.

*** Average of 3 Charpy measurements at $\approx 100\%$ ductile failure.

TABLE IV-11(Cont'd)

SUMMARY OF CHEMISTRY VALUES FOR INDIAN POINT UNIT NO. 2 MATERIALS

Material

Plate B2002-3

1...

.

1

p.

Weld

Correlation Monitor

Source of Data	<u>Cu W%</u>	<u>Ni W%</u>
WCAP 7328	(.14)*	(.5 7)*
Capsule-Z: C _v Specimen 3-33	.30	.64
Capsule-Z: C _v Specimen 3-38	.27	.59
Capsule-Z: Tensile Specimen 3-5	.23	.58
Capsule-Y: C _v Specimen 3-41	.21	60
Capsule-Y: C _v Specimen 3-45	.22	
Capsule-Y: Tensile Specimen 3-6	(.11)*	
Capsule-Y: Tensile Specimen 3-7	(.10)*	40 te
Capsule-T: C _v Specimen 3-2	.27	-
Capsule-T: C _v Specimen 3-3	.23	
Capsule-T: Tensile Specimen 3-1	(.09)*	ÐD
Average	.25	.60
Capsule-V: C _v Specimen H-16	.08	1.2
Capsule-V: Cy Specimen H-12	.06	1.2
Capsule-Y: C _v Specimen H-21	.15	***
Capsule-Y: C _v Specimen H-23	.20	
Average .	.12	1.2
Capsule-V: C _v Specimen W-13	.23	1.02
Capsule-V: C _v Specimen W-12	.20	1.06
Capsule-V: Tensile Specimen W-3	.20	(.69)*
Capsule-V: C _v Tensile Specimen W-4	(.12)*	1.00
Capsule-Y: C _v Specimen W-17	.19	**
Capsule-Y: C _v Specimen W-19	.22	
Capsule-Y: Tensile Specimen W-5	.18	
Capsule-Y: Tensile Specimen W-6	.20	
Average	.20	1.03
Capsule-V: C _v Specimen R-56	.20	.18
Capsule-V: C _v Specimen R-52	.18	.27
Capsule-Z: C _v Specimen R-33	.35	.28
Capsule-Z: Cy Specimen R-36	.31	.27
Capsule-Z: C _v Specimen R-40	.21	.21
Capsule-Y: C _y Specimen R-60	.17	
Capsule-Y: C _v Specimen R-62	.19	
Capsule-T: C _v Specimen R-2	.25	••
Average	.23	.24

*Values in parentheses discarded because of excessive deviation or were WCAP values. Surveillance specimen WCAP values not used since chemical analyses were available.

APPENDIX E

INDIAN POINT 3 REACTOR VESSEL MATERIALS SURVEILLANCE PROGRAM RESULTS FOR WELD NO. W5214

Report No. 0901132.401, Rev. 0

E-1

Structural Integrity Associates, Inc.

Westinghouse Class 3

CONSOLIDATED EDISON CO. OF NEW YORK INDIAN POINT UNIT NO. 3 REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM

S. E. Yanichko J. A. Davidson

January 1975

APPROVED:

Chirigos

Work Performed Under INT 106

WESTINGHOUSE ELECTRIC CORPORATION Nuclear Energy Systems Division P. O. Box 355 Pittsburgh, Pennsylvania 15230

WCAP-8475

SECTION 3 PREIRRADIATION TESTING

3-1. CHARPY V-NOTCH TESTS

Charpy V-Notch impact tests were performed on the vessel plates at various temperatures from -100 to 210°F to obtain full Charpy V-Notch transition curves (refer to tables 3-1 and 3-2, and to figures 3-1 thru 3-5). Charpy V-Notch impact tests were performed on weld metal and HAZ metal at various temperatures ranging from -150 to 160°F. The results are reported in table 3-3 and in figures 3-6 and 3-7, respectively. The Charpy V-Notch impact data for the correlation monitor material are shown in table 3-4 and figure 3-8.

3-2. ENSILE TESTS

Tensile tests were performed on the shell plates and on weld material at room temperature, 300 and 600° F, respectively. The results are shown in table 3-5 and in figures 3-9 through 3-14.

3-3. DROPWEIGHT NDTT TESTS

Dropweight NDTT tests (ASTM E208) were performed on each plate by the fabricator. The NDTT obtained on each plate follows:

Plate	Temperature
B2802-1	-50° F
B2802-2	-50°F
B2802-3	-40° F
B2803-3	-10° F

TABLE 3-3

PREIRRADIATION CHARPY V-NOTCH IMPACT DATA FOR THE INDIAN POINT UNIT NO. 3 REACTOR PRESSURE VESSEL WELD METAL AND WELD HEAT AFFECTED ZONE MATERIAL

	Weld Metal			Weld Heat-Affected Zone			
Test Temp °F	Energy FT-LBS	Shear %	Lateral Expansion Mils	Test Temp. °F	Energy FT-LBS	Shear %	Lateral Expansion Mils
-150	5.0	5	2	-150	4.0	0	2
-150	2.0	5	2	-150	6.0	5	1
-150	4.5	9	4	-150	14.0		11
-100	29.0	20	22	-125	16.0	9	14
-100	18.0	18	16	-125	7.0	5	8
-100	25.5	23	23	-125	34.0	14	28
-50	35.0	40	34	-100	48.5	20	35
-50	33.0	47	30	-100	59.0	25	40
-50	32.5	40	30	-100	30.0	18	20
-35	78.0	64	66	-50	30.0	29	22
-35	69.5	67	56	-50	62.5	40	44
-35	54.5	40	47	-50	60.0	36	44
-20	87.0	77	69	10	111.0	85	79
-20	82.0	77	63	10	51.5	47	48
-20	89.0	81 .	74	10	83.0	62	62
10	100.0	81	78	60	142.0	100	90
10	105.0	82	81	60	127.0	100	82
10	113.5	100	85	60	121.5	100	91
60	115.0	100	89	160	111.0	100	81
60	119.0	100	84	160	125.0	100	85
60	121.5	100	90	160	143.0	100	88
160 160 160	124.0 125.0 112.0	100 100 100	88 89 90				

8328-10

 \mathcal{V}

TABLE A-1

CHEMICAL COMPOSITION OF THE INDIAN POINT UNIT NO. 3 REACTOR VESSEL MATERIALS

Chemical Composition (wt-%)

	Intermediate Shell Course Plate			Lower Shell	As-Deposited
Element	B2802-1	B2802-2	B2802-3	B2803-3	Weld Metal
С	0.22	0.19	0.20	0.22	0.08
Mn	1,41	1.33	1.32	1.30	1.18
Р	0.010	0.015	.0.011	0.012	0.019
S	0.023	0.019	0.025	0.024	0.016
Si	0.28	0.21	0.26	0.28	0.17
Ni	0.50	0.53	0.49	0.52	1.02
Cr	0.08	0.09	0.08	0.08	0.04
Мо	0.46	0.48	0.50	0.45	0.53
Cu	0.18	0.20	0.19	0.24	0.15
~ A1	0.036	0.027	0.042	0.03	<0.01
V	<0.01	<0.01	<0.01	<0.01	<0.01
Sn	0.014	0.017	0.014	<0.01	0.007
Cb	<0.01	<0.01	<0.01	<0.01	<0.01
Zr	<0.01	<0.01	<0.01	<0.01	<0.01
Ti	<0.01	<0.01	<0.01	< 0.01	<0.01

All other elements (except Fe) were <0.01%.

<u>ن</u>ے

A-2

Westinghouse Non-Proprietary Class 3

WCAP-16251-NP Revision 0 July 2004

Analysis of Capsule X from Entergy's Indian Point Unit 3 Reactor Vessel Radiation Surveillance Program

WESTINGHOUSE NON-PROPRIETARY CLASS 3

WCAP-16251-NP, Revision 0

Analysis of Capsule X from Entergy's Indian Point Unit 3 Reactor Vessel Radiation Surveillance Program

T.J. Laubham J. Conermann S.L. Anderson

July 2004

Approved: . Ghergurd ich, Manager

Reactor Component Design & Analysis

Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355

©2004 Westinghouse Electric Company LLC All Rights Reserved

EXECUTIVE SUMMARY

The purpose of this report is to document the results of the testing of surveillance Capsule X from Indian Point Unit 3. Capsule X was removed at 15.5 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. A fluence evaluation utilizing the recently released neutron transport and dosimetry cross-section libraries was derived from the ENDF/B-VI data-base. Capsule X received a fluence of 0.874 x 10^{19} n/cm² after irradiation to 15.5 EFPY. The peak clad/base metal interface vessel fluence after 15.5 EFPY of plant operation was 5.86 x 10^{18} n/cm².

This evaluation lead to the following conclusions: 1) The measured 30 ft-lb shift in transition temperature values of the lower shell plate B2803-3 contained in capsule X (longitudinal & transverse) are greater than the Regulatory Guide 1.99, Revision 2, predictions. However, the shift values are less than the two sigma allowance by Regulatory Guide 1.99, Revision 2. 2) The measured 30 ft-lb shift in transition temperature value of the weld metal contained in capsule X is less than the Regulatory Guide 1.99, Revision 2, prediction. 3) The measured 30 ft-lb shift in transition temperature value of the intermediate shell plate B2802-2 contained in capsule X (longitudinal) is greater than the Regulatory Guide 1.99, Revision 2, prediction. However, the shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2, prediction. However, the shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2, prediction 2. 4) The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules X contained in the Indian Point Unit 3 surveillance program are in good agreement with the Regulatory Guide 1.99, Revision 2 predictions. 5) All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (27.1 EFPY) as required by 10CFR50, Appendix G^[2]. 6) The Indian Point Unit 3 surveillance data from the lower shell plate B2803-3 was found to be credible. This evaluation can be found in Appendix D.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve fitting program.

1 SUMMARY OF RESULTS

The analysis of the reactor vessel materials contained in surveillance Capsule X, the fourth capsule removed and tested from the Indian Point Unit 3 reactor pressure vessel, led to the following conclusions:

- The Charpy V-notch data presented in WCAP-8475^[3], WCAP-9491^[4], WCAP-10300^[5], and WCAP-11815^[6] were based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all applicable capsule data using CVGRAPH, Version 5.0.2, which is a hyperbolic tangent curve-fitting program. Appendix C presents the CVGRAPH, Version 5.0.2, Charpy V-notch plots and the program input data.
- Capsule X received an average fast neutron fluence (E > 1.0 MeV) of 0.874 x 10¹⁹ n/cm² after 15:5 effective full power years (EFPY) of plant operation.
- Irradiation of the reactor vessel lower shell plate B2803-3 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 191.6°F and an irradiated 50 ft-lb transition temperature of 223.8°F. This results in a 30 ft-lb transition temperature increase of 159.6°F and a 50 ft-lb transition temperature increase of 161.7°F for the longitudinal oriented specimens. See Table 5-9.
- Irradiation of the reactor vessel lower shell plate B2803-3 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 216.5°F and an irradiated 50 ft-lb transition temperature of 327.4°F. This results in a 30 ft-lb transition temperature increase of 158.2°F and a 50 ft-lb transition temperature increase of 217.9°F for the longitudinal oriented specimens. See Table 5-9.
- Irradiation of the weld metal (*heat number W5214*) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 128.5°F and an irradiated 50 ft-lb transition temperature of 196.8°F. This results in a 30 ft-lb transition temperature increase of 193.2°F and a 50 ft-lb transition temperature increase of 242.8°F. See Table 5-9.
- Irradiation of the reactor vessel intermediate shell plate B2802-2 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 98.1°F and an irradiated 50 ft-lb transition temperature of 145.0°F. This results in a 30 ft-lb transition temperature increase of 152.6°F and a 50 ft-lb transition temperature increase of 166.5°F for the longitudinal oriented specimens. See Table 5-9.
- The average upper shelf energy of the lower shell plate B2803-3 (longitudinal orientation) resulted in an average energy decrease of 24 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 81 ft-lb for the longitudinal oriented specimens. See Table 5-9.

- The average upper shelf energy of the lower shell plate B2803-3 (transverse orientation) resulted in an average energy decrease of 16 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 52 ft-lb for the longitudinal oriented specimens. See Table 5-9.
- The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 46 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 74 ft-lb for the weld metal specimens. See Table 5-9.
- The average upper shelf energy of the intermediate shell plate B2802-2 (longitudinal orientation) resulted in an average energy decrease of 20 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 105 ft-lb for the longitudinal oriented specimens. See Table 5-9.
- A comparison, as presented in Table 5-10, of the Indian Point Unit 3 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2^[1] predictions led to the following conclusions:
 - The measured 30 ft-lb shift in transition temperature values of the lower shell plate B2803-3 contained in capsule X (longitudinal & transverse) are greater than the Regulatory Guide 1.99, Revision 2, predictions. However, each shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
 - The measured 30 ft-lb shift in transition temperature value of the weld metal contained in capsule X is less than the Regulatory Guide 1.99, Revision 2, prediction.
 - The measured 30 ft-lb shift in transition temperature values of the intermediate shell plate B2802-2 contained in capsule X (longitudinal) is greater than the Regulatory Guide 1.99, Revision 2, prediction. However, the shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
 - The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules X contained in the Indian Point Unit 3 surveillance program are in good agreement with the Regulatory Guide 1.99, Revision 2 predictions.
 - All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (27.1 EFPY) as required by 10CFR50, Appendix G^[2].

2 INTRODUCTION

This report presents the results of the examination of Capsule X, the fourth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Indian Point Unit 3 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Indian Point Unit 3 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-8475, "Consolidated Edison Co. of New York Indian Point Unit No. 3 Reactor Vessel Radiation Surveillance Program"^[3]. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-62, "Recommended Practice for Surveillance Tests on Structural Materials for Nuclear Reactors." Capsule X was removed from the reactor after 15.5 EFPY of exposure and shipped to the Westinghouse Science and Technology Department Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of and the post-irradiation data obtained from surveillance capsule X removed from the Indian Point Unit 3 reactor vessel and discusses the analysis of the data.

Table 4-1Chemical Composition (wt%) of the Indian Point Unit 3 Reactor Vessel SurveillanceMaterials (Unirradiated) ^(a)									
	Intermediate Shell Plate			Lower Shell Plate					
Element	B2802-1	B2802-2	B2802-3	B2803-3	Weld Metal ^(b)				
С	0.22	0.19	0.20	0.22	0.08				
Mn	1.41	1.33	1.32	1.30	1.18				
Р	0.010	0.015	0.011	0.012	0.019				
S	0.023	0.019	0.025	0.024	0.016				
Si	0.28	0.21	0.26	0.28	0.17				
Ni	0.50	0.53	0.49	0.52	1.02 (1.21) ^(c)				
Cr	0.08	0.09	0.08	0.08	0.04				
Мо	0.46	0.48	0.50	0.45	0.53				
Cu	0.18	0.20	0.19	0.24	0.15 (0.166) ^(c)				
Al	0.036	0.027	0.042	0.03	<0.01				
ν	<0.01	< 0.01	<0.01	<0.01	<0.01				
Sn	0.014	0.017	0.014	<0.01	0.007				
Cb	<0.01	<0.01	<0.01	<0.01	<0.01				
Zr	<0.01	<0.01	<0.01	<0.01	<0.01				
Ti	<0.01	<0.01	<0.01	<0.01	<0.01				

Notes:

(a) Data obtained from WCAP-11815 and duplicated herein for completeness.

(b) Weld wire Heat Number W5214, Flux Type Linde 1092, and Flux Lot Number 3692. Surveillance weldment has the same heat and flux as the nozzle shell longitudinal weld seams 1-042A, B & C.

(c) Results of chemical analysis performed on irradiated Charpy V-notch Specimen W-15 from Capsule Y.

The average upper shelf energy of the intermediate shell plate B2802-2 (longitudinal orientation) resulted in an average energy decrease of 20 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 105 ft-lb for the longitudinal oriented specimens. See Table 5-9.

A comparison, as presented in Table 5-10, of the Indian Point Unit 3 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2^[1] predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the lower shell plate B2803-3 contained in capsule X (longitudinal & transverse) are greater than the Regulatory Guide 1.99, Revision 2, predictions. However, each shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
- The measured 30 ft-lb shift in transition temperature value of the weld metal contained in capsule X is less than the Regulatory Guide 1.99, Revision 2, predictions
- The measured 30 ft-lb shift in transition temperature values of the intermediate shell plate B2802-2 contained in capsule X (longitudinal) is greater than the Regulatory Guide 1.99, Revision 2, prediction. However, the shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
- The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules X contained in the Indian Point Unit 3 surveillance program are in good agreement with the Regulatory Guide 1.99, Revision 2 predictions.

All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the extended life of the vessel (27.1 EFPY) as required by 10CFR50, Appendix G^[2].

The fracture appearance of each irradiated Charpy specimen from the various surveillance Capsule X materials is shown in Figures 5-13 through 5-16 and shows an increasingly ductile or tougher appearance with increasing test temperature.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix B.

The Charpy V-notch data presented in WCAP-8475^[3], WCAP-9491^[4], WCAP-10300^[5], and WCAP-11815^[6] were based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all applicable capsule data using CVGRAPH, Version 5.0.2, which is a hyperbolic tangent curve-fitting program. This report also shows the composite plots that show the results from the previous capsule. Appendix C presents the CVGRAPH, Version 5.02, Charpy V-notch plots and the program input data.
Table 5-3	Table 5-3Charpy V-notch Data for the Indian Point Unit 3 Surveillance Weld MetalIrradiated to a Fluence of 0.874 x 1019 n/cm2 (E> 1.0 MeV)								
Sample	Тетре	erature	Impact	Impact Energy		Lateral Expansion			
Number	۰ F	°C	ft-lbs	Joules	mils	mm	%		
W42	75	24	. 9	12	5	0.13	20		
W41	125	52	49	66	36	0.91	50		
W43	125	52	24	33	19	0.48	40		
W48	150	66	35	47	26	0.66	45		
W47	200	93	37	50	30	0.76	70		
W44	250	121	67	91	52	1.32	95		
W45	300	149	72	98	56	1.42	98		
W46	350	177	75	102	57	1.45	100		

۱

0

.

Table 5-7	′ Instrun 10 ¹⁹ n/c	nented Cha cm ² (E>1.0	arpý Impa MeV)	ct Test Res	sults for th	e Indian F	Point Unit 3	8 Surveilla	nce Weld 1	Metal Irra	diated to a	a Fluence o	f 0.874 x
	Charpy EnergyNormalized Energies (ft-lb/in²)YieldTime to Yield	Time to Vield	Time to Viold Max	Time to	Fast		Viold	Flow					
Sample No.	Temp. (°F)	E _D (ft-lb)	Charpy E _D /A	Max. E _M /A	Ргор. Е _р /А	P _{GY} (lb)	t _{GV} (msec)	Load P _M (lb)	t _M (msec)	Load P _F (lb)	Load P _A (lb)	Stress σ _Y (ksi)	Stress (ksi)
W42	75	9	73	36	36	3426	0.14	3696	0.16	3687	0	114	119
W41	125	49	395	226	.169	3411	0.15	4363	0.52	4288	617	114	129
W43	125	24	193	68	126	3341	0.14	4109	0.22	4058	1313	111	124
W48	150	35	282	.184	98	3416	0.14	4449	0.42	4417	1141	114	131
W47	200	37	298	150	148	3371	0.14	4260	0.37	4222	1713	112	127
W44	250	67	540	227 ·	. 313	3486	0.14	4432	0.50	4251	2819	116	132
W45	300	72	580	218	362	3329	0.14	4303	0.50	3029	2501	111	127
W46	350	75	604	· 221	383	3285	0.14	4309	0.51	n/a	n/a	109	126

Testing of Specimens from Capsule X

Table 5-10Comparison of the Indian Point Unit 3 Surveillance Material 30 ft-lb TransitionTemperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99,Revision 2, Predictions							
			30 ft-lb T Tempera	Transition ture Shift	Upper Shelf Energy Decrease		
Materia]	Capsule	Fluence ^(d) (x 10 ¹⁹ n/cm ² , E > 1.0 MeV)	Predicted (°F) ^(a)	Measured (°F) ^(b)	Predicted (%) ^(a)	Measured (%) ^(c)	
Lower Shell Plate	Т	0.263	101.9	139.4	24	12	
B2803-3	Z	1.04	161.6	167.8	33.5	22	
(Longitudinal)	X	0.874	153.9	159.6	32	23	
Lower Shell Plate	Т	0.263	101.9	105.9	24	16	
B2803-3	Y	0.692	143.5	148.9	30	25	
	Z	1.04	161.6	157.9	33.5	18	
(Transverse)	Х	0.874	153.9	158.2	32	24	
Surveillance	T	0.263	131.3	151.6	22	30	
Program	Y	0.692	185.0	172.0	27	43	
Weld Metal	Z	1.04	208.3	229.2	31	37	
	x	0.874	198.4	193.2	29	38	
Intermediate Shell Plate B2802-2 (Longitudinal)	Х	0.874	146.2	152.6	30	16	

Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 5.0.2 (See Appendix C)

(c) Values are based on the definition of upper shelf energy given in ASTM E185-82.

(d) The fluence values presented here are the calculated values, not the best estimate values.

Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Indian Point Unit 3 Reactor Vessel Weld Metal

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Indian Point Unit 3 Reactor Vessel Weld Metal

Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Indian Point Unit 3 Reactor Vessel Weld Metal

APPENDIX C

CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD

٩

Temperature	Input CVN	Computed CVN	Differential
-150.00	5.00	3.16	1.84
-150.00	2.00	3.16	- 1.16
-150.00	4.50	3.16	1.34
-100.00	29.00	9.80	19.20
-100.00	18.00	9.80	8.20
-100.00	25,50	9.80	15.70
- 50.00	35.00	45.35	-10.35
- 50.00	33.00	45.35	- 12, 35
- 50.00	32,50	45.35	- 12.85

UNIRRADIATED (WELD)

Page 2 Plant: Indian Point 3 Material: SAW Heat: W5214 Orientation: NA Capsule: UNIRR Fluence: n/cm^2

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential	
- 35.00	78. ŎŎ	63.74	14.26	
- 35.00	69.50	63.74	5.76	
- 3.5.00	54.50	63.74	- 9, 24	
- 20.00	87.00	81.63	5.37	
-20.00	82.00	81.63	. 37	
-20.00	89.00	81.63	7.37	
10.00	100.00	106.00	- 6.00	
10.00	105.00	106.00	- 1.00	
10.00	113.50	106.00	7.50	
60.00	115.00	118.14	- 3.14	
60.00	119.00	118.14	. 86	
60.00	121.50	118.14	3.36	
160.00	124.00	119.97	4.03	
160.00	125.00	119.97	5.03	
160.00	112.00	119.97	- 7.97	

CAPSULE T (WELD)

Temperature	Input CVN	Computed CVN	Differential
. 00	13.00	7.56	5.44
70.00	17.50	23.39	- 5.89
110.00	48.00	40.40	7.60
150.00	55.50	58.40	-2.90
150.00	53.00	58.40	- 5.40
165.00	66.00	64.04	1.96
210.00	78.00	75.58	2.42
300.00	90.50	82.83	7.67

Correlation Coefficient = .979

C-51

Temperature	Input CVN	Computed CVN	Differential
25.00	20.00	9.08	10.92
72.00	19.50	18,62	. 88
125.00	31.00	36.51	- 5. 51
125.00	29.50	36.51	- 7.01
150.00	49.00	45.47	3.53
200.00	67.50	58.84	8.66
300.00	69.50	67.72	1.78
400.00	68.50	68.86	36

CAPSULE Z (WELD)

Temperature in Deg F

Temperature	Input CVN		Computed CVN	Differential
1.00.00	10.00		12.45	- 2.45
150.00	21.00		25.10	- 4.10
150.00	44.00		25.10	18.90
175.00	26.00		33.85	-7.85
200.00	33.00		(43.26	- 10.26
225.00	57.00	<i>′</i> .	52,15	4.85
300.00	75.00		69.14	5.86
400.00	77.00		75.04	1.96

CAPSULE X (WELD) CVGRAPH 5.0.2 Hyperbolic Tangent Curve Printed on 04/02/2004 02:36 PM Page 1 Coefficients of Curve 5 A = 38.1 B = 35.9 C = 118.98 T0 = 155.76 D = 0.00E+00Equation is A + B * [Tanh((T-To)/(C+DT))]Upper Shelf Energy=74.0(Fixed) Lower Shelf Energy=2.2(Fixed) Temp@30 ft-lbs=128.5 Deg F Temp@50 ft-lbs=196.8 Deg F Plant: Indian Point 3 Material: SAW Heat: W5214 Orientation: NA Capsule: X Fluence: n/cm^2 300 250 CVN Energy Foot-Ibs 200 150 100 ♥_ 50 0 100 -300 -200 -100 200 300 400 0 500 600

Temperature in Deg F

Temperature	Input CVN		Computed CVN	Differential
75.00	9.00	*	16.89	- 7.89
125.00	49.00		29.02	19.98
125.00	24.00		29.02	- 5.02
150.00	35.00		36.36	-1.36
200.00	37.00		50.87	- 13.87
250.00	67.00		61.78	5.22
300.00	72.00		68.16	3.84
350.00	75.00	ġ	, 71, 36	3.64

APPENDIX F

H. B. ROBINSON 2 REACTOR VESSEL MATERIALS SURVEILLANCE **PROGRAM RESULTS FOR WELD NO. W5214**

Report No. 0901132.401, Rev. 0

{

F-1

Structural Integrity Associates, Inc.

CAROLINA POWER AND LIGHT CO. H. B. ROBINSON UNIT NO. 2 REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM

WCAP - 7373

coprietary C :

By ·

S. E. Yanichko

January 1970

Work Performed Under CPL-106 Approved: _____

E. Landerman

Westinghouse Electric Corporation Nuclear Energy Systems Box 355 Pittsburgh, Pennsylvania 15230

WEAP 7373

TABLE 4

PRE-IRRADIATION CHARPY V-NOTCH IMPACT DATA FOR THE CPL H. B. ROBINSON UNIT NO. 2 REACTOR PRESSURE VESSEL WELD METAL AND WELD HEAT AFFECTED ZONE METAL

	Weld	Metal	1		Į	leat Aff	ected Zor	<u>ie</u>	
Specimen <u>No.</u>	Test Temp (°F)	Energy (ft-1b)	Shear (%)	Lateral Expansion (mils)	Specimen No.	Test Temp (°F)	Energy (ft-1b)) Shear <u>(%)</u>	Lateral Expansion (mils)
W25	-150	19.0	29	16	1128	-150	11.0	10	12
W26	-150	10.0	23	. 9 .	1129	-150	31.0	18	29
W27	-150	30.0	29	25	1130	-150	34.0	18	30
W34	-150	3.0	9	2			· ·		(·.
W35	-150	34.5	26	28	H25	-100	39.5	29	30
W36	-150	. 2.0	9	, 2	1126	-100	42.0	37	34
			•		H27	-100	41.0	34	30
W28	-100	38.0	['] 30	34	•			-	
W29	-100	29.0	23	19	831	- 50	42.5	34	35
W30	-100	25.0	20.	22	1.32	- 50	60.0	45	50
					1133	- 50	37.5	32	30
W31	- 50	21.0	25	20			•		
· W32	- 50	54.5	36	49	Н34.	- 20	75.0	42	61
W33	- 50	36.5	30	31	H35	20	86.0	61	62
					H36	- 20	45.0	34	37
W37	10	73.5	64	62			•		
W38	- 10	68.0	61	58	H37	10	83.0	81	6,7
W39	10	65.5	59	57	H38	10	119.0	90	81
					H39	10	94.0	77	70
W40	60	97.0	90	80			, ·	•	
W41	60	99.0	91	80	H40	60	116.0	100	88
W4 2	60	116.0	94	88	H41	60	111.5	100	87
				:	H42	60	110.0	9 5 [']	87 .
W43	110	97.0	95	74					
W44	110	104.0	100	85	H43	110	117.0	100	93
W45	100	107.5	98	89	H44	110	140.0	100	83
а. А.		~			H45	110	119.0	100 i	86
W46	210	112.0	100	90			•	4 *	1
W4 7	210	111.0	100	91	H46	210	130.0	100	89
W48	210	115:0 ~	100	83	H47	210	134.0	100	86
				•	H48	210	123.0	100	84

18

Figure 10. Pre-Irradiation Charpy V-Notch Impact Energy for the CPL H.B. Robinson Unit #2 Reactor Pressure Vessel Weld Metal

WESTINGHOUSE NON-PROPRIETARY CLASS 3

WCAP-15805

Analysis of Capsule X from the Carolina Power & Light Company H.B. Robinson Unit 2 Reactor Vessel Radiation Surveillance Program

T. J. Laubham E. P. Lippincott J. Conermann

MARCH 2002

Prepared by the Westinghouse Electric Company for the Carolina Power & Light Company

Approved:

C. H. Boyd, Manager Equipment & Materials Technology

Westinghouse Electric Company LLC Nuclear Services Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

© 2002 Westinghouse Electric Company LLC All Rights Reserved

Analysis of H.B. Robinson Unit 2 Capsule X

EXECUTIVE SUMMARY

The purpose of this report is to document the results of the testing of surveillance capsule X from H.B. Robinson Unit 2. Capsule X was removed at 20.39 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens was performed, along with a fluence evaluation based methodology and nuclear data including recently released neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI database. The calculated peak clad base/metal vessel fluence after 20.39 EFPY of plant operation was 2.76×10^{19} n/cm² and the surveillance Capsule X calculated fluence was 4.49×10^{19} n/cm². A brief summary of the Charpy V-notch testing results can be found in Section 1 and the updated capsule removal schedule can be found in Section 7. A supplement to this report is a credibility evaluation, which can be found in Appendix D, that shows the H.B. Robinson Unit 2 surveillance weld data, while including all surveillance data for weld heat W5214, is credible. Of the three surveillance plates, only intermediate shell plate W10201-5 was found to be credible.

1 SUMMARY OF RESULTS

The analysis of the reactor vessel materials contained in surveillance capsule X the fourth capsule to be removed from the H.B. Robinson Unit 2 reactor pressure vessel, led to the following conclusions: (General Note: Temperatures are reported to two significant digits only to match CVGraph output.)

- The capsule received an average fast neutron calculated fluence (E > 1.0 MeV) of 4.49 x 10^{19} n/cm² after 20.39 effective full power years (EFPY) of plant operation.
- Irradiation of the reactor vessel intermediate shell plate W10201-4 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation), to 4.49 x 10¹⁹ n/cm² (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 104.73°F and a 50 ft-lb transition temperature increase of 98.68°F. This results in an irradiated 30 ft-lb transition temperature of 86.55°F and an irradiated 50 ft-lb transition temperature of 116.04°F for the longitudinally oriented specimens
- Irradiation of the weld metal Charpy specimens to $4.49 \times 10^{19} \text{ n/cm}^2$ (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 265.93°F and a 50 ft-lb transition temperature increase of 251.74°F. This results in an irradiated 30 ft-lb transition temperature of 179.64°F and an irradiated 50 ft-lb transition temperature of 211.38°F.
- Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 4.49 x 10¹⁹ n/cm² (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 210.13°F and a 50 ft-lb transition temperature increase of 216.59°F. This results in an irradiated 30 ft-lb transition temperature of 100.47°F and an irradiated 50 ft-lb transition temperature of 150.54°F.
- Irradiation of the correlation monitor material Charpy specimens to 4.49 x 10¹⁹ n/cm² (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 125.21°F which resulted in an irradiated 30 ft-lb transition temperature of 188.15°F. The tested specimens did not reach the 50 ft-lb transition temperature.
- The average upper shelf energy of the intermediate shell plate W10201-4 (longitudinal orientation) resulted in an average energy decrease of 1 ft-lb after irradiation to 4.49 x 10¹⁹ n/cm² (E> 1.0 MeV). This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinally oriented specimens.
- The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 33 ft-lb after irradiation to 4.49 x 10¹⁹ n/cm² (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 80 ft-lb for the weld metal specimens.
- The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 24 ft-lb after irradiation to $4.49 \times 10^{19} \text{ n/cm}^2$ (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 105 ft-lb for the weld HAZ metal.

Table 4-1	Chemical Compo Unit 2 Reactor Ve	sition (wt %) and essel Surveillance	Heat Treatment of Material ^(a)	Material for the	e H.B. Robinson				
	Chemical Composition								
Element	Plate W10201-4	Plate W10201-5	Plate W10201-6	Weld Metal	Correlation Monitor Material				
С	0.19	0.20	0.19	0.16	0.24				
Mn	1.35	1.29	1.32	0.98	1.34				
Р	0007	0.010	0.010	0.021	0.011				
S	0.019	0.021	0.015	0.014	0.023				
Si	0.23	0.22	0,19	0.34	0.23				
Mo	0.48	0.46	0.49	0.46	. 0.51				
Cu	0.12	0.10	0.09	0.34	0.20				
v		•••		0.001					
Ni		• • •		0.66	0.18				
Cr		•••	•	0.024	0.11				
Co				•••					
		Heat	Treatment						
Plate W1020)1-4,	1550°F to 1	600°F, 4 hours, Water	r Quench					
Plate W1020)1-5, &	1200°F to 1	250°F, 4 hours, Air C	ooled					
Plate W1020)1-6	1125°F to 1	175°F, 15 1/2 hours, 1	Furnace cooled to (500°F				
Weld Metal		1125°F to 1	175°F, 30 hours, Furn	ace cooled to 600°	F				
Correlation	Monitor	1650°F, 4 h	ours, Water Quenched	l 1200°F – 6 hours	, Air Cooled				

.

Notes:

a) The data given in this column (originally) is from WCAP-7373 & WCAP-10304.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS

The results of the Charpy V-notch impact tests performed on the various materials contained in capsule X, which received a fluence of 4.49×10^{19} n/cm² (E > 1.0 MeV) in 20.39 EFPY of operation, are presented in Tables 5-1 through 5-8, and are compared with unirradiated results as shown in Figures 5-1 through 5-12.

The transition temperature increases and upper shelf energy decreases for the capsule X materials are summarized in Table 5-9. These results led to the following conclusions:

Irradiation of the reactor vessel intermediate shell plate W10201-4 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction of the plate (longitudinal orientation), to $4.49 \times 10^{19} \text{ n/cm}^2$ (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 104.73°F and a 50 ft-lb transition temperature increase of 98.68°F. This results in an irradiated 30 ft-lb transition temperature of 86.55°F and an irradiated 50 ft-lb transition temperature of 116.04°F for the longitudinally oriented specimens

Irradiation of the weld metal Charpy specimens to $4.49 \times 10^{19} \text{ n/cm}^2$ (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 265.93°F and a 50 ft-lb transition temperature increase of 251.74°F. This results in an irradiated 30 ft-lb transition temperature of 179.64°F and an irradiated 50 ft-lb transition temperature of 211.38°F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to $4.49 \ge 10^{19} \text{ n/cm}^2$ (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 210.13°F and a 50 ft-lb transition temperature increase of 216.59°F. This results in an irradiated 30 ft-lb transition temperature of 100.47°F and an irradiated 50 ft-lb transition temperature of 150.54°F.

Irradiation of the correlation monitor material Charpy specimens to $4.49 \times 10^{19} \text{ n/cm}^2$ (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 125.21°F which resulted in an irradiated 30 ft-lb transition temperature of 188.15°F. The tested specimens did not reach the 50 ft-lb transition temperature.

The average upper shelf energy of the intermediate shell plate W10201-4 (longitudinal orientation) resulted in an average energy decrease of 1 ft-lb after irradiation to 4.49×10^{19} n/cm² (E> 1.0 MeV). This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinally oriented specimens.

The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 33 ft-lb after irradiation to $4.49 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 80 ft-lb for the weld metal specimens.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 24 ft-lb after irradiation to $4.49 \times 10^{19} \text{ n/cm}^2$ (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 105 ft-lb for the weld HAZ metal.

The average upper shelf energy of the correlation monitor material Charpy specimens resulted in no energy decrease after irradiation to $4.49 \times 10^{19} \text{ n/cm}^2$ (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 42 ft-lb for the correlation monitor material.

A comparison of the H.B. Robinson Unit 2 reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2^[1], predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the intermediate shell plate W10201-4 contained in capsule X (longitudinal) is greater than the Regulatory Guide 1.99, Revision 2, predictions. However, the shift value is less than two sigma allowance by Regulatory Guide 1.99, Revision 2.
- The measured 30 ft-lb shift in transition temperature values of the weld metal contained in capsule X (longitudinal) is less than the Regulatory Guide 1.99, Revision 2, predictions.
- The measured percent decrease in upper shelf energy of the Capsule X surveillance material is less than the Regulatory Guide 1.99, Revision 2, predictions.

The fracture appearance of each irradiated Charpy specimen from the various surveillance capsule X materials is shown in Figures 5-13 through 5-16 and show an increasingly ductile or tougher appearance with increasing test temperature.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in this report is based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a hyperbolic tangent curve-fitting program. Hence, Appendix C contains a comparison of the Charpy V-notch shift results for each surveillance material (hand-fitting versus hyperbolic tangent curve-fitting). Additionally, Appendix B presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

Table 5-2	Charpy V-n to a Fluence	otch Data for e of 4.49 x 10 ²	r the H.B. Ro ¹⁹ n/cm ² (E>	binson Unit 2 1.0 MeV)	Surveillance	Weld Metal	Irradiated
Sample	Temperature		Ітрас	t Energy	Lateral	Shear	
Number	F	С	ft-lbs	Joules	mils	mm	%
W3	0	-18	4	5	0	0.00	0
W2	100	38	14	19	4	0.10	15
W6	175	79	28	38	16	0.41	35
W4	200	93	38	52	22	0.56	40
W8	250	121	74	100	49	1.24	100
W7	350	177	78	106	51	1.30	100
W5	375	191	85	115	56	1.42	100
· W1	425	218	82	111	54	1.37	100

Table 5-10Comparison of the H.B. Robinson Unit 2 Surveillance Material 30 ft-lb TransitionTemperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99,Revision 2, Predictions						
		,	30 ft-lb Transition Temperature Shift		Upper Shelf Energy Decrease	
Material	Capsule	Fluence (x 10 ¹⁹ n/cm ²)	Predicted (°F) ⁽ⁿ⁾	Measured (°F) ^(b)	Predicted (%) ^(a)	Measured (%) ^(c)
Inter. Shell Plate	S	0.479	45.39	32.51	18	10
W10201-4 (Longitudinal)	x	4.49	78.86	104.73	. 30	1
Surveillance	v	0.530	179.17	209.32	39	38
Program	Т	3.87	293.68	288.15	52	46
Weld Metal	X	4.49	300.64	265.93	54	29
Heat Affected Zone	v	0.530		59.21		26
Material	Т	3.87		(d)		24
	X	4.49	••	210.13		19
Correlation Monitor	S	0.479	* *	72.79		3
Material	v	0.530	••	69.39		5
	Т	3.87	• -	156.83		5
	х	4.49		125.21		0

Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix B)

(c) Values are based on the definition of upper shelf energy given in ASTM E185-82.

 \cap

(d) Only 2 specimens were tested from capsule T to confirm the upper shelf energy, thus, there is insufficient data to determine the measured 30 ft-lb shift.

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for H.B. Robinson Unit 2 Reactor Vessel Surveillance Weld Metal

7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE

The following surveillance capsule removal schedule meets the intent of ASTM E185-82 and is recommended for future capsules to be removed from the H.B. Robinson Unit 2 reactor vessel. This recommended removal schedule is applicable to 29 EFPY of operation.

	TABLE 7-1				
H.I	3. Robinson Uni	it 2 Reactor Vessel S	Surveillance Capsule W	/ithdrawal Schedule	
Capsule	Location	Lead Factor ⁽ⁿ⁾	Removal Time (EFPY) ^(b)	Fluence (n/cm ² , E > 1.0 MeV) ⁽ⁿ⁾	
S	280°	1.90	1.28	4.79×10^{18} (c)	
V	290°	0.91	3.18	5.30×10^{18} (c)	
Т	270°	2.80	7.27	3.87×10^{19} (c)	
х	50°	1.63	20.39	4.49 x 10 ¹⁹ (c)	
U ^(s)	30°	1.41 (2.02)	29.8	6.00 x 10 ¹⁹ (d)	
Y	150°	0.92 (1.04)	Standby	(e)	
W	40°	0.59 (0.61)	Standby	(e)	
Z ^(g)	230°	0.59 (0.61)	Standby	(e)	

<u>Notes:</u>

(a) Updated in Capsule X dosimetry analysis. Lead Factor in Parentheses are for Future Cycles.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

 (d) Capsule U will reach a fluence of approximately 6.00 x 10¹⁹ (50 EFPY Peak Fluence) at approximately 29.8 EFPY. Thus, it should be pulled at the closest outage to 29.8 EFPY.

(e) If further material data is desired, then it is recommended that these capsules be moved to a higher lead factor location and then removed once their accumulated neutron fluence equals the license renewal (50 EFPY) fluence on the vessel inner surface.

(f) Moved to Capsule "S" Location (280°) at Cycle 8.

(g) Capsule Z was inadvertently removed from the H.B. Robinson 2 Reactor Vessel. At this time it is unconfirmed that Capsule Z was re-installed into the vessel or placed in the spent fuel pool.

Table 4-1Chemical Composition (wt %) and Heat Treatment of Material for the H.B. RobinsonUnit 2 Reactor Vessel Surveillance Material ^(a)					
		Chemica	al Composition		
Element	Plate W10201-4	Plate W10201-5	Plate W10201-6	Weld Metal	Correlation Monitor Material
С	0.19	0.20	0.19	0.16	0.24
Mn	1.35	1.29	1.32	0.98	1.34
P	0007	0.010	0.010	0.021	0.011
S	0.019	0.021	0.015	0.014	0.023
Si	0.23	0.22	0.19	0.34	0.23
Мо	0.48	0.46	0.49	0.46	0.51
Cu	0.12	0.10	0.09	0.34	0.20
v				0.001	••••
Ni				0.66	0.18
Cr				0.024	0.11
Co				• • •	
		Heat	Treatment)	×
Plate W1020	01-4,	1550°F to 1	600°F, 4 hours, Wate	r Quench	
Plate W1020	Plate W10201-5, & 1200°F to 1250°F, 4 hours, Air Cooled				
Plate W1020	ate W10201-6 1125°F to 1175°F, 15 1/2 hours, Furnace cooled to 600°F				
Weld Metal	(1125°F to 1	175°F, 30 hours, Furr	nace cooled to 600°	°F
Correlation	Monitor	1650°F, 4 h	ours, Water Quenched	1 1200°F – 6 hours	, Air Cooled

Notes:

a) The data given in this column (originally) is from WCAP-7373 & WCAP-10304.

Table 5-2Charpy V-notch Data for the H.B. Robinson Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 4.49 x 1019 n/cm2 (E> 1.0 MeV)							
Sample	Tempe	erature	Impact Energy		Lateral Expansion		Shear
Number	F	, C	ft-lbs	Joules	mils	mm	%
W3	0 .	-18	4	5	0	0.00	0
W2	100	38	14	19	4	0.10	15
W6	175	79	28	38	16	0.41	35
W4	200	93	38	52	22	0.56	40
W8	250	121	74	100	49	1.24	100
W7	350	177	78	106	51	1.30	100
W5	375	191	85	115	56	1.42	100
WI	425	218	82	111	54	1.37	100

Table 5-10Comparison of the H.B. Robinson Unit 2 Surveillance Material 30 ft-lb TransitionTemperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions							
			30 ft-lb T Tempera	30 ft-lb Transition Temperature Shift		Upper Shelf Energy Decrease	
Material	Capsule	Fluence (x 10 ¹⁹ n/cm ²)	Predicted (°F) ^(a)	Measured (°F) ^(b)	Predicted (%) ^(a)	Measured (%) ^(c)	
Inter. Shell Plate	S	0.479	45.39	32.51	18	10	
W10201-4 (Longitudinal)	X	4.49	78.86	104.73	30	1	
Surveillance	V	0.530	179.17	209.32	39	38	
Program	Т	3.87	293.68	288.15	52	46	
Weld Metal	x	n 4.49	300.64	265.93	54	29	
Heat Affected Zone	V	0.530	••	59.21		26	
Material	Т	3.87		(d)		24	
	x	4.49	* *	210.13		19	
Correlation Monitor	S	0.479		72.79		3	
Material	v	0.530	• •	69.39		5	
	T	3.87	* =	156.83		5	
	Х	4.49	÷	125.21		0	

Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix B)

(c) Values are based on the definition of upper shelf energy given in ASTM E185-82.

(d) Only 2 specimens were tested from capsule T to confirm the upper shelf energy, thus, there is insufficient data to determine the measured 30 ft-lb shift.

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for H.B. Robinson Unit 2 Reactor Vessel Surveillance Weld Metal

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for H.B. Robinson Unit 2 Reactor Vessel Surveillance Weld Metal

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
-150.00	30.00	13.60	16.40
-150.00	2.00	13.60	-11.60
-150.00	3.00	13.60	-10.60
-150.00	10.00	13.60	-3.60
-150.00	19.00	13.60	5.40
-150.00	34.50	`13.60	20.90
-100.00	29.00	25.60	3.40

Plant: H B Robinson 2 Orientation: TL

Input CVN

38.00

54.50

21.00

36.50

73.50

65.50

68.00

97.00

99.00

116.00

107.50

104.00

112.00

111.00

115.00

97.00

25.00

Page 2 Material: SAW Capsule: Unirr.

Heat: W5214 (S) Fluence: 0.

Charpy V-Notch Data

Temperature -100.00 -100.00 ~50.00 ~50.00 ~50.00 10.00 10.00 10.00 60.00 60.00 60.00 100.00 110.00 110.00 210.00 210.00 210.00

Computed CVN	Differential
25.60	12.40
25.60	·60
45.01	9.49
45.01	-24.01
45.01	-8.51
73.50	. 0.0
73.50	-8.00
73.50	-5.50
93.24	3.76
93.24	22.76
93.24	5.76
103.67	3.83
` 105.58	-1.58
105.58	-8.58
-115.00	-3.00
115.00	-4.00
115.00	0.0

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
175.00	14.00	12.06	1.94
200.00	23.50	20.23	3.27
200.00	17.00	20.23	-3.23
225.00	64.00	31.17	32.83
250.00	38.50	42.22	-3.72
275.00	51.50	50.65	.85
300.00	60.50	55.79	4.71
,			

Temperature	Input CVN	Computed CVN	Differential
30.00	23.50	13.31	10.19
75.00	23.50	20.36	3.14
110.00	. 30.00	27.40	2.60
160.00	14.00	38.58	-24.58
180.00	44.00	42.92	1.08
210.00	58.50	48.81	9.69
300.00	72.50	60.29	12.21
H B Robinson Weld Data

Page 2 Plant: H B Robinson 2 Material: SAW Heat: W5214 (S) Orientation: TL Capsule: V Fluence: 6.01E+18

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
400.00	68.50	64.86	3.64

APPENDIX G

CVGRAPH TANH CURVE-FITS FOR W5214 SURVEILLANCE WELD DATA

(from Reference 32)

Report No. 0901132.401, Rev. 0

G-1

Structural Integrity Associates, Inc.

Plant	Capsule	Α	В	С	TO	Т30
Palisades	Unirradiated	53.14	50.94	100.7	-10.76	-60.1
Palisades	SA-60-1	28.35	26.15	158.11	188.85	198.9
Palisades	SA-240-1	27.35	25.15	111.62	208.13	220
H. B. Robinson 2	Unirradiated	56.05	53.85	107.57	-29.1	-85.8
H. B. Robinson 2	Т	31.35	29.15	9.09	203.64	203.3
H. B. Robinson 2	V	36.35	34.15	150.19	151.23	123
H. B. Robinson 2	X	40.97	38.78	59.96	197.18	179.8
Indian Point 2	Unirradiated	59.32	57.12	86.23	-16.54	-65.4
Indian Point 2	V	39.1	36.9	123.56	163.14	132.1
Indian Point 2	Y	34.35	32.15	91.6	140.88	128.5
Indian Point 3	Unirradiated	60.38	58.19	45.25	-37.64	-63.8
Indian Point 3	Т	46.35	44.15	98.27	124.16	86
Indian Point 3	Y	35.6	33.4	90.16	122.54	107.3
Indian Point 3	Z	39.1	36.9	97.52	188.96	164.5
Indian Point 3	X	38.6	36.4	121.83	157.96	128.7

 Table G-1. Fitted Results for CVGRAPH Hyperbolic Tangent Curve-Fits [32]

G-2

Temperature	Input CVN	Computed CVN	Differential
- 110.00	11.80	14.66	- 2.86
- 110.00	11.80	14.66	- 2.86
- 80.00	33.90	22.76	11.14
- 80.00	20.60	22.76	- 2.16
- 80.00	29.50	22.76	6.74
-40.00	47.90	38.75	9.15
-40.00	43.50	38.75	4.75
-40.00	29.50	38.75	- 9.25
-40.00	. 41.29	38.75	2.54

Palisades Unirradiated Capsule Report

Page 2 Material: SAW Plant: PALISADES Heat: W5214 Capsule: Unirra Fluence: Unirradiat n/cm^2 Orientation: NA

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
. 00	64.19	58.56	5.63
×.00	39.09	58.56	- 19.47
20.00	62.70	68.24	- 5.54
20.00	60.50	68.24	- 7. 74
30.00	78.19	72.70	5.49
40.00	61.20	76.85	- 15.65
60.00	87.00	84.02	2.98
60.00	75.19	84.02	- 8.83
60.00	111.40	84.02	27.38
110.00	110.59	95.60	14.99
110.00	98.80	95.60	3.20
210.00	110.59	102.83	7.76
210.00	95.90	102.83	- 6.93
300.00	97.40	103.87	- 6.47
300.00	94.40	103.87	- 9.47

Temperature	Input CVN		Computed CVN	Differential
74.00	10.00		12.11	- 2.11
129.00	24.00	t	18.90	5.10
154.00	23.50		22.68	. 82
204.00	30.00		30.85	85
229.00	33.50		34.85	- 1.35
254.00	28.00		38.55	- 10.55
279.00	43.50		41.83	1.67
279.00	48.50		41.83	6.67
329.00	47.50		46.91	. 59

Palisades SA-60-1 Capsule Report

Page 2

Plant: PALISADES Material: SAW Heat: W5214 Orientation: NA Capsule: SA-60- Fluence: 1.5E19 n/cm^2

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
404.00	51.50	51.27	. 23
454.00	55.00	52.73	. 2. 27
479.00	57.00	53.20	3.80

Palisades SA-240-1 Capsule Report

Temperature	Input CVN	Computed CVN	Differential
70.00	14.00	6.10	7.90
125.00	15.50	11.45	4.05
175.00	24.50	20.10	4.40
200.00	13.00	25.52	-12.52
200.00	26.50	25.52	. 98
225.00	25.00	31.12	- 6.12
250.00	40.00	36.36	3.64
300.00	54.50	44.37	10.13
350.00	49.00	48.83	. 17

Palisades SA-240-1 Capsule Report

Page 2 Plant: PALISADES Material: SAW Heat: W5214 itation: NA Capsule: SA-240 Fluence: 2.38E19 n/cm^2 Orientation: NA

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
400.00	50.50	50.93	4.3
450.00	52.50	51.85	. 65
500.00	54.50	52.23	2.27

H. B. Robinson 2 Unirradiated Capsule Report

Temperature	Input CVN	Computed CVN	Differential
- 150.00	19.00	12.49	6.51
- 150.00	10.00	12.49	- 2.49
- 150.00	30.00	12.49	17.51
- 150.00	34.50	12.49	22.01
- 150.00	.3.00	12.49	- 9.49
- 150.00	2.00	12.49	-10.49
-100.00	25.00	24.94	. 06
- 100.00	38.00	24.94	13.06
-100.00	29.00	24.94	4.06

H. B. Robinson 2 Unirradiated Capsule Report

Page 2 Plant: H B Robinson 2 Material: SAW Heat: W5214 Capsule: Unirra Fluence: Orientation: NA n/cm^2

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
- 50.00	36.50	45.72	- 9.22
- 50.00	21.00	45.72	- 24.72
- 50.00	54.50	45.72	8.78
10.00	65.50	74.80	- 9.30
10.00	73.50	74.80	- 1.30
10.00	68.00	74.80	- 6.80
60.00	97.00	92.64	4.36
60.00	99.00	92.64	6.36
60.00	116.00	92.64	23.36
100.00	107.50	100.94	6.56
110.00	97.00	102.36	- 5.36
110.00	104.00	102.36	1.64
210.00	115.00	108.65	6.35
210.00	111.00	108.65	2.35
210.00	112.00	108.65	3.35

Correlation Coefficient = .962

ł

H. B. Robinson 2 Capsule T Report

Temperature	Input CVN	Computed CVN	Differential
175.00	14.00	2.31	11.69
200.00	17.00	20.27	- 3.27
200.00	23.50	20.27	3.23
225.00	. 64.00	59.97	4.03
250.00	38.50	60.50	- 22.00
275.00	51.50	60.50	- 9.00
300.00	60.50	60.50	. 00

Temperature	Input CVN	Computed CVN	Differential
		•	
. 00	4.00	2.31	1.69
100.00	14.00	5.12	. 8.88
175.00	28.00	27.25	. 75
200.00	38.00	42.80	- 4.80
250.00	74.00	68.39	5.61
350.00	78.00	79.28	- 1.28
375.00	85.00	79.54	5.46
425.00	82.00	79.71	2.29
-			

Correlation Coefficient = .992

ς

H. B. Robinson 2 Capsule X Report

Temperature	Input CVN Computed CVN		Differential
30.00	23.50	13.54	9.96
75.00	23.50	20.37	3.13
110.00	30.00	27.20	2.80
160.00	14.00	38.34	-24.34
180.00	44.00	42.81	1.19
210.00	58.50	49.07	9.43
300.00	72.50	62.22	10.28
400.00	68.50	68.10	. 40

Correlation Coefficient = .865

H. B. Robinson 2 Capsule V Report

Indian Point 2 Unirradiated Capsule Report

Temperature	Input CVN Computed CVN		Differential	
- 150.00	12.50	7.15	5.35	
- 150.00	10.50	7.15	3.35	
- 100.00	35.00	16.61	18.39	
- 100.00	18.00	16.61	1.39	
- 100.00	9.00	16.61	- 7.61	
- 80.00	13.00	23.52	-10.52	
- 80.00	26.00	23.52	2.48	
- 80.00	32.50	23.52	8.98	
-40.00	35.50	44.15	- 8.65	

Indian Point 2 Unirradiated Capsule Report

Page 2 Plant: INDIAN POINT 2 Material: SAW Heat: W5214 rientation: NA Capsule: Unirra Fluence: Unirradiat n/cm^2 Orientation: NA

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
-40.00	48.00	44.15	3.85
-40.00	34.00	44.15	-10.15
10.00	74.00	76.37	- 2 . 3 7
10.00	81.00	76.37	4.63
10.00	78.50	76.37	2.13
60.00	102.50	99.89	2.61
60.00	102.00	99.89	2.11
60.00	100.00	99.89	. 11
110.00	112.50	110.68	1.82
110.00	108.50	110.68	- 2.18
110.00	108.50	110.68	- 2.18
160.00	120.00	114.57	5.43
160.00	115.50	114.57	. 93
160.00	113.00	114.57	- 1.57
210.00	123.50	115.85	7.65
210.00	121.00	115.85	5.15
210.00	117.50	115.85	1.65

Indian Point 2 Capsule V Report

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN		Differential
74.00	24.00	16.30		7.70
130.00	26.50	29.44		-2.94
180.00	40.50	44.11		- 3.61
220.00	53.00	54.98	•	1.98
260.00	62.50	63.27	· ,	77
300.00	76.00	68.74		7.26
325.00	72.50	70.99		1.51
350.00	76.00	72.58		3.42

Indian Point 2 Capsule Y Report

Charpy V-Notch Data

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature	Input CVN	Computed CVN	Differential
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.00	17.50	14.32	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.00	23.00	23.90	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160.00	40.00	40.96	96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190.00	47.00	50.11	- 3.11
260.00 71.50 62.06 9. 300.00 61.00 64.57 -3. 250.00 67.00 65.84 1	210.00	55.00	54.86	. 14
300.00 61.00 64.57 -3. 250.00 67.00 65.84 1	260.00	71.50	62.06	9.44
	300.00	61.00	64.57	- 3.57
	350.00	67.00	65.84	1.16

Temperature	Input CVN	Computed CVN	Differential
- 150.00	5.00	3.01	1.99
- 150.00	2.00	3.01	- 1.01
-150.00	4.50	3.01	1.49
-100.00	29.00	9.15	19.85
-100.00	18.00	9.15	8.85
-100.00	25.50	9.15	16.35
- 50.00	35.00	44.88	- 9.88
- 50.00	33.00	44.88	-11.88
- 50.00	32.50	44.88	-12.38

Indian Point 3 Unirradiated Capsule Report

Page 2

Plant: INDIAN POINT 3 Material: SAW Heat: W5214 Orientation: NA Capsule: Unirra Fluence: Unirradiat n/cm^2

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
ì			r }
-35.00	78.00	63.78	14.22
-35.00	69.50	63.78	5.72
-35.00	54.50	63.78	- 9.28
-20.00	87.00	81.98	5.02
·· - 20.00	82.00	81.98	. 02
- 20.00	89.00	81.98	7.02
10.00	100.00	105.94	- 5.94
10.00	105.00	105.94	94
10.00	113.50	105.94	7.56
60.00	115.00	7 117.04	- 2.04
60.00	119.00	117.04	1.96
60.00	121.50	117.04	4.46
160.00	124.00	118.55	5.45
160.00	125.00	118.55	6.45
160.00	112.00	118.55	- 6. 55

Indian Point 3 Capsule T Report

Charpy V-Notch Data

Temperature	Input CVN	Computed CVN	Differential
. 00	13.00	8.73	. 4.27
70.00	17.50	24.21	- 6.71
110.00	48.00	40.03	7.97
150.00	55.50	57.70	- 2.20
150.00	53.00	57.70	- 4.70
165.00	66.00	63.71	2.29
210.00	78.00	77.39	. 61
300.00	90.50	88.10	2.40

Indian Point 3 Capsule Y Report

Temperature	Input CVN	Computed CVN	Differential
25.00	20.00	9.08	10.92
72.00	19.50	18.62	. 88
•125.00	31.00	36.51	- 5. 51
125.00	29.50	36.51	- 7.01
150.00	49.00	45.47	3.53
200.00	67.50	58.84	8.66
300.00	69.50	67.72	1.78
400.00	68.50	68.86 ·	36

Indian Point 3 Capsule Z Report

Temperature	Input CVN	Computed CVN	Differential
100.00	10.00	12.45	- 2.45
150.00	21.00	25.10	- 4.10
150.00	44.00	25.10	18.90
175.00	26.00	33.85	- 7.85
200.00	33.00	43.26	-10.26
225.00	57.00	52.15	4.85
300.00	75.00	69.14	5.86
400.00	77.00	¹ 75.04	1.96

Indian Point 3 Capsule X Report

Temperature	Input CVN	Computed CVN	Differential
75.00	9.00	17.05	- 8.05
125.00	49.00	28.99	20.01
125.00	24.00	.28.99	- 4.99
150.00	35.00	36.22	- 1.22
200.00	37.00	50.68	- 13.68
25,0.00	67.00	61.84	5.16
300.00	72.00	68.56	3.44
350.00	75.00	72.02	··· 2.98

APPENDIX H

CALCULATION OF TIME-WEIGHTED AVERAGE TEMPERATURES FOR SURVEILLANCE CAPSULES CONTAINING WELD HEAT NO. W5214 (from Reference 33)

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

Calculation of Time-weighted Average Temperatures for Surveillance Capsules Containing Weld Heat No. W5214

The irradiation temperatures for the various surveillance capsules have been reviewed and verified in support of the credibility analysis for all sources of W5214 weld metal [33].

The Palisades time-weighted average capsule and vessel temperatures were determined from plant operating history data [23]. The weighted average temperatures considered that the capsules were inserted for only two and three cycles. The resulting time weighted temperature for capsule SA-60-1 and SA-240-1 is 535.0°F and 535.7°, respectively, as determined from the values shown in Table 8. The vessel time-weighted average temperature is determined to be 535.2°F, as shown in Table H-7.

Discussions with staff at H. B. Robinson 2 indicate that the values for irradiation temperature of HB2 T, HB2 V, and HB2 X are 547°F, which is consistent with the temperature values, listed in Table D-5 of WCAP-15085 [12].

Cycle by cycle T_{cold} temperatures were reviewed for Indian Point Unit 2 and Indian Point Unit 3 in order to generate time weighted temperatures corresponding to each of the surveillance capsules which contain W5214 weld metal. For Indian Point Unit 2 the data was reviewed from Calculation Number FCX-00538 [29]. For Indian Point Unit 3 the data was reviewed from Calculation Number IP3-CALC-RV-03720 [30].

The radiation exposure and temperature history of Indian Point Unit 2 relative to Capsule Y and Capsules V is shown below.

IP2 History				
Cycle	EFPY	T cold	Capsule	
1a	1.041	540.6		
1b	1.419	528.6		
2a -	1.666	529.2		
2b	2.337	524.2	Capsule Y Removed	
3	3.266 '	522.9		
4	4.112	524.0	τ	
.5	5.173	522.7		
6	6.323	523.2		
7 .	7.414	522.7		
8	8.622	523.1	Capsule V Removed	

H-2

Time weighted temperature values for these (2) surveillance capsules is derived in Table H-1 and Table H-2.

		TABLE H-1. IP2 CAPSULE Y	
Cycle	EFPY	Cold Leg Temp	EFPY x Cold Leg Temp
1a	1.041	540.6	562.7646
1b	1.419	528.6	750.0834
2a	1.666	529.2	881.6472
2b	2.337	524.2	1225.0554
SUM	6.463		3419.5506
	Time Weighted Avera	age Temperature = 3419.	5506/6.463=529.0965

		TABLE H-2. IP2 CAPSULE V				
Cycle	EFPY	Cold Leg Temp	EFPY x Cold Leg Temp			
1a	1.041	540.6	562.7646			
1b	1.419	528.6	750.0834			
2a	1.666	529.2	881.6472			
2b	2.337	524.2	1225.0554			
3	3.266	522.9	1707.7914			
4	4.112	524	2154.688			
5	5.173	522.7	2703.9271			
6	6.323	523.2	3308.1936			
7	7.414	522.7	3875.2978			
8	8.622	523.1	4510.1682			
SUM	41.373		21679.6167			
Time Weighted Average Temperature = 21679.6167/41.373=524.0039						

H-3

IP3 HISTORY							
Cycle	EFPY	T cold	Capsule				
1A	1.342	539.4	Capsule T Removed				
1B ²	1.382	540					
2	2.280	539.4					
3	3.30	539.4	Capsule Y Removed				
4	4.424	539.4					
5	5.566	537.5	Capsule Z Removed				
6	6.579	537.5	· · · · · · · · · · · · · · · · · · ·				
7	7.839	539.8					
8	8.972	539.8					
9	10.518	540.1					
10	12.310	540					
11	13.791	540.4					
12A	15.361	540.1					
12B	15.601	540	Capsule X Removed				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
13	17.433	539.5					
· · 14 ·.	19.297	538.7					

The radiation exposure and temperature history of Indian Point Unit 3 relative to Capsule T, Y, Z, and X is shown below.

Time weighted temperature values for each of the four- (4) surveillance capsules with W5214 weld metal from Indian Point Unit 3 is derived in Tables H-3, H-4, H-5, and H-6.

		TABLE H-3. IP3 CAPSULE T	
Cycle	EFPY	Cold Leg Temp	EFPY x Cold Leg Temp
1A	1.342	539.4	723.8748
	Average Ter	nperature = 723.9/1.3	42 = 539.4

H-4

TABLE H-4. IP3 CAPSULE Y								
Cycle	EFPY	Cold Leg Temp	• EFPY x Cold Leg Temp					
1A	1.342	539.4	723.8748					
1B	1.382	540	746.28					
2	2.28	539.4	1229.832					
3	3.3	539.4	1780.02					
SUM	8.304		4480.0068					
	Time Weighted Average Temperature = 4480.0068/8.304=539.507							

TABLE H-5. IP3 CAPSULE Z								
Cycle	EFPY	Cold Leg Temp	EFPY x Cold Leg Temp					
1A	1.342	539.4	723.8748					
1B	1.382	540	746.28					
2	2.28	539.4	1229.832					
3	3.3	539.4	1780.02					
4	4.424	539.4	2386.3056					
5	5.566 ′	537.5	2991.725					
SUM	18.294		9858.0374					
	Time Weighted Average Temperature =9858.0374/18294=538.867							

TABLE H-6.								
IP3 CAPSULE X								
Cycle	EFPY	Cold Leg Temp	EFPY x Cold Leg Temp					
1A	1.342	539.4	723.8748					
1B	1.382	540	746.28					
. 2	2.28	539.4	1229.832					
3	3.3	539.4	1780.02					
4	4.424	539.4	2386.3056					
5	5.566	537.5	2991.725					
6	6.579	537.5	3536.2125					
7	7.839	539.8	4231.4922					
8	8.972	539.8	4843.0856					
9	10.518	540.1	5680.7718					
10	12.31	. 540	6647.4					
11	13.791	540.4	7452.6564					
12Å	15.361	540.1	8296.4761					
12B	15.601	540	8424.54					
SUM	109.265		58970.672					
Ti	me Weighted Averag	e Temperature =58970	.672/109.265=539.703					

Report No. 0901132.401, Rev. 0

PALISADES VESSEL TIME-WEIGHTED AVERAGE TEMPERATURE								
Operating Cycle	Cycle Length (EFPD)	Factored Days	Cycle Average Temperature (Ti)	Cycle Length (EFPD) from CNS- 04-02-01, Revision 1	Cycle Length Adjusted by 0.98xEFPD			
1	371.7 ⁽¹⁾	0.041	523	21.5	379.3	371.7		
2	^{440.1⁽¹⁾}	0.049	529	25.8	449.1	440.1		
3	342.5 ⁽¹⁾	0.038	534	20.2	349.5	342.5		
4	321.0 ⁽¹⁾	0.036	536	19.0	327.6	321.0		
5	386.7 ⁽¹⁾	0.043	536	22.9	394.6	386.7		
6	326.7 ⁽¹⁾	0.036	536	19.4	333.4	326.7		
7	362.5 ⁽¹⁾	0.040	536	21.5	369.9	362.5		
8	366.1 ⁽¹⁾	0.041	537	21.8	373.6	366.1		
• 9	292.5 ⁽¹⁾	0.032	534	17.3	298.5	292.5		
10	349.7 ⁽¹⁾	0.039	534	20.7	356.8	349.7		
11	421.9 ⁽¹⁾	0.047	533	24.9	430.5	421.9		
12	399.3 ⁽¹⁾	0.044	534	23.6	407.4	399.3		
13	419.6	0.046	536	24.9				
14	449.3	0.050	537	26.7				
15	401.3	0.044	537	23.8				
16	444.3	0.049	537	26.4				
17	493.1	0.055	537	29.3				
18	472	0.052	537	28.0				
19	459.2	0.051	537	27.3				
20	499.8	0.055	537	29.7		.•		
21	519.2 ⁽²⁾	0.057	537	30.9	•			
22	498.8 ⁽²⁾	0.055	537	29.6				
	SUM	1			,			
SUM	9037.4				-			

Table H-7.

(1) EFPD for Cycles 1 - 12 have been

reduced by 2% per Ref. 23. (2) EFPD for Cycles 21 and 22 are projected values.

SUM	535.2°F
Time Weighted Average Temperature	535.2°F

Structural Integrity Associates, Inc.

APPENDIX I

LISTING OF DESIGN INPUTS FOR WELD HEAT NO. W5214 SURVEILLANCE DATA RE-EVALUATION

Report No. 0901132.401, Rev. 0

Structural Integrity Associates, Inc.

Listing of Design Inputs for Weld Heat No. W5214 Surveillance Data Re-evaluation

A roadmap to the references used in this report is provided in this Appendix. This roadmap provides a snapshot of the various references used to obtain the design inputs for chemistry factor, unirradiated and irradiated Charpy V-notch (CVN) data, the TANH methodology used to fit the CVN data, capsule fluences, the regulatory guidance documents and codes used, and the inputs used for the estimation of the time weighted average temperatures for the various surveillance capsules. It is to be noted that several of the inputs used in this report have been superseded by more recent reports based on the availability of new data (such as re-evaluation of capsule reports and updated fluence calculations).

The measured chemistries for the surveillance capsule materials were obtained from the respective surveillance capsule reports that contain the weld heat No. W5214. Fluence data that were historically used in previous reports and submittals were also obtained from the respective capsule reports. More recent fluence values for the surveillance capsules were obtained from an updated fluence calculation by Westinghouse [18]. It is to be noted that even though the design inputs used in this capsule re-evaluation may be available in more than one source, the roadmap points to specific references in order to use the most current and valid inputs in the analysis.

Report No. 0901132.401, Rev. 0

I-2

Reference	Report Reference No.	Description	Chemistry Factor	CVN Data	TANH Methodology	Fluence	Regulatory Documents/Codes	Time Weighted Average Temperature	SI Calculation Package
BAW-2398	14	Palisades capsule SA- 240-1	Х	Х					
BAW-2341	15	Palisades capsule SA- 60-1	X	Х					
J. Kneeland Letter Dated Feb 2, 1999	. 16	Palisades Unirradiated		x					
WCAP-7373	27	H. B. Robinson Unirradiated		X					· ·
WCAP-15805	12	HBR2 Capsule X	X	X		X			
SwRI Project No. 17-2108	6	IP 2 Capsule V	X	x		X	1		
WCAP-7323	. 8	IP 2 Unirradiated		X	1		2		
SwRI Project No 02-5212	7	IP 2 Capsule Y		X				•	
- WCAP-16251-NP	13	IP 3 Capsule X	X	X		- X			
WCAP-8475	9	IP 3 Unirradiated		X					
WCAP-9491	10	IP 3 Capsule T		X					
WCAP-10300	. 11	IP 3 Capsule Y		X					
N. Haskell (Palisades) Letter to NRC	26	Palisades RAI	Х						-
WCAP-15353, Rev 0	3, 34	Palisades Fluence Evaluation				X		•	
Email from S. Anderson (Westinghouse) to Tim Griesbach (SIA): 04/15/2010	18	Revised Fluence Values for Design Inputs to PTS Evaluation				X			
D. S. Hood (NRC) Letter to N. Haskall (Palisades)	1	Fluence evaluation and schedule for reaching PTS Screening Criteria				X			

Table I-1. Listing of Design Inputs and References Used

Report No. 0901132.401, Rev. 0

Reference	Report Reference No.	Description	Chemistry Factor	CVN Data	TANH Methodology	Fluence	Regulatory / Documents/Codes	Time Weighted Average Temperature	SI Calculation Package
CAPL-01-009	17	Neutron Fluence Analysis for Palisades Surveillance Capsule SA-240-1				x			
CE NPSD-1119	20	CEOG Cu, Ni Chemistries	x	-					
ASTM E-185-66	22	Surveillance Testing			x		X		
M. A. EricksonKirk et.al, Journal of Pressure Vessel Technology, v. 131, 2009	25	CVN Data Fitting Methodology			X				
CVGRAPH 5	4	Software program to fit CVN Data			x				
10CFR50.61	2	PTS Rule					x		
Reg Guide 1.190	5	Fluence Calculation Methodology					X		
Generic Letter 92-01	19	RPV Integrity Assessment Workshop					x		
ASME Section III	21	ASME Boiler and Pressure Vessel Code					X		
NUREG/CR-6413, ORNL/TM-13133	24	Irradiation Data for A302B and A533B Correlation Monitor Materials	-		x		x		
NRC RVID2	31	NRC Reactor Vessel Integrity Database		x			x		,
FCX-00538	29	IP2 Vessel Head Temperature						x	
IP3-CALC-RV-03720	30	IP3 Vessel Head Temperature					-	x	
CNS-04-02-01, Rev. 1	28	Evaluations of Palisades RPV Through Period of Extended Operation						X	· ·
LAR of 2-21-2000 EA-DOR-09-01 Rev. 0	23	Cycle 1 - 12 EFPD for Time Weighted Average Temperature Calculation						x	
0901132.301, Rev. 0	32	Determination of ∆T ₃₀ Values for the Heat No. W5214						·	x
0901132.302, Rev. 0	33	Verification of the Time- Weighted Average Temperatures for IP2 and IP3 Capsules						•	x

 Table I-1. Listing of Design Inputs and References Used (cont.)

Report No. 0901132.401, Rev. 0

I-4

