

Industry Perspectives on Comprehensive Review of Radiation Safety Strategic Performance Area

Micheal Smith Senior Project Manager, Radiation Protection July 18, 2025

Industry Focus Areas

- Performance Indicators (PIs) & Low-Level Data Insights
- Baseline Inspection Program & Procedures
- More-than-Minor Threshold Criteria & Licensee Credit
- Radiation Safety Significant Determination Process (SDP)

Considerations for Radiation Safety Cornerstone Updates

Align with Revised Radiation Protection Framework

 Updates to the ROP Radiation Safety Cornerstones should reflect any changes from the NRC's reconsideration of the Radiation Protection Framework.

Limit Resource Inefficiencies

 Use of "new" data should rely on information already available to the NRC, avoiding additional resource demands on the industry or NRC.

Promote Risk-Informed Oversight

 Outcomes should support a more performance-based, risk-informed oversight approach that effectively considers radiological risks.

Refining Performance Indicators (PIs)

Avoid Redundant Oversight Activities

Inspection activities should not duplicate existing Pls.

Public Radiation Safety Cornerstone Pls

 Ongoing rulemaking efforts should inform revisions to performance indicators, as appropriate.

Occupational Radiation Safety Cornerstone Pls

- Only actual unintended exposures in LHRAs or VHRAs should trigger Pl occurrences.
 - A reasonable threshold for unintended exposures should be considered for PI occurrences.

Use Low-Level Data to Optimize Radiation Safety Inspections

- Data currently available to the NRC should be leveraged to optimize the scope of radiation safety inspections.
- Available data can be used to inform whether certain inspections continue to be appropriate or if they can be performed remotely.
- Inspection guidance should be revised to allow inspectors to adjust inspection resources and activities based on data-driven insights, and consider whether remote inspection is sufficient.
- Much of the data and insights that can inform NRC inspection samples, may be captured in a licensees' log entries (Ops, RP, OCC, etc.), and corrective action program.

Potential Occupational Radiation Safety Low-Level Data Examples

1. Special Dosimetric Situations & Inaccurate Dose Assessments

- Special dosimetric situations are infrequent and should only involve detailed review if there are issues.
- Observations can be performed during outages, with data available for review during remote inspections.
- Inspection Requirement to Review: 71124.04 03.04 (Special Dosimetric Situations)

2. Electronic Dosimeter Alarms or Noncompliance Procedures

- Electronic dosimetry & remote monitoring are effective tools that help alert workers of unexpected conditions, enhancing awareness with real-time responses.
- In the absence of alarms, etc., this should be considered an indication that worker performance and job planning are reasonably effective and appropriate.
- Inspection Requirements to Review:
 - 71124.01 03.02 (Instructions to Workers)
 - 71124.01 03.05 (HRA and VHRA Controls)
 - 71124.01 03.06 (Rad Worker Performance and RP Technician Proficiency)

Potential Occupational Radiation Safety Low-Level Data Examples Cont'd.

3. Inappropriate Use of Respiratory Protection Equipment or Engineering Controls

- Industry acknowledges that effective respiratory protection programs are critical for both radiological control and overall industrial safety.
- Issues such as unintended intakes will indicate ineffective use of respiratory protection or engineering controls; and program related data reviews can be done remotely, if needed.
- Inspection of these technical areas should be considered if issues result in unintended exposures exceeding 100 mrem.
- Inspection Requirements to Review: IP 71124.03

4. Issues with Portable Instrumentation and Equipment Monitors

- These programs are generally stable and aligned with established industry standards.
- Deviations from these standards due to major program changes may warrant inspection.
- Inspection Requirements to Review: IP 71124.05

Potential Public Radiation Safety Low-Level Data Examples

1) Ineffective Shipment Preparation and Paperwork

- Ineffective shipment preparation or documentation is often first identified by the receiving facility.
- Many portions of existing shipping inspection activities can be performed remotely.
- Inspection of shipping paperwork should be limited to cases involving inaccurate survey or documentation that may have impact on the ability of first responders to respond effectively.
- RAM shipment breaches also signal deficiencies in preparation practices.
- Shipping inspection should focus on risk-significant shipments.
- Inspection Requirements to Review: IP 71124.08

2) Rad Material Control Events

- Inadequate control of radioactive material (RAM) is often indicated by personnel and portal monitors before the material exits the restricted area.
- Inspections may be warranted in cases involving contamination control events, such as multiple Level 3 Personnel Contamination Events (PCEs) where dose is assigned.
- Inspection Requirements to Review: IP 71124.08

Potential Public Radiation Safety Low-Level Data Examples

3) Environmental (REMP) & Effluent (RETS) Programs

- Walkdowns of effluent radiation monitors and REMP sampling sites remain important, but should be scheduled outside of outages, or aligned with calibration of safety significant monitors.
- Much of REMP and RETS program inspection scope can be completed remotely, since these inspections involve a lot of data and document reviews.
- Voluntary Groundwater Protection Initiative Reports can help inform whether groundwater program inspections are warranted.
- Data Sources
 - Several missed environmental or effluent samples
 - Significant calculation errors
 - Extended periods when required effluent/REMP equipment is out of service without compensatory measures during releases
 - Anomalous environmental dosimetry results
 - Several abnormal releases
- Inspection Requirements to Review: IPs 71124.06 & 71124.07

Inspection Procedure Insights

- Update Inspection Procedure 71124 Attachments to support a more risk-informed performancebased approach to radiation safety inspections. Key considerations being:
 - Aligning inspection resource allocations with licensee performance across radiation safety inspections areas.
 - Identifying inspection requirements that are reasonable for remote inspection.
 - Reconsidering inspection requirements based on risk-significance, strong licensee performance, and available low-level data.
- Re-evaluate inspection frequencies and resources based on:
 - Industry performance trends
 - Understanding of radiation risks
 - Appropriateness of remote inspections and available low-level data
- Develop a standardized, risk-informed outage inspection procedure. This will:
 - Enhance inspection predictability and efficiency
 - Promote consistency across NRC regions

Alternative Structures for Radiation Safety Inspection Procedures

Example 1: Outage, Onsite, & Remote

- Outage Inspection
- Onsite Programs and Observations
- Offsite (Remote) Programs and Data Review

Example 2: Outage & Cornerstone Grouping

- Outage Inspection
- Occupational Radiation Safety Inspections*
- Public Radiation Safety Inspections*

Reevaluating More-than-Minor (MTM) Thresholds

- Reassess MTM examples in IMC 0612, Appendix E to ensure alignment with a risk-informed approach that reflects radiological and program risk-significance.
- Consider reasonable consequence thresholds (e.g., 100 mrem) where appropriate that are reflective of a programmatic barrier being ineffective.
- Provide appropriate credit for industry's use of electronic dosimetry, including consideration of defining that indications from electronic dosimetry are licensee-identified instead of self-revealing.
- Improve clarity and predictability of MTM determinations to promote consistent dispositioning of issues.

Refining Radiation Safety Significance Determination Processes (SDPs)

- Reassess the SDPs as needed, to align with any outcomes of the NRC's ongoing wholesale rulemaking effort.
- Ensure the SDP outcomes appropriately reflect risk significance and consistency.
- Reevaluate the need for the ALARA work planning and controls portion of the Occupational Radiation Safety SDP.
 - Significantly ineffective work controls are already demonstrated by actual or substantial potential for overexposures, which the SDP currently reflects with appropriate risk significance.
- Consider further clarifying criteria for dispositioning findings involving:
 - Substantial potential for overexposure
 - Compromised ability to assess dose

Conclusions

- This effort presents a valuable opportunity to modernize the Radiation Safety Cornerstones to better reflect current risk-informed thinking, and 25 years of operational experience.
- Risk-informed enhancements to inspection procedures and significance determination processes can improve regulatory efficiency while maintaining robust protection of workers, the public, and the environment.
- Increased use of existing data and remote inspection practices can help optimize resource allocation for both the NRC and licensees without reducing safety.
- Opportunities exist to align oversight efforts with demonstrated licensee performance, focusing regulatory attention where it yields the greatest safety benefit.

Thank You!

