

Millstone Power Station, Unit 3
New Fuel Storage and Spent Fuel Pool
Criticality Safety Analysis
Proposed License Amendment Request

NRC Pre-Submittal Meeting
July 17, 2025

Agenda

- High Level Proposed Changes
- Current Configuration & Proposed Changes
- Analysis Components
- Criticality Analysis Checklist

Purpose & Note

Purpose

Discuss key analysis considerations to create a higher quality submittal and a more efficient NRC review

Focus on technical assumptions and justifications, especially for new topics arising from LEU+ and HBU fuel

Note

This pre-submittal meeting is being held earlier than usual. Proposed changes in this presentation are what is currently anticipated, but they could change in the future.

High Level Changes

- Driver for LAR: 24 Month Cycles
- Maximum U-235 Enrichment: 6.5 wt%
- Maximum Credited Burnup: ~60 GWD/MTU
- Relevant Fuel Assembly Changes:
 - Fatter Fuel Pellet
 - Slightly Denser Fuel
 - Advanced Cladding Material
- Storage Rack Changes: None
- Schedule:
 - Submit LAR – June 2026
 - Review Complete – December 2027 (18-month review)
 - 24-month Initial Startup – May 2028

Summary of Expected TS Changes

- TS 3/4.9.13: Defines regions and requirements
 - Revise to reflect new analysis
- Figures 3.9-1: Defines Region 1 subregions
 - Revise for new Region 1 subregions
- Figures 3.9-2 and 3.9-3: Region 2 and 3 Burnup Curves
 - Update for new burnup curves
- TS 5.6.1: Description of regions and requirements
 - Revise to reflect new analysis
- TS Markups are not currently available

CURRENT CONFIGURATION & PROPOSED CHANGES

Spent Fuel Pool – Current Description

- New Fuel Storage Racks
 - 12x8 array of cells
 - Cell pitch of 22-1/8" North-South, 24-1/16" East-West
 - Dry Boral sheets about every other row
- SFP, Region 1
 - Boral, flux trap rack design
 - Requires no burnup
 - Purpose: Store all fuel including fresh and fuel that is reused in the core
- SFP, Region 2
 - Boral, non-flux trap or “egg-crate” rack design
 - Requires some burnup
 - Purpose: Store all discharge fuel
- SFP, Region 3
 - Uncredited Boraflex, flux trap rack design
 - Requires the most burnup
 - Purpose: Store most discharge fuel

New Fuel Storage Racks

Current Configuration

- Max Enrichment: 5.00 wt%
- BP not credited
- No empty cell credit
- Limiting scenario: water moderated

Proposed Changes

- Max Enrichment: 6.50 wt%
- Minimum Gad or IFBA loading required
 - Gad requirement mimics transportation cask requirements¹
- No empty cell credit
- Limiting scenario: water moderated

¹ NRC FORM 618, "CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES", Cert. No. 9319, Rev. 14, Docket No. 71-9319, Package ID USA/9319/B(U)F-96, NRC Accession No. ML23033A348.

Spent Fuel Pool – Region 1

Current Configuration

- Region 1A
 - Fresh, no BP max enrichment: 4.75 wt%
 - BP or burnup credit for enrichments up to 5.00 wt%
- Region 1B
 - Max enrichment: 5.00 wt%
 - Credits neutron leakage at the SFP rack and wall boundary
 - No BP or empty cell credit

Proposed Changes

- Region 1N
 - Max Enrichment: 6.50 wt%
 - Credits empty cells (3-out-of-4 configuration)
 - No BP credit
- Region 1S
 - Fresh, no BP max enrichment: 4.70 wt%
 - No empty cell credit
 - BP credit for enrichments up to 6.50 wt%

Spent Fuel Pool – Region 2

Current Configuration

- Max enrichment: 5.00 wt%
- Burnup credit curve
Max required BU: ~40 GWD/T
- No Decay Credit
- Optional control rod credit to replace burnup credit
- No Empty Cell Credit

Proposed Changes

- Max enrichment: 6.50 wt%
- Burnup credit curve
Max required BU: ~50 GWD/T
- Decay Credit Curves (~2 and 8 Years)
- Optional control rod credit to reduce burnup credit
- No Empty Cell Credit
- Partial Credit for Fuel Blankets (6" @ 5.0 wt%)

Spent Fuel Pool – Region 3

Current Configuration

- Max enrichment: 5.00 wt%
- Burnup credit curve
Max required BU: ~53 GWD/T
- Decay Credit (3 - 25 Years)
- No Control Rod Credit
- No Empty Cell Credit

Proposed Changes

- Max enrichment: 6.5 wt%
- Burnup credit curve
Max required BU: ~60 GWD/T
- Decay Credit Curve (~4 Years)
- No Control Rod Credit
- Empty Cell Credit
(8-out-of-9 configuration)
- Partial Credit for Fuel Blankets
(6" @ 5.0 wt%)
- Maintain current TS for fuel received before 2028
 - Transition to new TS as more 24-month fuel is stored in Region 3

ANALYSIS COMPONENTS

Analysis Codes

- Reactivity Code
 - SCALE 6.2.3
 - KENO-V.a criticality calculation module
 - ENDF/B-VII.1 252 group cross section library
- Depletion & Decay Code
 - CASMO5
 - CASMO5 default cross section library
(primarily ENDF/B-VII.1)

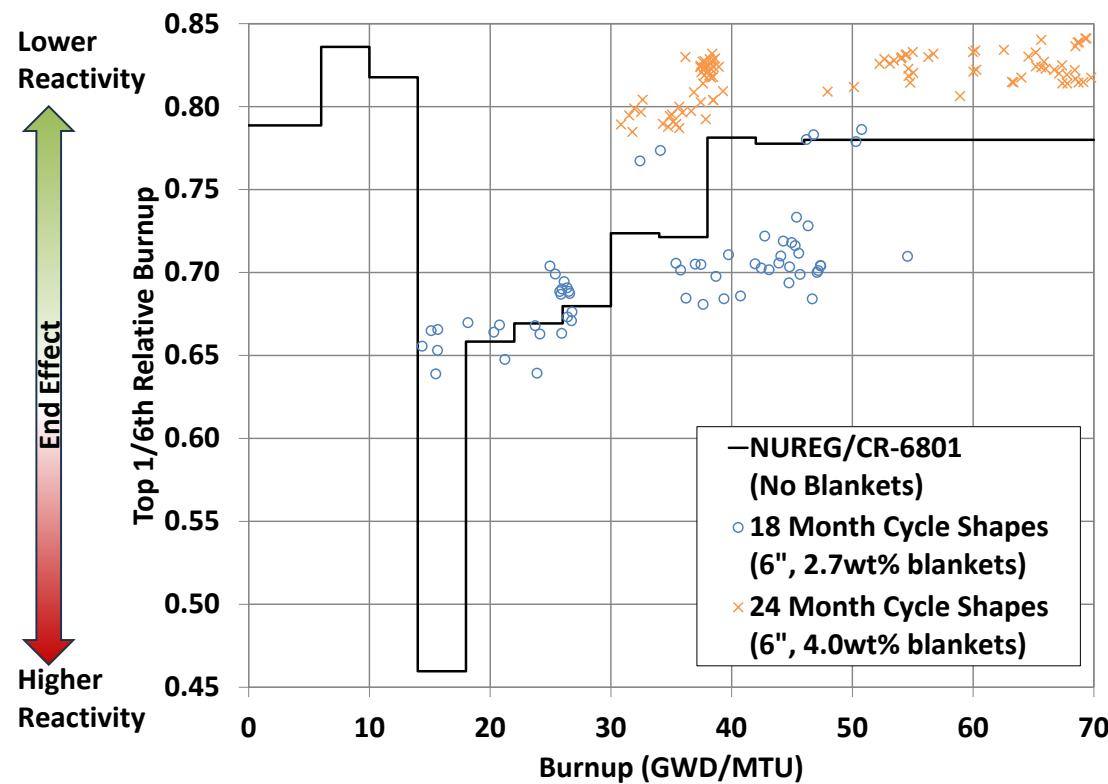
Code Benchmark Analysis

- Criticality Code (SCALE) Benchmark
 - Similar to previous Dominion Energy submittals
 - Follows NUREG/CR-6698 methodology
 - Added 72 critical experiments with U-235 enrichments from 5.70 – 7.00 wt%
 - Increased EALF range in analysis
- Depletion/Decay Code (CASMO5) Benchmark
 - For burnups \leq 60 GWD/T, use 5% uncertainty
 - Use RG 1.240 as justification
 - For burnups $>$ 60 GWD/T, use 5% uncertainty
 - Use trends from CASMO Topical Report supplement as justification
 - This may not be required as credited burnups may be \leq 60 GWD/T

Composite Bounding Assembly Model

- Composite Assembly Dimensions
(e.g. clad OD, pellet OD, guide tube dimensions)
 - Confirmed bounding by sensitivity cases
- Modeled BP Cutback Length (ends of rod w/out BP)
- Modeled Fuel Blankets
 - Fuel enriched \leq 5.0 wt%: No blankets
 - Fuel enriched $>$ 5.0 wt%: 6 inch, 5.0 wt%, solid pellet
- Grids Modeled as Water
 - Compliant with NEI 12-16 (50 ppm of boron reserved)
- Bounding Depletion Conditions Used

Advanced Fuel Features


- Doped Pellets
 - None in anticipated fuel
 - Modeling fuel with no dopant and bounding fuel density
- Cladding & Grid Composition
 - Future fuel using Zr-based alloys M5 and Q12
 - Bounded by modeling cladding as pure Zr
- Clad Coatings – None
- Top and Bottom Nozzles & rod plenum regions – Small changes that are unimportant to analysis

Geometric Changes with Burnup

- Fuel vendor research shows advanced cladding and grid materials are more resistant to geometric changes than current materials
- The criticality safety analysis will bound advanced cladding by using grid growth and clad creep-down relationships from the current material ZIRLO

Axial Burnup Shapes

- Use NUREG/CR-6801 axial burnup shapes
- Justify by comparing to axial shapes of 24-month cycle models to NUREG shapes
- Preliminary Results: Even with blankets, NUREG shapes are bounding

Eccentric Positioning

- Added as a bias to the maximum k-eff calculation
- Several different configurations test cases will be shown in submittal
 - Particularly important for cases where the model is not uniform (e.g. empty cells or New Fuel Storage Racks)
 - SCALE fission density distribution visual aids will help justify bounding configuration

Burnable Poisons

- Burnable poison credit for New Fuel Storage Racks and Region 1
- Region 1 will ensure BP burnup peak reactivity will not result in violating limits by:
 - Showing BP loading is small enough to never increase reactivity OR
 - Requiring a small amount of BU if not fresh fuel

Burnable Poison Locations

- BP locations in fuel lattice restrictions:
 - IFBA must use standard pin patterns as will be stated in the LAR
 - Gad can be placed in any symmetric pattern
 - Base case uses a standard pattern, then calculates a bias by running a set of other reasonable patterns and calculating a Δk

Multiple Misload Accident

- Spent Fuel Pool TS Boron Concentration: 2600 ppm (Not Changing)
 - Subtracting 50 ppm in model per NEI 12-16
- Will likely require some amount of burnup
 - Plan to use the “clean vs. dirty” argument to preclude fresh fuel in Region 2 and 3
 - Will discuss fuel movement training in LAR

Aging Management Program

- Current BORAL program
 - Coupon surveillances
 - Surveillance interval NEI 16-03 compliant
 - 5 years for known degradation or mechanisms
 - 10 years for documented stable material
 - Program described in FSAR
- No change planned

Retained Margins

- NRC administrative retained margin of $0.01 \Delta K$ reserved to account for minor issues discovered during review
- Identified Dominion retained margin will potentially be used in future fuel or plant changes in accordance with 10 CFR 50.59

Criticality Analysis Checklist

- See attached completed checklist
- Some items not included or not applicable
 - Justification or explanation provided

Schedule

- Submit LAR – June 2026
- Review Complete – December 2027
(18-month review)
- 24-month Cycle Initial Startup – May 2028

QUESTIONS?

Acronyms & Definitions

- BP – Burnable Poison (synonymous with Burnable Absorber)
- FSAR – Final Safety Analysis Report
- GWD/T – Gigawatt-Day per Metric Ton of Uranium
- Gad – Gadolinia Burnable Poison
- HBU – High Burnup Fuel
- IFBA – Integral Fuel Burnable Absorber
- LAR – License Amendment Request
- LEU+ - Fuel enriched between 5 – 10 wt%
- MPS3 – Millstone Unit 3
- TS – Technical Specifications
- wt% - U-235 weight percent enrichment