Enclosure 1

Pre-Submittal Meeting Slides (Non-Proprietary)

NRC Pre-Submittal Meeting

Use of Cobalt Burnable Absorbers (COBAs) in Salem Generating Station

June 25, 2025

Meeting Agenda

- Introductions
- Provide summary overview of scope of Co-60 program
- Describe outline and content of LAR
 - Change to Operating License
- Dose Consequence Evaluation
- Decay Heat Assessment
- Spent Fuel Pool Criticality
- COBA Testing to Date
- Digital Serialization
- Co-60 Implementation Schedule
- Questions / Comments

Overview of Cobalt-60 Program

- Collaboration between Westinghouse and Nordion
- Provide a domestic supply of Co-60 for irradiation services
 - Gamma source for sterilization of single-use medical devices
 - Food and pharmaceutical ingredient irradiation
 - Global shortage in Co-60 sources
- Cobalt Burnable Absorbers (COBAs) inserted into fuel assemblies
 - Fuel insert similar to WABAs
 - Neutron irradiation of [

]^{a,c} within each rodlet

]a,c

- Core location of COBAs optimized for each cycle of irradiation
- COBA capsule harvesting in SFP by Westinghouse and shipped to Nordion
 - Blended with other Co-60 slugs to create finished sources of specific activity

Updated COBA Assembly Design Concept

a,c

Outline / Content of LAR

- LAR to provide overview of key analyses and testing supporting COBA
 - Structural integrity
 - Thermal hydraulics
 - Vibration and wear
 - Mechanical creep
 - Corrosion
 - Analysis of COBA failure
 - Co-60 capsule positioning
 - Nuclear Design
- LAR sections will reference Westinghouse Supporting Information
 - General and Site-Specific Attachments to LAR proprietary and redacted versions
- Site specific assessment and analyses
 - Chemistry sampling for Co-60
 - Co-60 impacts to Chapter 15 LOCA dose consequences
 - Dose and decay heat analysis for SFP and cask pit area
 - Decay heat addition to RCS for normal, upset and ELAP events

License Changes

- Changes to Salem FOL
 - Allow for transfer/use of Co-60 in accordance with 10 CFR Part 30
 - Allow for production, possession, receipt and transfer of Co-60
 - Similar changes made for Hope Creek Co-60 initiative
 - Allows production & transfer of Part-30 source material within a Part-50 license
 - Describe COBA SFP storage requirements
 - Ensures gamma flux limits are within 10¹⁰ MeV/cm²-sec limit for SFP concrete
- Mark-ups of FOL changes in LAR attachment

Dose Consequence Evaluations

- COBA design limits Chapter 15 Impact
 - Detection of Co-60 via routine RCS chemistry sampling
 - Co-60 source term non-gaseous
 - Only affects events with direct RCS release
- LOCA dose consequences revised for additional Co-60 source term
 - > []a,c
 - Results of dose consequence analyses show a not more than minimal (<10%) increase due to Co-60</p>
 - Calculation changes performed under 50.59

Decay Heat and Gamma Energy Assessment

- Contribution of COBA decay heat evaluated
 - Normal Shutdown Cooling
 - Loss of RHR at Mid-loop / Natural Circ Cooldown
 - Flex Operation
 - > SFP Cooling
- Sufficient cooling margin exists to accommodate additional COBA heat

Decay Heat and Gamma Energy Assessment cont.

- COBA decay heat/gamma energy accident analyses
 - Small and Large Break LOCA
 - LOCA Containment Integrity
 - Post-LOCA Long Term Cooling
 - > SGTR
 - Steam Line Break and Locked Rotor Steam Release
- Sufficient margin in all events to ensure adequate cooling
- COBA gamma energy incident on wall and floor of SFP and cask pit
 - Impact to SFP floor is minimal
 - Impact to SFP walls maintained by plant procedures based on time of offload

Spent Fuel Criticality Analysis

- Plant specific SFP criticality analysis updated with RG 1.240 including operating with COBA
- Updates the new fuel storage area analysis
- WCAP report generated with all pertinent details
 - Pre-submittal meeting held with staff March 6, 2025
 - ➤ LAR S25-02 for new criticality analysis submittal June/July 2025
- Presence of COBA treated as a conservative penalty in SFP criticality analysis

COBA Testing to Date

CFD Validation Testing

- Performed at WEC Churchill facility at PWR conditions: pressure, temperature, thimble tube flow, capsule heating
- Flow rates measured in COBA rodlet, and thimble tube are similar to flow rates predicted in prior CFD analysis and other hydraulic predictions
- Confirms that boiling does not occur for expected normal operating conditions in reactor

Wear Testing

- Also performed at WEC Churchill facility at PWR conditions
- Unlike CFD testing, capsule heating was excluded in place of production capsules and slugs
- The first COBA article showed no discernable wear after 6 weeks of testing.
- The second COBA article just completed a 3-month duration and is currently being evaluated.

Digital Serialization of Capsules

Digital Serialization ensures [

a,c

- White paper submitted to NRC on February 7, 2025
- Meetings with NMSS staff on April 17 and May 15
- >

- **}**
- Complies with NSTS requirements described in 10 CFR 20.2207 and maintains
 [
- Approach to be further described within LAR

Co-60 Implementation Schedule

a,

Co-60 Timeline

a,

Questions / Discussion

