

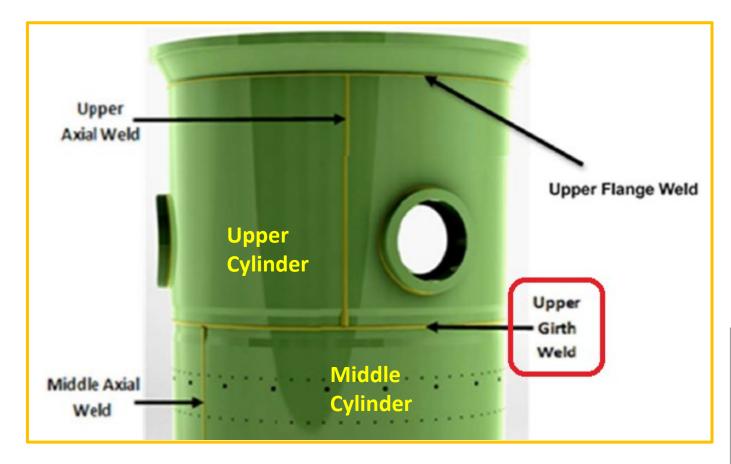
U.S. PWR Core Barrel Specimens Laboratory Evaluation

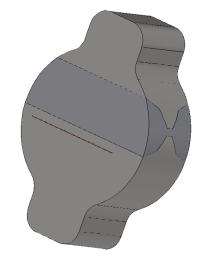
Frank Gift, Sr. Principal Technical Leader

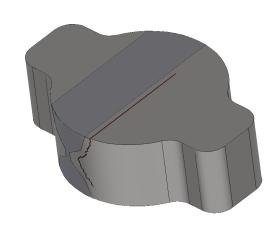
Kyle Amberge Technical Executive

June 17, 2025

in collaboration with




EPRI-Funded Work Scope


Laboratory Examination and Testing of 2 Core Drill Specimens (Indication #3 and Tip of Indication #4)

- Identify Mode(s) of Degradation
- Identify Contributing Factors to the Degradation

Sample 3

Sample 4

The Plant better

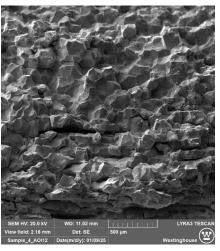
RT.TP.2444

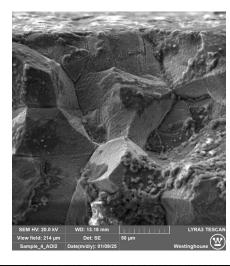
2.0 Purpose

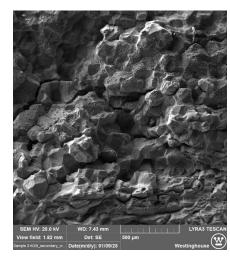
The purpose of this test plan is to provide a detailed examination and sectioning plan to be conducted on CS Samples 3 and 4 to determine the fallow mechanism and contributing factors that led to cracking in the CS all the HS Debineson NPP.

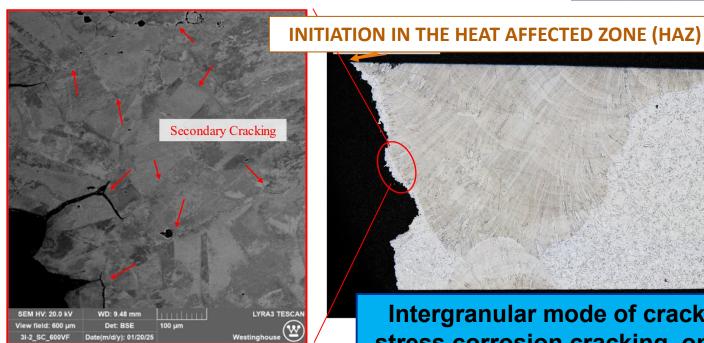
The lesting is to be performed at the Westinghouse Charchill Site labs. This test plan was developed in accordance with Westinghouse and I Providence VEA 110 (Reference 6) in the contribution of the CS all the HS Debineson NPP.

The lesting is to be performed at the Westinghouse Charchill Site labs. This test plan was developed in accordance with Westinghouse Charchill Site labs. This test plan was developed in accordance with Westinghouse Charchill Site labs. This test plan was developed in accordance of the Samples of the CS all the CS and the


- Fractography
- Metallography
- Microscopy
- Chemistry
- Hardness Testing
- ASTM A262 Pr. A
- Dosimetry






Fractography, Metallography, Microscopy

Intergranular mode of cracking, indicative of stress corrosion cracking, on all fracture faces

Crack path confined to base metal, within HAZ of the upper girth weld

Investigation of Potential Contributing Factors to Degradation

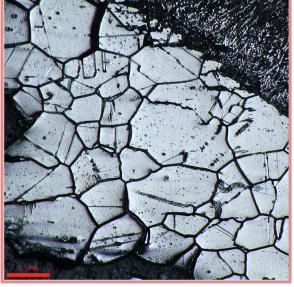
Chemistry Analysis

Element / Sample Identification	Со	Cr	Cu	Fe	Mn	Мо	Ni	Р	Si	С	S
ASTM A240-69, Type 304	-	18.00- 20.00	-	-	2.00 max	-	8.00- 12.00	0.045 max	1.00 max	0.08 max	0.030 max
Upper CB Plate	0.11	18.36	0.09	69.66	1.47	0.19	9.58	0.01	0.49	0.039	0.015
Upper CB CMTR	0.13	18.32	0.08	69.53	1.53	0.21	9.60	0.031	0.51	0.045	0.015
Middle CB Plate	0.07	18.84	0.05	68.89	1.43	0.22	9.79	0.01	0.66	0.047	0.012
Middle CB CMTR	-	18.92	0.05	68.85	1.50	-	9.85	0.023	0.70	0.048	0.011
Weldment	0.08	20.05	0.08	67.29	2.07	0.06	9.89	0.00	0.43	0.050	0.007

- Chemistry measurements made by combustion analysis (C, S) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for remaining elements
- Base metal chemistry conforms to plate specification ASTM A240 for Type 304
- Experimental data matches well with the respective plate certified material test report (CMTR) values
- Weld metal chemistry meets vintage SFA 5.4 weld metal specification for E308

Investigation of Potential Contributing Factors to Degradation

Microhardness Testing (HV_{0.5})

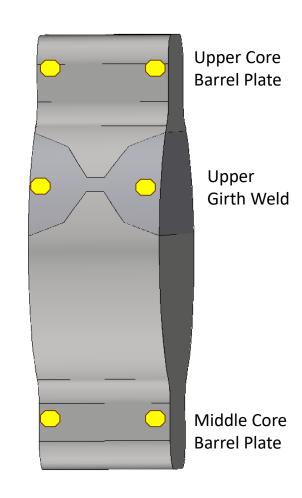

Location	Average Vickers Microhardness Value	Standard Deviation	
Middle Core Barrel Plate	218	30	
Middle Core Barrel HAZ	224	33	
Weldment	221	21	
Upper Core Barrel HAZ	213	9	
Upper Core Barrel Plate	194	12	

- Weld metal hardness appears typical, with highest values near root of weld
- Upper shell and middle shell (away from weld HAZ/fracture face)
 hardness values appear typical
- ID Surface hardness does not appear to be significantly elevated, but fewer points available in HAZ

ASTM A262 Practice A Testing

- Middle cylinder plate
 - Base metal Not sensitized (left image)
 - HAZ Potentially sensitized (right image)
- Upper cylinder plate
 - Base metal Potentially sensitized
 - HAZ Potentially sensitized

Investigation of Potential Contributing Factors to Degradation


Retrospective Dosimetry Analysis

- One sample from each respective location in each Core Sample, both on ID and OD.
- Chemistry quantification supported by X-ray Fluorescence (XRF)

Average between Specimens	Upper CB Plate ID	Weldment ID	Middle CB Plate ID
Integrated Fluence (E > 1.0 MeV) (n/cm ²)	6.60E+17	8.01E+17	1.05E+18
Integrated Iron Atom Displacements (dpa)	9.85E-04	1.19E-03	1.56E-03
Integrated Fluence (E > 0.1 MeV) (n/cm ²)	1.10E+18	1.37E+18	1.87E+18

Maximum Best-Estimate Values	Upper CB Plate OD	Weldment OD	Middle CB Plate OD
Integrated Fluence (E > 1.0 MeV) (n/cm ²)	4.22E+17	4.99E+17	7.76E+17
Integrated Iron Atom Displacements (dpa)	6.30E-04	7.43E-04	1.16E-03
Integrated Fluence (E > 0.1 MeV) (n/cm ²)	7.77E+17	9.52E+17	1.52E+18

With irradiation damage less than 0.002 dpa, irradiation effects are considered insignificant with respect to the degradation observed

Key Observations Summary

 <u>Degradation Mode</u>: Intergranular cracking is observed throughout the crack surface of both indications. Intergranular stress corrosion cracking (IGSCC) is the only mechanism observed.

Contributing (or Unique) Factors:

- IGSCC is confined to the HAZ of middle core barrel shell
- No indication of weld repairs in the vicinity of the cracks
- Typical carbon and sulfur levels measured for Type 304 stainless steel of this vintage
- ASTM A262 Practice A indicates some "suspect" microstructures present in samples, notably HAZs.
 - "Suspect" is language from A262 specification, meaning HAZ is potentially sensitized
- Microstructure otherwise seems typical for base metal and weld metal
- Moderately elevated hardness in some regions (notable near root pass), but not so high as to be a significant contributor to initiation
- Irradiation damage is not a contributing factor to the degradation

