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Objective: Assess current capabilities of machine learning (ML) 
and automated data analysis for improving NDE reliability 

Examples of Machine Learning Applied to IGSCC 
(Examples from open specimens)*

*Spanner et al, 2nd Int’l. Conf. NDE in Relation to Structural Integrity 

for Nuclear and Pressurized Components, New Orleans May 2000

ML for UTNDE Data Analysis – circa 2000

UTNDE and ML Landscape – circa 2025

Single-element UT 
NDE Data

NN Classification 
Result
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Objective: Provide technical basis to support regulatory 
decisions and Code actions on automated data analysis for NDE

ത𝑦 = 𝑓 ҧ𝑥, ҧ𝜃

Drivers Influencing ML 
Performance

https://www.zetec.com/blog/destructive-and-
nondestructive-testing-of-welds-how-ndt-

ensures-quality/

Automated 
Analysis/AI/ML Purpose: 

Application

Data

Model and Model 
Parameters

Validation and Qualification 
Requirements?

Codes and Standards?

Data Requirements?
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Near-term ML applications for ultrasonic NDE include assisted 
analysis and fully automated analysis

Ultrasonic NDE data

Flag and pickup all 
potential flaw data

Human analyst

ML Assisted Data Analysis 

Flaw data 
identified

ML model

Flaw data 
identified

ML Automated Data Analysis 

(Optional) Screening to flag 
potential flaw data
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Automated Analysis problem formulation can change to 
accommodate dataset balance between flaws and non-flaws

Classification 
modelUltrasonic NDE data

Non-flaw

Flaw

flaw and non-flaw data
Non-flaw data

Automated Analysis: Screening

Anomaly detection 
model

Normal data 
(non-flaw)

Abnormal data 
(potential flaw)

Automated Analysis: Classification

Training
Training

Ultrasonic NDE data
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Recent results continue to show the potential of ML for 
automated NDE data analysis and…

Receiver operating characteristic 
(ROC) curves

Example: Flaw Detection

Example: Convolutional Neural 
Network Architecture
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…ML for anomaly detection if applied appropriately

B-scan index

Receiver operating characteristic (ROC) 
curves and area under curve (AUC) 

Example: Potential Flaw Identification

Example: Autoencoder Architecture
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Results indicate data diversity in the training data set is 
important for improving ML performance

SS-3 (3 TFCs)SS-1 (4 saw cuts) DMW-1 (4 TFCs)

More Flaws Added

Window 
moved: right

1.25×
amplitude

Window 
moved: left

Window 
moved: up

Right side of the weldment

Weld root

AUC ranges from 0.97-0.999

Anomaly Detection ROC 
Curves: before data 

augmentation

Original non-
flaw B-scan

Original Training 
Data Set

Anomaly Detection ROC 
Curves: after data 

augmentation

Additional Data from 
other specimens

Augmented Data Added

AUC ranges from ~0.6-0.98
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Specimen Description Flaw Type
Flaw length 

(mm)

Height (% 

thickness

A(19C-358-1) SS Plate

1 Saw cut 101.7 30.1%
2 Saw cut 101.4 30.2%
3 Saw cut 101.6 30.2%
4 Saw cut 101.4 30.0%

B(19C-358-2) SS Plate

1 Saw cut 100.6 29.2%
2 Saw cut 101.4 29.2%
3 Saw cut 101.4 29.4%
4 Saw cut 101.4 29.5%

C(322-14-01P) SS pipe section
1 TFC 70.4 65.8%
2 TFC 13.5 12.5%
3 TFC 46.5 43.0%

D(02-24-15)
SS pipe section

A TFC 10.7 15.0%
B TFC 30.5 43.0%
C TFC 43.6 64.0%
a Saw cut 32.8 7.5%
b Saw cut 65.2 28.4%
d Saw cut 54.1 18.8%
e Saw cut 43.7 12.0%

E(8C-032) DMW pipe

1 TFC 22.9 20.0%
2 TFC 28.9 40.0%
3 TFC 45.9 60.0%
4 TFC 21.6 30.0%

F(8C-091) DMW pipe

1 EDM notch 69.1 30.2%
2 EDM notch 50.8 17.6%
3 TFC 70.6 36.4%
4 TFC 57.6 23.2%

G (21C-303-1) SS plate

1 EDM notch 50.8 15.0%

2 EDM notch 75.9 29.6%

3 TFC 49.8 14.8%

4 TFC 75.7 26.3%

H (21C-303-3) SS plate

1 EDM notch 50.8 14.3%

2 EDM notch 75.2 30.3%

3 TFC 51.8 16.0%

4 TFC 77.0 29.3%

Reference NDE data set includes multiple probe designs, 
frequencies, and wave modes

C (322-14-01P) D (02-24-15)

A (19C-358-1) B (19C-358-2)

E (8C-032) F (8C-091)

G (21C-303-1) H (21C-303-3)

Specimens in Reference Data Set (To Date)

Flaws in Dataset (34 total: 12 saw cuts, 16 thermal 
fatigue cracks, 6 EDM notches)



10

Saw cut inside 
the weld

Saw cut with 
half in the weld

Saw cut away 
from the weld

Saw cut contacting 
with the weld

Non-flaw

Statistical data characterization points to differences in data from 
inspection parameters and specimen characteristics

SS-1 (19C-358-1, 4 saw cuts) SS-3 (322-14-01P, 3 TFCs)

Non-flaw

Small TFC

TFC along the edge

TFC inside weld
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Statistical data characterization appears to highlight improved ML 
accuracy with similar data (single-element probe)

PCA, Specimen A (SwRI 45˚) PCA Transformation from Specimen A,  
applied to Specimen B (SwRI 45˚)

ML results (CNN model trained 
with Specimen A data)

Actual value

Flaw Non-flaw

P
re

d
ic

ti
o

n Flaw
298 
(TP)

0 
(FP)

Non-flaw
29

 (FN)
292 
(TN)

Accuracy=0.95, 
TPR=0.91, FPR=0

Actual value

Flaw Non-flaw

P
re

d
ic

ti
o

n Flaw
35

(TP)
8

(FP)

Non-flaw
59

(FN)
378
(TN)

Accuracy=0.91, 
TPR=0.62, FPR=0.02

PCA Transformation from Specimen A,  
applied to Specimen C (SwRI 45˚)
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Statistical data characterization appears to highlight improved ML 
accuracy with similar data (PAUT)

PCA, Specimen A (PAUT 45˚) PCA Transformation from Specimen A,  
applied to Specimen B (PAUT 45˚)

ML results (CNN model trained 
with Specimen A data)

Actual value

Flaw Non-flaw
P

re
d

ic
ti

o
n Flaw

301 
(TP)

84 
(FP)

Non-flaw
0

 (FN)
309 
(TN)

Accuracy=0.88, 
TPR=1, FPR=0.2

Actual value

Flaw Non-flaw

P
re

d
ic

ti
o

n Flaw
0

(TP)
0

(FP)

Non-flaw
128
(FN)

352
(TN)

Accuracy=0.73, 
TPR=0, FPR=0

PCA Transformation from Specimen A,  
applied to Specimen C (PAUT 45˚)
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Planned work and expected outcomes

• Investigating ML and data verification and validation methods

• Evaluating data augmentation approaches and simulation data 
sets for training ML

• Examining model explainability approaches

• Metrics other than true positive and false positive rates for 
evaluating and monitoring ML performance
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• PNNL is assessing commercial options of ML-based 

methods (E.g. TrueFlaw FlawML Unit, CIVA DataScience 

Module) for usability and capability.

• PNNL is performing an initial evaluation of TrueFlaw 

FlawML Edge (referred to as Box), using the DMW data 

collected on NRC-owned mockups available at PNNL.

• The DMW Model of FlawML Edge is trained and accepts 

data following EPRI-ENC-DMW-PA-1, EPRI’s 

performance demonstration qualification summary and 

Supplement 10 inservice inspection (ISI) procedures for 

DMW examinations.

• PNNL has a wide array of available DMW mockups and 

access to Supplement 10. If necessary, PNNL will use 

these procedures to ensure acquired data are 

compatible with the FlawML Edge requirements.

Confirmatory Analysis of Commercially Available 
Systems: Current Work

Acquire 
Representative 

Data

Review 
Literature

Identify 
Commercial 

Software

Machine 
Learning-based

Methods

Rule-based
Methods

Analysis from a 
Qualified 
Inspector

Evaluate 
Performance and 

Usability

Results and 
Conclusion

FY23-24 FY24-27
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Current Work (Continued) 

• For each UVData file input into the DMW Model, 
FlawML Edge provides an HTML output file that 
displays the flaw indications, the number of hits for 
each indication, and the circumferential and axial axes 
of the indication. 

▪ If a UVData file is unable to process, FlawML Edge 
generates an error indicating “No Channels to 
Analyze”

• To analyze *.HTML output files, an evaluation table was 
developed to identify the following information

▪ Mockup details

▪ Flaw detected (Yes/No) 

▪ Number of hits 

▪ False positives (if any)

▪ Number of hits on the false positive

▪ Any other comments 

Example of a FlawML 

Output Report - *.HTML File
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Expected Outcomes and Planned Work

• Based on the data obtained from FlawML Edge unit, PNNL will evaluate the 
Machine Learning model through defined statistical metrics

✓ Detection Rate—the total number of correctly identified flaws divided by the total number of flaws

✓ Probability of Detection (POD)—the likelihood that flaws will be correctly identified within the 
inspection

✓ False Call Probability (FCP)—the likelihood that flaws will be incorrectly identified within the 
inspection

✓ Missed Detections—the number of flaws that were not identified within the inspection

• Future work will involve retraining of the ML models with TrueFlaw 

• Further, an inspection of the CRDM model of FlawML Edge will be performed 
through NDE data acquired in CRDM mockups 
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Summary
• Focus on assessing current capabilities of machine learning (ML) and 

automated data analysis for improving NDE reliability

• Assessments utilizing empirical data sets

– Available data covers austenitic and dissimilar metal welds 

– Multiple frequencies and probes

– Generic procedures

– Data cleaned and curated prior to use with ML

• Assessment of advances in ML, including commercially available ML 
systems, is ongoing
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Questions?
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Backup Slides
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Codes and Standards for ML Remain a Work in Progress

• ML for NDE

– ASME Boiler and Pressure Vessel Section V – Working Group on Automated Analysis

– EPRI developing Code actions to address AI in ASME Boiler and Pressure Vessel Section XI, 
Appendix VIII 

– ASNT - best practices/guidance document development in process

• ML – definitions, trust, other applications, software requirements, software 
reliability, etc. are being addressed by other standards development 
organizations

– ISO/IEC Joint Technical Committee (JTC) 1/SC 42 (Working group 42)

– Institute of Electrical and Electronics Engineers (IEEE)

– American Nuclear Society (ANS)

– SAE

Current thinking seems to be on defining Codes and Standards requirements based on the criticality 
of the application of ML
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