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Motivation

▪ Eddy current (EC) techniques are commonly used in balance-of-
plant (BOP) heat exchanger (HX) tubing inspection

▪ Current practices are challenged to accurately depth size damage 
cause by microbiologically influenced corrosion (MIC):

– Unnecessarily remove tubes from service  impact performance

– Unexpected leaks  impact safety

▪ Simplistic sizing: mono-parametric approach based on calibration 
curves typically built on single, specific defect profile.

Can Machine Learning  help improve sizing accuracy?
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Approach

Specimen 
Inventory

• Separate 
specimen sets 
for train/test

• ID pits

• Several defect 
profiles

Data 
Acquisition

• Additional 
frequencies

• Multiple pulls

Benchmark

• Assess 
performance 
following 
current 
practices

• Multiple 
calibration 
references

Machine 
Learning

• Develop 
models

• Assess 
performance
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Approach

Specimen 
Inventory

Data 
Acquisition

Benchmark
Machine 
Learning

Develop models for ID pits

Adapt for MIC (see 1013454)

https://www.epri.com/research/products/000000000001013454
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Specimen Inventory

▪ 19 tubes for train, 4 for test
▪ 9 flaws per tube
▪ Flaw profiles:

– Round pits 
▪ 5 diameters from 1.59 to 6.35mm

– Rectangular (axial) pits
▪ 5 aspect ratios from 2 to 8

– Rectangular (circumferential) pits
▪ 5 aspect ratios from 1/8 to 1/2

▪ Training tubes:
– Aligned defects, all same profile
– Depths of 10%, 20%, 30%, …, 80%, 100%

▪ Test tubes:
– Varied profiles, depths, angular location

Training tube with round pits

Training tube with axial pits

Training tube with circumferential pits

Test tube 



© 2025 Electric Power Research Institute, Inc. All rights reserved.6

Data Collection

▪ Absolute and differential modes

▪ 10 frequencies

– 4 typically used in EC inspections

– 6 extras, mainly higher than prime

▪ 36 pulls  at different tube rotations

– Every 10

Frequency (kHz) Prime Frequency Factor

100 0.11

220 0.25

440 0.50

660 0.75

880 1.00

990 1.12

1100 1.25

1320 1.50

1540 1.75

1760 2.00

Frequencies typically used in EC

Additional frequencies
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Benchmarking: Manual Sizing

Case Reference Target What It Represents RMSE (%TW)

Self-Calibration Same as target
All training 
tubes

Utopic best-case scenario where
reference and target defects match
perfectly. Used as a reference for upper
limit for performance of manual analysis.
Not expected to be achieved in the field.

10%

ASME 
Calibration

ASME All test tubes
Performance based on available ASME
standard (OD defects), without using any custom
reference standards.

24%

ID Pit 
Calibration

Each of the 
seamless 
training tubes

All test tubes

Typical field scenario, where reference
defect profiles are not expected to match
the unknown target defect. Provides an
assessment of variance in performance
based on choice of reference standard.

14 – 29%
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Machine Learning Models

▪ 10 frequencies  2 modes  2 signals = 40 waveforms
▪ Trained on data from several pit profiles, at several angular locations
▪ 300 total features

– Amplitude, phase, correlations, frequency analysis components, etc…

▪ 24 different models
– Linear, random forest, MLP, KNN, SVM
– Feature selection (statistical, lasso, etc)
– Multiple strategies

▪ Regression models
▪ Classification for TW holes + regression for others
▪ Multi-label classifiers (binned depths)

– Absolute (mm) and relative (%TW) scales
– Ensemble of top 10 models (mean)
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Performance Comparison

▪ Machine learning out-performs self-calibration 
case by 40%

Self-Calibration
RMSE: 10%TW

Ensemble ML model
RMSE: 6%TW

Best ID pit reference
RMSE: 14%TW
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Remarks on ID Pit Sizing

▪ Performance of current practices vary significantly depending on 
choice of calibration reference
– Biased measures observed in some cases

▪ Results show ML methods to be at least 2 more accurate than 
expected performance following current practices
– 40% better than limiting self-calibration case

– No need to choose calibration reference
Machine Learning to Improve ID Pit 

Sizing in Balance-of-Plant (BOP) Heat 
Exchanger Tubes: Target—Type 304 

Stainless Steel Tubing
(3002021048)

https://www.epri.com/research/products/000000003002021048
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Field MIC Damage

What happens when we apply the models directly to this?

Field-removed tube supplied by member utility

A

B C
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Applying Models to MIC Damage

Top models still out-perform manual by approximately 2

A Case Study to Improve Flaw Depth 
Sizing in Heat Exchanger Tubes with 

Machine Learning Techniques
(3002021042)

https://www.epri.com/research/products/000000003002021042
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What If We Only Have the 

Fab-Four?

▪ Top-10 models re-trained to use 
only traditional 4 frequencies

– 1×, 0.5×, 0.25×, 0.125× prime

➢No significant performance 
degradation observed

Frequency (kHz)

100

220

440

660

880

990

1100

1320

1540

1760

Models can be leveraged with current 
industry data collection practices
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Future Efforts

2025-2027
▪ Staring New Project in 2025 titled: Harnessing Machine Learning (ML) Tools to Depth Sizing Tubing Flaws.

▪ Target: 90/10 CuNi, 1.0” OD x 0.035” wall thickness (25.4mm x 0.889mm). 

2025 – Tasks, Eddy Current (EC) Inspection
– Prepare draft inspection technique sheet with required parameters to enable EC and ML 

– Perform bobbin coil eddy current inspection to identify tubes with and without indications.

– Extract some tubes for destructive analysis to determine types of defects seen.

– Fabricate the known defects in calibration standards.

– Update inspection technique sheet.

– Perform eddy current inspection on all accessible tubes in the heat exchanger.

– Evaluate and report all conditions (relevant and non-relevant indications).

– Extract some tubes  with indications for detail destructive analysis to obtain ground truth.

– Compare eddy current results with ground truth measurements and if necessary, tweak analysis technique 
to improve eddy current measurements.

– Finalize examination technique specification sheet (ETSS), results, and prepare white paper.

– Include results in BOP tubing inspection best practice database during next update, 2026
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Future Efforts

2026-2027

▪ Tasks, Machine Learning (ML) Investigation

– Use the acquired raw eddy current data and run previously developed sizing models for initial 
assessment. 

▪ Gain insights into model generalization capabilities

– Develop detection, characterization and (potentially new) sizing models for a full solution for both 
applications (SS304 and 90/10 CuNi)

▪ Detection & characterization: new for both applications

▪ Sizing: SS304 models may be updated; new for 90/10 CuNi

– Compare ML results with Eddy Current and ground truth results.

– If required, acquire EC data with additional frequencies and evaluate EC models.

– If required, extract additional tubes for destructive analysis to obtain ground truth and compare 
results.

– Work with industry to identify preferred implementation method
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Summary

ML approaches offer improvement in ID-

pit sizing accuracy when compared to 

industry practices 

(see 3002021048)

Direct applications of the models improve 

MIC depth-sizing as well 

(see 3002021042)

A

B

C

Note: ML does not require a choice of reference standard

https://www.epri.com/research/products/000000003002021048
https://www.epri.com/research/products/000000003002021042
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Together…Shaping the Future of Energy®


	Slide 1: AI/ML for Tubing EC Analysis
	Slide 2: Motivation
	Slide 3: Approach
	Slide 4: Approach
	Slide 5: Specimen Inventory
	Slide 6: Data Collection
	Slide 7: Benchmarking: Manual Sizing
	Slide 8: Machine Learning Models
	Slide 9: Performance Comparison
	Slide 10: Remarks on ID Pit Sizing
	Slide 11: Field MIC Damage
	Slide 12: Applying Models to MIC Damage
	Slide 13: What If We Only Have the Fab-Four?
	Slide 14: Future Efforts
	Slide 15: Future Efforts
	Slide 16: Summary
	Slide 17

