

Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database

Product ID#: 3002028670 (March 31, 2024)

Nuclear

Nathan Muthu Technical Executive Plant Support – NDE nmuthu@epri.com

Annual NRC-Industry NDE Technical Information Exchange Meeting Wednesday, January 22, 2025 – NRC Headquarters, Rockville, MD

 IN
 X
 T

 www.epri.com
 © 2025 Electric Power Research Institute, Inc. All rights reserved.

BOP Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database

Database Contents:

- > 28 HX's with 62 downloadable ETSS and Final EC reports
- 6 Main Condensers with ETSS and Final EC reports
- > 12 Metallurgical/Destructive Analysis Reports
- > 2 downloadable eddy current inspection related calculators:
 - ASME flaw depth
 - Probe Fill-Factor and Frequency

28 Heat Exchangers

Component Coolers	Emergency Diesel Generators	Low Pressure Feedwater Heaters	Reactor Cooling Pump Upper Motor Bearing Oil Cooler
Component Cooling Water	Flux Thimble Tubes	Low Pressure Injection System (LPI) Decay System	Reactor Pump Air Cooler
Condenser Heat Exchanger	High Pressure Coolant Injection (HPCI) Systems	Off Gas Recombiner Vent Cooler	Residual Heat Removal
Containment Spray	High Pressure Feedwater Heaters	Reactor Building Cooling Unit	Safety Shutdown Facility Diesel Lube Oil Cooler
Control Room AC Units	Isolation Condensers	Reactor Building Heat Exchanger	Seal Oil Cooler
Drywell Equipment Tank	Letdown and Access Letdown	Reactor Containment Fan Coolers	SSF HVAC Condenser
Emergency Diesel Generator Jacket Water and Lube Oil Cooler	Low Pressure Coolant Injection (LPCI) Systems	Reactor Cooling Pump Motor Air Cooler	Turbine Building Heat Exchanger

28 Heat Exchangers – 15 Different Common Material Type

Admiralty Brass
AL6XN
Arsenical Copper
304 Stainless Steel
316 Stainless Steel
321 Stainless Steel
AL6XN
Titanium
90/10 CuNi
70/30 CuNi
Inconel 600
Admiralty Brass with Low Fins
90/10 CuNi with External Fins
90/10 CuNi with Helical Wound Copper Fins
Copper with Integral Fins

62 downloadable Eddy Current Final Reports and Technique Sheets (ETSS)

5 Condensers – 3 Different Common Material Type

90/10 CuNi

SeaCure

Titanium

5 downloadable Eddy Current Final Reports and Technique Sheets (ETSS)

Log In Information

Log in with EPRI Credentials

EPRI Lo	ogin
Username	ABCD*****
Password	*Password is case sensitive
By continuing	g, you agree to EPRI's Privacy Statement, Cookie Policy, and Terms of Use
C Rememb to work)	er me on this computer (Note: Cookies must be enabled in your browser for this site
LOG	IN

Database Home Page

		Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database
∱ ∣	lome	Walaama
(b)	leat Exchanger	weicome
 1	Main Condenser	Welcome to the EPRI Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database. This database contains a variety of inspection documents that EPRI members have used in the inspections of their safety and non-safety related heat exchangers and condensers. Supplemental information such as destructive, metallurgical, and root cause analysis reports of tubing degradation are also available. These valuable documents can heighten the engineer's awareness, knowledge, and understanding about tubing damage mechanisms seen in the industry and necessary actions to take to mitigate or eliminate similar tubing degradation issues.
ا 🔛 /	Metallurgical/Destructive Analysis Reports	Utilities and their stakeholders are encouraged to use these best practice inspection documents as reference to develop their own inspection techniques for optimal results based on their operating condition and damage mechanisms seen (historical and present). Using verbatim techniques, tools, and inspection parameters from this database are not recommended as they may lead to erroneous results.
(A) (ASME Calibration Standard & Jser Defined Flaw Depth	Value
(Calculator	Access to shared industry knowledge will provide utility and their stakeholders with common eddy current tubing inspection techniques and practices that are being used in the industry. From these documents, utilities can meet their own inspection requirements by generating optimal inspection and data analysis techniques.
∓ ≚ [(Probe Fill-Factor and Frequency Calculator	With optimal results, engineers can make informed and timely decisions about repair, replacement, and maintenance opportunities, successfully trend the eddy current data for flaw growth, and focus on high-risk zones for future inspections. This affords for improved asset management beyond normal life expectancy of the heat exchanger and importantly to evade disruptions to normal plant operation due to tube leaks.
? I	Jser Manual	Use in Conjunction with the Following EPRI Reports
	\uparrow \uparrow \uparrow \uparrow	Users are encouraged to review EPRI product # 3002023702 titled, BOP Heat Exchanger and Condenser Tubing Degradation Database. This database affords the user to understand other utilities tube design, their operating conditions and inspection frequency, tube inspection and degradation results, tube repair approaches, tube leak management, tube leak consequences, and utility concerns. Some eddy current reports and inspection technique sheets are also provided for that specific heat exchanger or condenser. Members may also review and download these documents for use.
	 ick on each	Another supportive report to this database is product ID #: 3002013154 titled, Balance-of-Plant (BOP) Electromagnetic Nondestructive Evaluation Guide for Engineers: Best Practices to Successfully Execute an Eddy Current Inspection Campaign. This report provides the necessary information and tools to support the engineer throughout the various stages of performing eddy current inspections of heat exchangers and condenser tubing including, manufacturing, bundle assembly, pre- service (baseline inspections), and in-service inspections. The topics are supported with a series of checklists that engineers may download, modify, and use throughout the inspection processes. The aim is to support a thorough understanding of eddy current inspection processes, and thereby increase the confidence level of engineers, aiding them in their interactions with their inspection vendors and helping them to take ownership and make informed decisions of their heat
	arget/lopic	exchanger and condensers.
		Request
		Contact Nathan Muthu, nmuthu@epri.com or Matt Wolf, mawolf@epri.com if errors are found in the presented documents and calculators, if updated inspection documents to supersede existing documents are available, or if you wish to provide your inspection documents to be included in the database.
		Nuclear Database Agreement
		Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database 1.0

EPRI 3420 Hillview Avenue, Palo Alto, California 94304 © Electric Power Research Institute, Inc. 2001-2024 All Rights Reserved

Copyright Policy | Privacy Statement | Terms of Use | EPRI.com

Copyright © 2024 Electric Power Research Institute, Inc. All rights reserved.

Electric Power Research Institute (EPRI)

3420 Hillview Ave.

Palo Alto, CA 94304

📞 i 👱 Jeganathan Maruthamuthu

Heat Exchanger Page

- 1) Select Component
- 2) Select Material
- 3) Download Documents for Review

epei	Balance-of-Plant Heat Exchanger and Condenser Tubi	ng Eddy Current Inspection Best Practice Document Database 🕓 🛈 💄	Jeganathan Maruthamuthu								
✿ Home	Heat Evolution		Î								
🕑 Heat Exchanger	I ICAL LACIIAIIYCIS										
II Main Condenser	Several near exchangers are inservative under the Select component pull down menu. First, select the fleat exchanger type, then nom the Select material pull down menu, select the tubing material of interest.										
Metallurgical/Destructive Analysis Reports	generate your ETSS based on your own heat exchanger historical performance, past and present tubing degradation types reported, water chemistry, and operating conditions for optimal inspection techniques and results. Remember not to use verbatim techniques from the downloaded documents in your inspections.										
ASME Calibration Standard & User Defined Flaw Depth Calculator	If the technique you developed and used in your inspection provided optimal resu analysis results, and final report to the EPRI project managers Nathan Muthu, nm contact the project managers immediately.	Its, please consider sharing your operating experience (OE) with the rest of the industry. You may do so by providing the ETSS, metallurg uthu@epri.com or Matt Wolf, mawolf@epri.com for inclusion in the next database update. Conversely, if you find any errors in the existin	ical and destructive g documents, please								
-X Droho Fill Festor and Fraguency	Select Component:	Select Material:	I								
Calculator	Low Pressure Feedwater Heaters	304 Stainless Steel	I								
? User Manual	Component Documents:		I								
	Filename	• 2 •	CreatedDate 🔻								
	14A FWH Final Report _1RE21_0.625 x 0.035 (15.87mm x 0.89mm).pdf	4 3	02/16/2024								
	14A FWH Final Report_1RE19_0.625 x 0.035 (15.87mm x 0.89mm).pdf		02/16/2024								
	14B FWH Final Report _1RE22_0.625 x 0.035 (15.87mm x 0.89mm).pdf		02/16/2024								
	<u>14B FWH Final Report_1RE16_0.625 x 0.035 (15.87mm x 0.89mm).pdf</u>		02/16/2024								
	<u>14B FWH Final Report_1RE20_0.625 x 0.035 (15.87mm x 0.89mm).pdf</u>		02/16/2024								
	<u>14B FWH Final Report_1RE24_0.625 x 0.035 (15.87mm x 0.89mm).pdf</u>		02/16/2024								
	2018-09 FPR23-33E-3A_Final Report_0.625 x 0.035 (15.87mm x 0.89mm)_Cons	:tellation.pdf	02/16/2024								
	2022-09 J1R25-33E-3A_Final Report_0.625 x 0.035 (15.87mm x 0.89mm)_Cons	<u>tellation.pdf</u>	02/16/2024								
	2023-02 CC2R25_Final Report_0.625 x 0.035 (15.87mm x 0.89mm)_Constellation	ən.pdf	02/16/2024								
	24A FWH Final Report _2RE17_0.625 x 0.035 (15.87mm x 0.89mm).pdf		02/16/2024								
	■ ■ 1 2 ▶ ▶										
EPRI 3420 Hillview Avenue, Palo Alto, California 94304 © Electric Power Research Institute, Inc. 2001-2024 All Rights Reserved Copyright Policy Privacy Statement Terms of Use EPRI.com											

Condenser Page

- 1) Select Material
- 2) Download Document for Review

E		Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database 🕓 🤅	💄 Nathan Mut	hu	٩
	Home Heat Exchanger Main Condenser Metallurgical/Destructive Analysis Reports ASME Calibration Standard & User Defined Flaw Depth Calculator Probe Fill-Factor and Frequency Calculator	Main Condensers Several condenser tubing material types are provided under the 'Select Material' pull down menu. Select the tubing material of interest to you. An active link to download the available documents will be displayed Documents'. Click on the document to review or download. From this information, you may generate your own ETSS based on your own condenser historical performance, past and present tubing degradation to operating conditions for optimal inspection techniques and results. Remember not to use verbatim techniques from the downloaded documents in your inspections. If the technique you developed and used in your inspection provided optimal results, please consider sharing the operating experience (OE) with the rest of the industry. You may do so by providing the ETSS and contacting Nathan Muthu, nmuthu@epri.com or Matt Wolf, mawolf@epri.com for including in the database. Select Material: Titanium Component Documents:	ed under the 'Compon ypes, water chemistry d final report to EPRI b	ent ; and IV	11 11 12 12 12 12 12 12 12 12 12 12 12 1
?	User Manual	Filename Final Report_0.875 x 0.028 (19.05mm x 0.71mm)_South Texas Project.pdf Final Report_0.875 x 0.049 and 0.028 (22.2mm x 1.24mm and 0.71mm)_Consteallation.pdf Final Report_1.250 x 0.028 (31.7mm x 0.71mm)_Titanium_Constellation.pdf	CreatedDate 1 11/10/2023 1 11/10/2023 1 11/10/2023 1	r	
Сору	PRI 3420 Hillview Avenue, Palo Alto, California 94304 © Electric Power Research Institute, Inc. 2001-2024 All Rights Reserved ight Policy Privacy Statement Terms of Use EPRI.com				口 2 袋

Metallurgical / Destructive Analysis Reports Page

1) Download Document for Review of Flaw Damage Forensics

e epei	Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database 🕓 🛈 💄 Nathan Muthu	Q
☆ Home	Analysis Reports	
leat Exchanger	EPRI utility members have provided examples of metallurgical and destructive analysis reports that are included in this section. Some reports may be several years old, but lessons learned from all reports provide the necessary information for plants to understand the root causes of tube leaks and other damage forms seen in Balance-of-Plant heat exchangers and condensers. This information is valuable as it affords the utility to make informed decisions to	
🞛 Main Condenser	prevent tuture issues.	-
Metallurgical/Destructive Analysis Reports	Added value to metallurgical and destructive analysis of extracted tube specimens include the ability to assess the robustness of the current eddy current data analysis techniques and to fabricate additional calibration standards from defect free sections of the extracted tubes. Because the flaw morphology is well understood, representative flaws can be fabricated to improve the data evaluation examination technique specification sheet (ETSS) and flaw depth sizing results.	5
A ASME Calibration Standard	Filename	-
& User Defined Flaw Depth Calculator	Cooling Water Corrosion Assessment-NMP NPP.pdf	+
	Failure Analysis Report of Main Condenser Tubes-NMP NPP.pdf	
Calculator	Met Evalaution on Turbine Lube Oil Cooler Tubes-Dresden NPP.pdf	
 User Manual 	Met Evaluation on Condenser Tubes-Braidwood NPP.pdf	
Ŭ	Met Evaluation on Condenser Tubes-NMP NPP.pdf	
	Met Evaluation on DG Jacket Water HX Tubes.pdf	
	Met Evaluation on ID Pit Evaluation from CCWHX Tube-Braidwood NPP.pdf	
	Met Evaluation on Isolation Cond HX Tube-Dresden NPP.pdf	
	Met Evaluation on Main Feedwater Pump Lube Oil Cooler Tubes-Ginna NPP.pdf	
	Met Evaluation on TBCCW HX Tubes-Fermi NPP.pdf	
	Met Evaluation on Turbine Lube Oil Cooler Tubes-Ginna NPP.pdf	
	Met Evlaution on EHC Fluid HX Tubes-Dresden NPP.pdf	
EPRI 3420 Hillview Avenue, Palo Alto, California 94304 © Electric Power Research Institute, Inc. 2001-2024 All Richts Reserved		67
Copyright Policy Privacy Statement Terms of Use EPRI.com		~
Copyright Policy Privacy Statement Terms of Use EPRI.com	•	ŝ

ASME Calibration Standard Flaw Depth Calculator

1) Download Spreadsheet to your Desktop and Use

		Balance-of-Plant H	leat Exchanç	ger and Condenser Tubi	ng Eddy Current Inspection B	est Practice Document Da	tabase 🥄 🤅 👤 Nathan Muthu	Q
↑ 心	Home Heat Exchanger	ASME Calibratio	on Standar	d & User Defined Fla	w Depth Calculator			-
Ŭ		ASME Calibration Sta	ndard Flaw De	epth Calculator				<u>1</u>
H	Main Condenser	Note: Enter in Inches o	or Millimeters	Not both.				
			In Inches	s In Millimeters	Notes			•
	Analysis Reports	Enter Tube OD Here	0.625					0
A	ASME Calibration Standard				Intentionally left blank	Additional Depth Info	rmation Entered by User	7
	& User Defined Flaw Depth	Enter Tube Wall	0.028			(can be used in calculating	flaw denths for other calibration standards)	
	Calculator	Thickness Here				(can be used in calculating		+
Ŧž	Probe Fill-Factor and Frequency Calculator	100% Through Wall Hole Diameter	0.052		* Up to 0.750-inch (19.05 mm) OD, 0.052- inch (1.32 mm) diameter. ** Greater than 0.750-inch (19.05 mm) OD, 0.067-inch (1.70 mm) diameter.	User Enter Desired Depth in %	Fabricated Depth Measurement in Inches	
		ASME Type Sta	ndard Fla	aw Depths			0.000	-
?	User Manual					20	0.000	-
		Desired Flow Dest	Al Al	proximate Fabricated	Fabricated Depth	30	0.000	-
		Desired Flaw De	ptn i	Depth	weasurement in incres	40	0.013	-
					(rounded)	65	0.076	-
		Through Wall Ho	ole	100%	Through Wall Hole	80	0.024]
		80% ODFBH		78.57%	0.022	_		
		60% ODFBH		60.71%	0.017			
		40% ODFBH		39.29%	0.011	-		
		20% ODFBH		21.43%	0.006	4		
		20% 360 Deg OD Groove		21.43%	0.006	4		
		10% 360 Deg ID GI	roove	10.71%	0.003]		
								-
	EPRI 3420 Hillview Avenue, Palo Alto, California 94304							L
	© Electric Power Research Institute, Inc. 2001-2024 All Rights Reserved							Ø
Сору	right Policy Privacy Statement Terms of Use EPRI.com							द्धि

Probe Fill-Factor and Frequency Calculator

1) Download Spreadsheet to your Desktop and Use

e e e e e e e e e e e e e e e e e e e	Balance-of-Plant Heat Exchanger and Condenser Tubing Eddy Current Inspection Best Practice Document Database 🕓 🕫 🚊 Nathan Muthu											ithu	٩			
														•		
☆ Home	Frequency and Probe Fill-Factor Calculator												_			
Av Lloot Exchanger	Trequency and Frobe This actor Galcula															
Heat Exchanger	This downloadable Excel spreadsheet can be saved to your desktop. It allows you to calculate the probe fill factor, inspection frequencies, and standard depths of penetration. Make sure to enter information in inches or millimeters, not													8 X		
:: Main Condenser	both.															
Metallurgical/Destructive	Tube and Probe Fill-Factor Inf	ormation				Matorial ID #	LINS	Matorial	Resistivity μΩ-cm	% IACS	Material ID #	LINS	Matorial	Resistivity uΩ-cm	% IACS	- -
Analysis Deports	Enter in Inches or Millimeters. Not	hoth				1	C44300	Admiralty Brass	7.18	24.01	46	N06617	Inconel® Alloy 617	122.00	1.41	D
Analysis Reports		In Inches	In Millimeters			2	011000	Aluminum (99.9%)	2.66	64.82	47	N06625	Inconel® Alloy 625	129.00	1.34	_
	Enter Tube Outside Diameter		19.05			3	A92024	Aluminum 2024-T4	5.20	33.16	48	N07718	Inconel [®] Alloy 718	125.00	1.38	-
A ASME Calibration Standard	Enter Tube Wall Thickness		1.24	_		4	A96061	Aluminum 6061-T6	4.07	42.36	49		Ingot iron (99.9% iron)	11.05	15.60	~
& User Defined Flaw Depth ()	Tube ID	0.652	16.570	_		5	A97075	Aluminum 7075-T6	5.39	31.99	50		Iron	9.58	18.00	
Calculator	Probe OD, Subtract 0.040" (1.0mm) from tube ID	0.612	15.554			~	000000	Aluminum Brenner	12.22	12.00	F1		l and	20.52		+
Calculator	Probe Fill-Factor in %		19/	-		•	00800	Aluminum Bronze	12.52	15.99	51		Lead	20.55	8.40	
		00	.176			7	\$44735	AL 29-4C®	72.00	2.39	52	N04400	Molybdenum	5.20	33.16	
Probe Fill-Factor and Frequency	Note					8	N08366	AL-6X	94.76	1.82	53	N04400	Muntz metal (appealed)	48.16	3.58	
Calculator	From the new rounded works is a non-many manufactured to the interfect Outpoint(10,224 mm).					10	S32101	Alloy 2101	80.00	2.16	55	N06075	NIMONIC [®] Alloy 75	109.00	1.58	
		In Inches	In Millimeters			11	\$32205	Alloy 2205	80.00	2.16	56	N07080	NIMONIC [®] Alloy 80A	124.00	1.39	
Oser Manual	Enter Probe OD rounded to the nearest 0.010" (0.254 mm) Diameter	0.620		7		12	\$32304	Alloy 2304	80.00	2.16	57	S20910	Nitronic [®] 50 (XM-19)	82.00	2.10	
	Probe Fill Factor in %	90	.3%			13	\$32750	Alloy 2507	80.00	2.16	58		Platinum	10.64	16.20	
				_		14	\$32550	Alloy 255	82 10	2 10	59	\$44660	SEA-CURE®	66.00	2.61	
	Frequency and Standard Denth of Pene	tration Calcu	lation				002000	/110/255	02.20	2.20	33	011000	- Conc	00.00		
		that for curea	in the second second			15	\$32760	Alloy 4501	80.00	2.16	60	640000	Silver, pure	1.64	105.13	
	Enter Material ID from Table OR Enter Custom Resis	stivity value. Not bo	otn	1		15	N08904	Alloy 904L	95.20	1.81	61	\$40300	Stainless Alloy 403	57.00	3.02	
	Resistivity in micro-ohms-cm	57.	000	-		18	C23000	Brass red	4.66	37.00	63	\$42000	Stainless Alloy 420	56.00	3.08	
	% IACS	3.0)25	-		19	C27000	Brass. vellow	6.39	26.98	64	\$20100	Stainless, Type 201	69.00	2.50	
						20	C22000	Bronze (annealed)	3.92	43.98	65	\$30100	Stainless Type 301	72.00	2.39	
	Custom Basistivitu Valua in missa aluma an	-	7	7		21		Cashan Steel (0.55% C)	18.00	0.59	66	600000	Stainless Ture 202	72.00	2.20	
	Custom resistivity value in micro-onnis-cm	57				21		Carbon Steel (0.65% C)	18.00	9.56	00	350200	Stanness, Type 502	72.00	2.39	
						22		Carbon Steel (1% C)	20.00	8.62	67	S30400	Stainless, Type 304	68.97	2.50	
			One Depth o	f Penetration	Number of Standard	22		Carbon Steel, Conoris	16.00	10.79	<u> </u>	\$20500	Staiplace Type 205	72.00	2 20	
		Frequency in kHz	Inches	Millimeters	Depths	23	C11000	Copper (Electrolytic Tough Pitch)	1 71	100.82	69	\$30900	Stainless, Type 309	78.00	2.33	
	1 Standard Depth/Wall Thickness	93	0.049	1.247	0.994	25	C12200	Copper, deoxidized (annealed)	2.03	84.93	70	\$31000	Stainless, Type 310	78.00	2.21	
	Optimum Frequency	239	0.031	0.776	1.597	26		Copper, IACS	1.72	100.24	71	\$31600	Stainless, Type 316	74.96	2.30	
EPRI 3420 Hillview Avenue, Palo Alto, California 94304	F90 Detection Frequency	111	0.045	1.139	1.089	27		Copper, Pure	1.67	103.24	72	\$31700	Stainless, Type 317	74.00	2.33	Ш
© Electric Power Research Institute, Inc. 2001-2024	Enter your Own Frequency	90	0.050	1.266	0.980	28	C71500	Copper/Nickel 70/30	38.31	4.50	73	\$31703	Stainless, Type 317L	79.00	2.18	
All Rights Reserved						29	C71000	Copper/Nickel 80/20	26.20	6.58	74	\$32100	Stainless, Type 321	72.00	2.39	Ø
Convright Policy Privacy Statement Terms of Use EPPI com						30	C70600	Copper/Nickel 90/10	17.71	9.74	75	\$34700	Stainless, Type 347	73.00	2.36	
opyngikt bildy i filvady statement i ferna or Ose Er Ki.com																द्ध

User Manual

Continued Reach Out Will be Done to Build This Database

• This is a living database.

Updated documents that can supersede present documents (Improvements to existing techniques).

> If an error with the present documents are identified.

Next Update to Database

Tentative plan is to reach out to the industry in 18 months (September 2025) and release version 2 in September 2026 (~2 ½ year update cycle).

TOGETHER...SHAPING THE FUTURE OF ENERGY®

