

Dr.-Ing. Martin Brandauer

Principal Technical Leader

Worldwide Status and Plans for Decommissioning

- 220 power reactors shutdown for decommissioning, while only 26 plants are fully decommissioned
- Almost half of the 423 power reactors in operation around the world are expected to enter the decommissioning phase by 2050
- Facilities related to research, nuclear fuel & small industrial and medical applications amount to several thousands of decommissioning projects

Germany

German NPPs Decommissioning Projects

Latest granted decommissioning licenses:

• Isar 1:

Neckarwestheim 1:

Biblis A:

Biblis B:

Philippsburg 1:

Unterweser:

Grafenrheinfeld:

Brunsbüttel:

Gundremmingen B:

Philippsburg 2:

Gundremmingen C:

Neckarwestheim II:

Grohnde:

Isar 2:

Krümmel:

Emsland:

Brokdorf:

17 January 2017

3 February 2017

30 March 2017

30 March 2017

7 April 2017

5 February 2018

11 April 2018

21 December 2018

19 March 2019

17 December 2019

26 May 2021

4 April 2023

6 December 2023

21 March 2024

20 June 2024

26 September 2024

23 October 2024

Released from regulatory control

Decontamination and Characterization of the Buildings

Wall decontamination

Electric handhold chiseling

Handhold measurement and documentation

Shaved walls after decontamination

Drill out of ducts and wire shafts

Decontamination of Residual Remains

Source: PreussenElektra

Facts from "clearance measurements" at Würgassen NPP

• Measurements with contamination monitor on mineral structure:

26,295 decision measurements, often for wall openings

Preliminary investigation and decontamination control:

approx. 100,000 measurements

 12,739 measurements with ISOCS (typically 10 m² area per measurement)

 Collection and evaluation of more than 34,000 material samples

 Evaluations for the disposal of the removed material and the personnel monitoring: approximately 196,000 laboratory analyses conducted at Würgassen.

NPP Stade – Increased Decontamination Effort

- Removal of 20.000 tons of concrete due to contamination found in the reactor sump area between the concrete and the steel liner
- 1.500 pieces of about
 14 metric tons each had
 to be removed through
 wire-saw cutting
- Transportation, crushing, characterization and segregation, extended project duration by 3-year

Cleanout of the Containment at Stade

Source: PreussenElektra

Total Initially Estimated Waste Volume* of NPP Stade

Source: PreussenElektra

The PreussenElektra Fleet Approach

- Würgassen and Stade Take-aways regarding time critical processes:
 - Start with the difficult tasks first and minimize respectively operational costs as soon as possible
 - Assess schedule risks and opportunities monetarily and track them forward
 - Steer and analyze schedule and critical path continuously
- Shortening the decommissioning duration significantly reduces the total operational costs

mpressions of Unterweser

Source: PreussenElektra

Spain

José Cabrera Power Plant (CNJC) **Decommissioning Experience**

Background:

- Single loop 160MWe PWR Located in central Spain
- After spent fuel transferred to an ISFSI in 2010, plant license transferred to ENRESA who is completing the decommissioning
- After decommissioning by ENRESA, the site license (covering only the ISFSI) will be returned to the utility Naturgy

Major Activities:

- Full system chemical decontamination conducted in 2006/2007
- Turbine building remodeled as waste treatment/interim storage
- Reactor and reactor internals segmented underwater in spent fuel pool with mechanical cutting
- Soil washing cleared 85% of candidate material processed
- Building/land areas cleared using NRC MARSSIM survey process

Major challenge:

First of a Kind project, resulting in 9 years of approval process, in particular driven by site release limits (ongoing process)

Source: EPRI Report 3002026759

Site Restauration at CNJC

Source: ENRESA

Lessons Learned CNJC Site Restauration

 ✓ Below ground level structures (basements of reactor building, Radwaste building, others)

Material management

- ✓ Open land areas
- ✓ Footprint of RW stores, tanks, evaporator
- ✓ Old trenches (RW initial stores)
- ✓ Discharge Channel
- ✓ Buried pipes

- ✓ Nevertheless, real inventory is only known when radiological controls are carried out during clean-up activities (graded approach). Almost impossible access to certain places (sinks, embedded pipes) until advanced demolition.
- ✓ **Design and approve Site Restoration Plan** as early as possible (Don't leave it for final stages. Important to get the release levels early, and to become conscious of how low they can be).
- ✓ Anticipate regulatory challenges (e.g. Spanish regulator prescribes RP 113 re-use levels)
- ✓ Anticipate complex civil works below groundwater level remediation
- ✓ Significant amount of material needs to be treated. Keep your storage capacity until the end of the process (declassifiable soil, VLLW)
- ✓ **Soil washing is a mature technology** (11000t treated, 85% released)

Acknowledgements

EPRI would like to thank the support received in the preparation of this presentation by:

- Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMUV - Germany)
- PreussenElektra GmbH (Germany)
- Empresa Nacional de Residuos Radiactivos (ENRESA Spain)

TOGETHER...SHAPING THE FUTURE OF ENERGY®

Contacts: mbrandauer@epri.com

