High Burnup Fuel Source Term Accident Analysis Boiling-Water Reactor Follow-On Calculations

ACRS FUELS, MATERIALS, AND STRUCTURES SUBCOMMITTEE BRIEFING

November 19, 2024

Shawn Campbell and Michael Salay

Fuel & Source Term Code Development Branch Division of Systems Analysis Office of Nuclear Regulatory Research

Outline

- Background and Motivation
- Source Term Methodology
- Multi-region source terms for BWRs
- Example HBU Inventories
- Steam line removal rates for downstream codes

Background and Motivation

- The High Burnup (HBU) Peer Review panelists commented on the potential impact of the suppression pool on the containment source term.
- Table 5-16 of SAND2023-01313 provides the boiling-water reactor (BWR) containment release fractions including and excluding the suppression pool.
- Supplemental investigations following the peer review in BWRs:
 - Investigate fission product concentration variation between different regions of the reactor system and containment since some release pathways bypass the suppression pool (i.e., main steam line).
 - Modified the two (Peach Bottom, Grand Gulf) full-scale BWR input decks to better capture aerosol behavior in the containment and steam line.
 - Performed a set of BWR source term calculations.
 - Proposed methodology for a multi-region (pathway-specific) BWR source term.

Source Term Methodology

United States Nuclear Regulatory Commission Protecting People and the Environment

4

U.S.NRC

Multi-Region Source Term for BWRs

- Containment Source Term (ST)
- Broke the source term into three parts:
 - Suppression pool (SP)
 - Containment atmosphere
 - Main Steam Line (MSL)
- The first two STs are derived from SAND2023-01313 results
- The MSL ST is developed from new calculations documented in SAND2024-10674

5

Protecting People and the Environment

Illustration of BWR Modeling Practices

6

New BWR Main Steam Line (MSL) Modeling For each BWR, the Main Steam Lines were broken up into finer nodalization RPV **Containment Boundary** 2 to 4 SRVs per MSL RCIC (MSL A) HPCI (N MSIV 1 MSIV 2 To condenser The reported source term and turbine fractions in the steam line are averaged airborne fission products in the green portion.

United States Nuclear Regulatory Commission Protecting People and the Environment

	Steamline							
Release Phase	Gap Release* 0.0h – 0.7h	Early In-vessel* 0.7h – 7.4h						
Noble Gases	2.9e-5	1.1e-3						
Halogens	5.6e-6	5.1e-5						
Alkali Metals	5.1e-6	1.3e-5						
Te Group	3.2e-6	2.7e-5						
Ba/Sr Group	6.1e-7	2.4e-7						
Ru Group	<1e-9	2.4e-7						
Mo Group	3.3e-9	3.0e-6						
Lanthanides	<1e-9	<1e-9						
Ce Group	<1e-9	<1e-9						

*: inventory fraction held constant across the phase duration

- The release fractions in the steam line are for the green portion (downstream of first SRV, upstream of MSIV)
- Airborne aerosols only, already takes into account the removal of fission products (for gap and early in-vessel phases)
- <u>Time averaged</u> over each phase duration (i.e. gap, early invessel, etc.)
- RADTRAD would take this as a <u>constant</u> concentration

BWR Source Term (ST) Inventory Fractions

Metric		Gap Release Phas	e	Early In-vessel Phase						
	Main	Suppression	Containment	Main	Suppression	Containment				
Region	Steamline*	Pool**	Atmosphere**	Steamline*	Pool**	Atmosphere**				
Noble Gases	2.9×10^{-5}	$< 1.0 \times 10^{-6}$	1.6×10^{-2}	1.1×10^{-3}	$< 1.0 \times 10^{-6}$	9.5×10^{-1}				
Halogens	5.6×10^{-6}	5.0×10^{-3}	1.3×10^{-6}	5.1×10^{-5}	6.5×10^{-1}	6.0×10^{-2}				
Alkali Metals	5.1×10^{-6}	5.0×10^{-3}	1.2×10^{-6}	1.3×10^{-5}	3.1×10^{-1}	6.0×10^{-3}				
Te Group	3.2×10^{-6}	3.0×10^{-3}	$< 1.0 \times 10^{-6}$	2.7×10^{-5}	5.2×10^{-1}	3.8×10^{-2}				
Ba/Sr Group	6.1×10^{-7}	6.0×10^{-4}	$< 1.0 \times 10^{-6}$	2.4×10^{-7}	4.7×10^{-3}	3.0×10^{-4}				
Ru Group	$< 1.0 \times 10^{-9}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-6}$	2.4×10^{-7}	6.0×10^{-3}	7.4×10^{-6}				
Mo Group	3.3×10^{-9}	1.9×10^{-5}	$< 1.0 \times 10^{-6}$	3.0×10^{-6}	1.2×10^{-1}	1.0×10^{-4}				
La Group	$< 1.0 \times 10^{-9}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-9}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-6}$				
Ce Group	$< 1.0 \times 10^{-9}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-9}$	$< 1.0 \times 10^{-6}$	$< 1.0 \times 10^{-6}$				
Phase Duration [h]		0.70			6.7					

*: time-averaged airborne fission product inventory fraction – intended to be held constant for the duration of the accident phase in downstream analyses. A lower minimum threshold is used for time-averaged metrics.

**: cumulative release fraction – intended to be released completely by the end of a given accident phase in downstream analyses.

Suppression pool and containment atmosphere source terms are derived from SAND2023-01313 [1].

BWR Source Term (ST) Inventory Fractions – Early In-Vessel

Radionuclide Group	RG1.183 (rev0)	RG1.183 (rev1)	SAND2023	Pool (SAND2023 Table 5-16)	Containment (SAND2023 Table 5-16)	Steam Line (SAND2024- 10674)
Noble Gases	9.50E-01	9.60E-01	9.50E-01	0.00E+00	9.50E-01	1.1E-03
Halogens	2.50E-01	5.40E-01	7.10E-01	6.50E-01	6.00E-02	5.1E-05
Alkali Metals	2.00E-01	1.40E-01	3.20E-01	3.10E-01	6.00E-03	1.3E-05
Te Group	5.00E-02	3.90E-01	5.60E-01	5.20E-01	3.80E-02	2.7E-05
Ba/Sr Group	2.00E-02	5.00E-03	5.00E-03	4.70E-03	3.00E-04	2.4E-07
Ru Group	3.00E-03	2.70E-03	6.00E-03	6.00E-03	7.40E-06	2.4E-07
Mo Group	3.00E-03	3.00E-02	1.20E-01	1.20E-01	1.00E-04	3.0E-06
Lanthanides	2.00E-04	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-9
Ce Group	5.00E-04	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-9

BWR Example Fission Product (FP) Concentrations (C₀)

BWR/PWR Example Containment Concentrations

Typical containment volumes from Figure 4.1-1 in NUREG/CR-6042, Rev. 2

Example HBU Inventories

- Fission Product Inventory (Inv)
- Created representative inventories for a high burnup core
- Used SCALE to generate inventories with representative fuel cycle
 - Fuel & core designs based on SCALE ATF/HBU/EE Project

Example HBU Inventories - PWRs

	In	out Data to Fuel Cycl	e Estimator		Base	line	HB	U/EE	
		Power (MW _{tr}		289)3	2893			
Objective		Initial Enrichmen		4.6	5	5.25			
Increase cycle length from 18		Cycle Length (mo		18	3	24			
months to 24 months	Fre	sh / Once-burned / T	wice-burned		56 / 56	5 / 45	72 / 7	72 / 13	
	Core	Avg. end of cycle BU	43.5		48.3				
	Avg. A	ssembly discharge B	60.	7	71.6				
								_	
		Radionuclide Group	Baseline Activity (Bq)	H Acti	BU/EE vity (Bq)	Rel. Ch (%	ange)		
Badionuclide Inven	torios	Halogens (I)	2.53E19	2.	.53E19	~0)		
Radiondelide inven		Alkali Metals (Cs)	3.09E18	3.	.24E18	5			
		Chalcogen (Te)	8.35E18	8.	.33E18	~0			

Example HBU Inventories - BWRs

	Input Data to Fuel Cycle Estimator	Baseline	HBU/EE
	Power (MW _{th})	4016	4016
	Initial Enrichment (%)	4.45	5.30
Objective Reduce feed batch fraction	Cycle Length (months)	24	24
	Fresh / Once-burned / Twice-burned	316 / 316 / 132	260 / 260 / 244
	Core Avg. end of cycle BU (MWd/MTU)	36.2	41.4
	Avg. Assembly discharge BU (MWd/MTU)	52.6	58.0

. <u>.</u>	Radionuclide Group	Baseline Activity (Bq)	HBU/EE Activity (Bq)	Rel. Change (%)
Impact on Padionuclido Inventorios	Halogens (I)	3.54E19	3.54E19	~0
Radionuclide inventories	Alkali Metals (Cs)	4.46E18	4.78E18	7
	Chalcogen (Te)	1.16E19	1.15E19	~0

Removal Rates in the Steam Line

- FP removal mechanisms upstream of containment boundary
- For gap and early in-vessel phases, removal rates are already accounted for in SAND2024-10674 formulation
- After early-in vessel phase, question was raised how to account for removal in the long-term dose assessment with downstream codes
- Used existing NUREG2206 analysis to ascertain a reasonable removal rate in the steam line and documented results in RES/FSCB2024-01

BWR Multi-Region Source Term Removal Mechanism

• Model

MELCOR model from the SOARCA studies (NUREG/CR 7110 and 7155)

Reference:

J. Barr, S. Basu, H. Esmaili and M. Stutzke, "Technical Basis for the Containment Protection and Release Reduction Rulemaking for BWRs with Mark I and Mark II Containments", Office of Nuclear Regulatory Research, US NRC, NUREG-2206, March 2018.

Case selections

						RUN MATRIX REV 9 (10/15/2014) - Mark I																										
						Pre Core Damage																	F	Post C	ore D	amage	e					
		D	C Pow	er		RCIC Operation Anticipatory Venting										Flex Operation SRV Operation Containment Venting					ling		DW He	ad Seal								
		A	/ailability (hr)	RCIC	C Availabil	ity (hr)	RCIC	Suction	Failure	Temp (F)	Open S	RV after	Setpoir	t (psig)	Allow aft	er RCIC	Injectio	n@LH	WW Lev	vel Contro	Injection	Allow SF	RV stuck	Ma	ode	Loc	ation	Set	point	Fail @) 700F
Option	Case	0	4	72	0	4	16	SP	CST	230	240	No	Yes	15	5	Yes	No	RPV	DW	Stop @ 21'	Throttle @ 21 '	Continuo us	Thermal seizure - fraction open	Seizure on # cycles?	Open	Cycle (10/20 psid)	Initial	Switchov er	PCPL	PSP	Yes	No
1	1			х			Х	Х		Х		Х		Х			Х						100%	Enabled	Х		WW		Х		Х	
1	3		Х			Х		Х		Х		Х		Х			Х						No	Disabled	Х		WW		Х		Х	
2A	10			Х			Х	Х	_	Х		Х		Х		Х		Х				Х	100%	Enabled	Х		WW	DW	Х		Х	
2A	11			Х	_		X	X		Х			Х	X			Х	X				Х	100%	Enabled	Х		WW	DW	X		Х	$ \longrightarrow $
2B	18			Х	_		X	X		Х		Х		X		Х		X				Х	100%	Enabled		10/10	WW	DW	X		X	$ \longrightarrow $
2B	16			Х			X	X	_	X		X		X			X	X				X	100%	Enabled		20/-	WW	DW	X		X	
2A	42		X			X		X		X		X		X			X	X				Х	No	Disabled	Х		ww	DW	X	4	<u> </u>	
Notes																																
0 DC p	ower m	eans the	ere is no	o RPV p	pressure	e contro	l, so sho	ould sta	rt like a	SBO an	d remair	ns so																				
10/10 r	neans b	oth WV	V and D	W cycle	e at 10 p	osid																										
20/- me	ans allo	w WW	cycling	at 20 p	sid but [DW is n	ot cyclir	ng and r	emains	open																						

Note: 1) Two cases without water injection and five cases with water injection are selected.

2) The FLEX water is injected to the RPV shroud-dome.

Fraction of airborne halogens in steam line

Maximum MSL wall temperatures

1.0E+00 in MSLs, early in-vessel phase Concentrations (fraction of inventory/m3) 1.0E-01 in MSLs, VB to 48 hrs in MSLs, 48 to 72 hrs 1.0E-02 in containment, early in-vessel phase in containment, VB to 48 hrs 1.0E-03 in containment, 48 to 72 hrs 0 1.0E-04 0 1.0E-05 1.0E-06 0 0 1.0E-07 0 1.0E-08 1.0E-09 1.0E-10

Total halogens time-averaged airborne concentration

Note: The hollow marks indicate the cases where water injection to the RPV dome shroud did not occur

1.0E-11

1.0E-12

Containment Boundary

Conclusions and Next Steps

- Refined modeling provides better estimation of fission product distribution in the steamline.
 - Concentration in the steam line is distinct from that of containment.
- Significant retention of fission products were predicted in the suppression pool.
- A multi-region, pathway specific source term is being applied for BWRs in DG-1425 (RG1.183 rev2).
- Plan to apply MELCOR to inform better estimates of fission product removal mechanisms in containment for the simplified tools used in regulatory applications.

Backup Slides

Acronyms

Becquerel	MWt	Ν
boiling-water reactor	PWR	р
design-basis accident	RCIC	r
fission product	RG	1)
General Electric	RPV	re
high-assay low-enriched uranium	SOARCA	S
high burnup		C
high pressure coolant injection	SRV	S
main steam line isolation valve	ST	S
main steam line	TCV	tı
gigawatt-days per metric ton of	TSV	tı
uranium	W	V
	Becquerel boiling-water reactor design-basis accident fission product General Electric high-assay low-enriched uranium high burnup high pressure coolant injection main steam line isolation valve main steam line gigawatt-days per metric ton of uranium	BecquerelMWtboiling-water reactorPWRdesign-basis accidentRCICfission productRGGeneral ElectricRPVhigh-assay low-enriched uraniumSOARCAhigh burnupSOARCAhigh pressure coolant injectionSRVmain steam line isolation valveSTmain steam lineTCVgigawatt-days per metric ton ofTSVuraniumW

	Megawatt thermal
	pressurized water reactor
	reactor core isolation cooling
	(NRC) regulatory guide
	reactor pressure vessel
CA	State-of-the-Art Reactor
	Consequence Analyses
	safety relief valve
	source term
	turbine control valve
	turbine stop valve
	Westinghouse

 Table 5-16
 Derived BWR release fractions including and excluding the suppression pool inventory for all core variations (60 GWd/MTU, 80 GWd/MTU, LEU and HALEU).

	Gap R	elease	Early Ir	n-vessel	Total (end o	al (end of 72 hours)				
Release Category	Including Suppression Pool Inventory	Excluding Suppression Pool Inventory	Including Suppression Pool Inventory	Excluding Suppression Pool Inventory	Including Suppression Pool Inventory	Excluding Suppression Pool Inventory				
Noble Gases	0.016	0.016	0.95	0.95	1	1				
Halogens	0.005	1.30E-06	0.71	0.06	0.87	0.2				
Alkali Metals	0.005	1.20E-06	0.32	0.006	0.35	0.039				
Te Group	0.003	<1.0e-6	0.56	0.038	0.78	0.26				
Ba/Sr Group	0.0006	<1.0e-6	0.005	0.0003	0.048	0.042				
Ru Group	<1.0e-6	<1.0e-6	0.006	7.40E-06	0.006	0.0001				
Mo Group	1.90E-05	<1.0e-6	0.12	0.0001	0.0001 0.13					
Lanthanides	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6	3.70E-05	3.60E-05				
Ce Group	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6	0.003	0.003				

