

Securing the future of Nuclear Energy

HBU Fuel Accident Source Terms – Summary

ACRS Briefing Nov 19, 2024

Presented by Lucas I. Albright and David L. Luxat

MELCOR

Adapted from SAND2023-13685PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Source Term Timeline

Severe Accident Modeling Advancements

- Heterogeneous, integrated reactor core modeling tends to promote to progressive and extended core degradation.
 - 2D discretization of the reactor core
 - No more distinct "gap release phase"
 - Prolonged core damage progression
 - Longer times to lower head failure

• Prevalence of accident-induced low-pressure scenarios – SOARCA

- Thermally induced SRV seizure for majority of BWR sequences
- Hot leg creep rupture for majority of PWR sequences

Impact of Early Depressurization

BWR: Thermally induced SRV seizure

PWR: Hot Leg Creep Rupture

Early loss of the primary pressure boundary induces depressurization of the reactor coolant system and opens a release pathway for radionuclides to transport directly to containment during early in-vessel core degradation

*Diagrams are for illustration purposes only

Selected Severe Accident Datasets

More recent severe accident datasets have improved characterization of core damage progression and subsequent radionuclide releases since NUREG-1465

- Severe accident experiments used to validate severe accident codes
 - Phébus FP
 - Early fuel failure
 - Hypothesized CsMoO₄ as the dominant chemical form of Cs
 - VERCORS
 - Early fuel failure
 - High burnup fission product release rates
- Severe accidents are a primary data source for severe accident code validation
 - Fukushima Daiichi
 - Existing data confirms that CsMoO₄ is the dominant chemical form of Cs

Severe Accident Knowledge Advancements

Chemical form of iodine:

- NUREG-1465 assumed 95% of iodine in the form of CsI
- Current practice assumes all lodine to be Csl
- Still assume 5% of the total iodine inventory is present in the gap inventory

Chemical form of cesium:

- NUREG-1465 assumed Cs predominantly in the form of volatile CsOH
- Current best-practice assumes 5% of cesium present in the gap inventory as both CsI and CsOH
- All remaining cesium assumed to react with Mo to form Cs₂MoO₄

• Mo release:

• Mo releases are now higher than other metallic fission products such as Ru and Pd.

• Te release:

- Current best practice is more extensive Te release than reported in NUREG-1465
- Due to change in chemical form with more efficient transport of Te to containment

Review of Accident Tolerant Fuel Concepts with Implications to Severe Accident Progression and Radiological Releases

NUREG/CR-7283 ERI/NRC 21-204

Phenomena Identification Ranking Tables for Accident Tolerant Fuel Designs Applicable to Severe Accident Conditions

NUREG/CR-7282 ERI/NRC 21-203

HBU/ HALEU/ ATF PIRT

- HBU/HALEU fuel severe accident behavior
 - No significant differences between HBU and HBU/HALEU fuels
 - Thermophysical property differences expected
 - Fuel fragmentation and sintering can impact core degradation
 - Fission product chemistry may change
 - Possibility of cladding embrittlement
 - Greater potential for recriticality during reflood using unborated water for HALEU

ATF discussed during the second session

SANDIA REPORT SAND2023-01313 Printed April 2023

High Burnup Fuel Source Term Accident Sequence Analysis

L.I. Albright, L. Gilkey, D. Keesling, C. Faucett, D.M. Brooks, K.C. Wagner, L.L. Humphries, J. Phillips, D.L. Luxat

SAND2023-01313

Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

High Burnup Fuel Source Term Analysis

- Develop alternative source term applicable to LWR cores with HBU/HALEU fuel
 - Different burnup levels and enrichments considered
- Extends NUREG-1465 and SAND2011-0128 alternative source terms

In-containment Source Term

- In-containment source term characterizes
 total radioactive inventory in containment
 - In-containment source term combines deposited, airborne, and escaped radionuclide inventories
 - Expressed in terms of a **release fraction** of the initial radionuclide inventory
- MELCOR simulations can track deposited and airborne masses separately
 - This additional information not used in determining in-containment source term
- Radionuclide removal mechanisms accounted for in downstream calculations with RADTRAD

10 CFR 50.2 – Source term refers to the magnitude and mix of the radionuclides released from the fuel, expressed as fractions of the fission product inventory in the fuel, as well as their physical and chemical form, and the timing of their release

Summary of Methods

Extending SAND2011-0128 Source Terms

- Plants analyzed *from SAND2011-0128*
 - BWR: Mark I containment (Peach Bottom) and Mark III containment (Grand Gulf)
 - PWR: Ice Condenser containment (Sequoyah) and large-dry containment (Surry)
- Accident scenarios analyzed *from SAND2011-0128*
 - BWR: SBLOCA, LBLOCA, STSBO, LTSBO, ATWS
 - PWR: SBLOCA, LBLOCA, STSBO

Phase	Onset Criteria – <i>from SAND2011-0128</i>	End Criteria – <i>from SAND2011-0128</i>
Gap Release	RPV water level below top of active fuel	Release of 5% of initial, total Xe inventory from fuel
Early In-Vessel	Release of 5% of initial, total Xe inventory from fuel	Lower Head Failure
Ex-Vessel	Lower Head Failure	95% of total ex-vessel Cs releases
Late In-Vessel	Lower Head Failure	95% of total late in-vessel Cs releases

- Ex-vessel and late in-vessel phase criteria have limited technical justification
- NRC determined (SECY-94-302, December 19, 1994) design basis source terms will not include ex-vessel and late in-vessel phases

Evolution from SAND2011-0128

- Overall SAND2023-01313 methodology is consistent with SAND2011-0128
 - Focus on assessing impact of HBU/HALEU fuel on alternative source term
- Key areas of consistency between the studies are
 - Nuclear power plants modeled
 - Accident scenarios simulated
 - Radionuclide chemical classes represented
 - Radiological release phases first identified in NUREG-1465 are defined using SAND2011-0128 criteria
 - Representative release phase source terms and timings are statistical median values

SAND2023-01313 Accident Selection

- NUREG-1560 "Individual Plant Examination Program"
- Based on SAND2011-0128 accident selection
 - Consistent with NUREG 1560 IPE results
- Representative accident sequences similar to those selected for NUREG-1465
 - Provides coverage of all major sequences
- Incorporates SBO, LOCA and ATWS scenarios and range of mitigating system operation

- More recent PRA studies may potentially show different core damage contributors
- For the intended applications the scenarios used in the current [SAND2023-01313] appropriate with regards to the progression of severe accidents, radionuclide release and transport.

BWR Radionuclide Inventories

	60 GWd/MTU -	80 GWd/MTU -	60 GWd/MTU -	80 GWd/MTU -			
Class (kg)	5 wt% Enrichment	5 wt% Enrichment	10 wt% Enrichment	10 wt% Enrichment			
BWR Mark I – Peach Bottom							
Noble Gases	1323.99	1848.13 (+40%)	1280.34 (-3%)	1790.12 (+35%)			
Halogens	52.83	73.70 (+40%)	49.41 (-6%)	69.53 (+32%)			
Alkali Metals	748.78	980.11 (+31%)	817.97 (+9%)	1082.33 (+45%)			
Te Group	142.94	195.01 (+36%)	139.99 (-2%)	190.51 (+33%)			
Ba/Sr Group	551.99	763.09 (+38%)	586.41 (+6%)	814.05 (+47%)			
Ru Group	1058.01	1598.56 (+51%)	919.02 (-13%)	1374.61 (+30%)			
Mo Group	973.05	1305.64 (+34%)	1007.92 (+4%)	1364.59 (+40%)			
Lanthanides	2943.70	3702.34 (+26%)	2922.84 (-1%)	3686.46 (+25%)			
Ce Group	2469.33	2916.84 (18%)	2559.90 (+4%)	3107.02 (+26%)			
*percent differences shown relative to reference core (60 GWd/MTU - 5 wt% enrichment)							
** all fuel hundles assumed to reach reported hurpup							

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

PWR Radionuclide Inventories

	60 GWd/MTU -	80 GWd/MTU -	60 GWd/MTU -	80 GWd/MTU - 8 wt% Enrichmont			
Class (kg)	5 Wt /o Elificilitetit	5 Wt /o Elificititetit	o wt/o Emiciment	o wt/o Ennemient			
PWR with Large-Dry Containment – Surry							
Noble Gases	740.20	987.15 (+33%)	717.66 (-3%)	959.00 (+30%)			
Halogens	29.31	39.35 (+34%)	27.44 (-6%)	37.06 (+26%)			
Alkali Metals	421.27	537.41 (+28%)	455.26 (+8%)	584.21 (+39%)			
Te Group	74.62	99.01 (+33%)	73.02 (-2%)	96.81 (+30%)			
Ba/Sr Group	305.28	401.76 (+32%)	323.92 (+6%)	428.01 (+40%)			
Ru Group	559.35	807.23 (+44%)	487.92 (-13%)	701.18 (+25%)			
Mo Group	530.59	689.06 (+30%)	546.71 (+3%)	714.95 (+35%)			
Lanthanides	1035.01	1396.16 (+35%)	1048.46 (+1%)	1409.24 (+36%)			
Ce Group	1535.14	1780.67 (+16%)	1599.41 (+4%)	1903.19 (+24%)			
*percent differences shown relative to reference core (60 GWd/MTU - 5 wt% enrichment)							

** all fuel bundles assumed to reach reported burnup

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

Iodine and Cesium Chemical Form

- NUREG-1465
 - 5% lodine inventory is gaseous (I₂ and other organic iodides)
 - 95% lodine inventory is Csl
 - Remaining Cs inventory assumed volatile (CsOH)
- SAND2023-01313 consistent with SOARCA
 - 100% lodine inventory reacts with Cesium to form Csl
 - 5% of the total lodine and Cesium inventory present in gap
 - Of Cesium not forming Csl
 - 5% assumed to form CsOH
 - 95% assumed to form Cs₂MoO₄

- Uncertainty in Iodine speciation persists despite experimental studies (FPT3, DF-4, and BECARRE)
- Fukushima Daiichi post-accident analyses confirm assumption that Cs₂MoO₄ is dominant chemical form of Cs
- Recommended consideration of/validation against French CEA HBU VERDON tests

Non-Parametric Statistical Analysis

- Non-parametric bootstrap methodology used to determine statistically representative source term across accident scenarios
 - Can be applied to data that follow any distribution
 - Utilizes repeated re-sampling (bootstrapping) of data
 - Estimates empirical cumulative distribution function (ECDF) of a given quantity of interest (QoI)
- Representative source term is the median (50th percentile) estimate from the ECDF
 - Equally weights all simulations

*Dashed colored lines illustrate confidence intervals spanning \pm standard deviation (σ) at each percentile

Peer Review Finding

Representative source term based on median value appropriate to avoid introducing bias from potential outliers

EARLY IN-VESSEL: PHASE DURATION

Summary of Results and Discussion

Study Highlights

Key Finding 1: Increased burnup and enrichment does not strongly impact incontainment source term

• Most significant variation in source term arises due to differences between accident scenarios

Key Finding 2: Larger early releases to containment result from early primary pressure boundary failure

- Set of accident scenarios dominated by low pressure accident sequences
- NUREG-1465 prescribed a larger number of high pressure scenarios

Key Finding 3: Releases to containment significantly reduced if primary pressure boundary remains intact

- Low pressure scenarios lead to more significant releases to containment
- Evolution of severe accident modeling state-of-art since NUREG-1465 (e.g., SOARCA)

High Burnup and Extended Enrichment Impact on Source Term

Core Types:

(1) 60 GWd/MTU LEU (2) 80 GWd/MTU LEU

(3) 60 GWd/MTU HALEU (4) 80 GWd/MTU HALEU

Burnup and enrichment do not significantly change decay heat after reactor shutdown

Increased burnup and enrichment does not strongly impact in-containment source term

MELCOR

Impact of Accident Scenarios on In-containment Source Term

Accident progression and incontainment source terms different across accident sequences Primary pressure boundary failure during critical accident phases is a significant factor in accident progression and in-containment source term

In-Containment Source Term Differences

		Gap R	elease	Early In	n-vessel	Late In	-vessel	Ex-v	essel
	Report	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465
/R	Phase Duration	0.70	0.50	6.7	1.5	44.6	10.0	3.1	3.0
BV	Noble Gases	0.016	0.050	0.95	0.95	0.005	0.0	0.011	0.0
	Halogens	0.005	0.050	0.71	0.25	0.16			.30
	Alkali Metals	0.005	0.050	0.32	0.20	0.021	he NRC has det	cermined (SECY	.35
	Te Group	0.003	0.0	0.56	0.050	0.19	302, Decembe	er 19, 1994) th	.25
		Gap R	elease	Early In-vessel		Late	include the ex-	vessel and late	in-
~	Phase Duration	1.3	0.50	4.0	1.3	24.0	vesse	l phases.	2.0
Ň	Noble Gases	0.026	0.050	0.93	0.95	0.010			0.0
e	Halogens	0.007	0.050	0.58	0.35	0.031	0.10	0.020	0.25
	Alkali Metals	0.003	0.050	0.50	0.25	0.013	0.10	0.015	0.35
	Te Group	0.006	0.0	0.55	0.050	0.019	0.005	0.005	0.25

• Longer in-vessel phase durations due to progressive core degradation

In-Containment Source Term Differences

		Gap R	elease	Early In	-vessel	Late In	-vessel	Ex-v	essel
	Report	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465
	Phase								
VR	Duration	0.70	0.50	6.7	1.5	44.6	10.0	3.1	3.0
ΒV	Noble Gases	0.016	0.050	0.95	0.95	0.005	0.0	0.011	0.0
	Halogens	0.005	0.050	0.71	0.25	0.16			.30
	Alkali Metals	0.005	0.050	0.32	0.20	0.021	he NRC has det	ermined (SECY	-94-
	Te Group	0.003	0.0	0.56	0.050	0.19	302, December 1		.25
		Gap Release Early In-vessel		Lati		in-			
	Phase						vesse	phases.	
~	Duration	1.3	0.50	4.0	1.3	24.0			2.0
W	Noble Gases	0.026	0.050	0.93	0.95	0.010).0
–	Halogens	0.007	0.050	0.58	0.35	0.031	0.10	0.020	0.25
	Alkali Metals	0.003	0.050	0.50	0.25	0.013	0.10	0.015	0.35
	Te Group	0.006	0.0	0.55	0.050	0.019	0.005	0.005	0.25

• Longer in-vessel phase durations due to progressive core degradation

• Progressive releases to containment due to enhanced reactor coolant system modeling

In-Containment Source Term Differences

		Gap R	elease	Early Ir	ı-vessel	Late Ir	i-vessel	Ex-v	essel
	Report	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465	2023	NUREG-1465
/R	Phase								
	Duration	0.70	0.50	6.7	1.5	44.6	10.0	3.1	3.0
ΒV	Noble Gases	0.016	0.050	0.95	0.95	0.005	0.0	0.011	0.0
	Halogens	0.005	0.050	0.71	0.25	0.16			.30
	Alkali Metals	0.005	0.050	0.32	0.20	0.021	The NRC has det	cermined (SECY	.35
	Te Group	0.003	0.0	0.56	0.050	0.19	302, Decembe	er 19, 1994) th	.25
		Gap R	elease	Early Ir	i-vessel	Lat	include the ex-	vessel and late	in-
	Phase						vesse	l phases.	
~	Duration	1.3	0.50	4.0	1.3	24.0		. p	2.0
W	Noble Gases	0.026	0.050	0.93	0.95	0.010).0
–	Halogens	0.007	0.050	0.58	0.35	0.031	0.10	0.020	0.25
	Alkali Metals	0.003	0.050	0.50	0.25	0.013	0.10	0.015	0.35
	Te Group	0.006	0.0	0.55	0.050	0.019	0.005	0.005	0.25

• Longer in-vessel phase durations due to progressive core degradation

• Progressive releases to containment due to enhanced reactor coolant system modeling

• Larger release magnitudes prior to lower head failure due to early loss of the primary pressure boundary (by safety relief valve seizure and hot leg creep rupture)

In-containment Source Term Variability

Peer Review Finding

• Potential for combined effects of various sensitivity studies to be larger than separate effects *Nonlinear processes in severe accidents tend to limit amplification of response variability in multi-parameter sensitivity studies such that single scenario variability is less than variation across scenarios*

In-containment source term variation dominated by variation across sequences

PEER REVIEW OF THE IN-CONTAINMENT SOURCE TERM STUDY FOR HIGH-BURNUP AND HIGH-ASSAY LOW ENRICHED URANIUM FUELS

ERI/NRC 23-201

Work Performed under the Auspices of the United States Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555

MELCOR

SAND2023-01313 Peer Review

- Assessed the suitability of SAND2023-01313 source terms for regulatory applications
 - In-containment source terms are representative rather than conservative or bounding estimates
 - The use of median estimates is appropriate
 - Fulfills AST critieria
- Other SAND2023-01313 Peer Review
 Observations
 - Gap release phase should be incorporated into the early in-vessel phase
 - In-containment source terms should consider the impact of retention in suppression pools, especially for SBO scenarios that discharge directly into the suppression pool
 - Estimates of retention in suppression pools provided in SAND2023-01313 could be used in regulatory guidance to establish suppression pool decontamination factors

Thank you for your attention!

27

Backup Slides

MELCOR

Alternative Source Term

SAND2023-01313

"Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," Regulatory Guide 1.183

Process for Source Term Development

BWR and PWR core damage accident scenario identification

Develop radionuclide inventory and decay heat using the SCALE code package

Perform accident progression and source term analyses using MELCOR

Develop statistically representative source term across all accident scenarios and BWR/PWR plants

Evolution from SAND2011-0128

- Overall SAND2023-01313 methodology is consistent with SAND2011-0128
 - Focus on assessing impact of HBU/HALEU fuel on alternative source term
- Key areas of consistency between the studies are
 - Nuclear power plants modeled
 - Accident scenarios simulated
 - Radionuclide chemical classes represented
 - Radiological release phases first identified in NUREG-1465 are defined using SAND2011-0128 criteria
 - Representative release phase source terms and timings are statistical median values

Extending SAND2011-0128 Source Terms

- Plants analyzed *from SAND2011-0128*
 - BWR: Mark I containment (Peach Bottom) and Mark III containment (Grand Gulf)
 - PWR: Ice Condenser containment (Sequoyah) and large-dry containment (Surry)
- Accident scenarios analyzed *from SAND2011-0128*
 - BWR: SBLOCA, LBLOCA, STSBO, LTSBO, ATWS
 - PWR: SBLOCA, LBLOCA, STSBO

Phase	Onset Criteria – <i>from SAND2011-0128</i>	End Criteria – <i>from SAND2011-0128</i>
Gap Release	RPV water level below top of active fuel	Release of 5% of initial, total Xe inventory from fuel
Early In-Vessel	Release of 5% of initial, total Xe inventory from fuel	Lower Head Failure
Ex-Vessel	Lower Head Failure	95% of total ex-vessel Cs releases
Late In-Vessel	Lower Head Failure	95% of total late in-vessel Cs releases

- Ex-vessel and late in-vessel phase criteria have limited technical justification
- NRC determined (SECY-94-302, December 19, 1994) design basis source terms will not include ex-vessel and late in-vessel phases

SAND2023-01313 Accident Selection

- NUREG-1560 "Individual Plant Examination Program"
- Based on SAND2011-0128 accident selection
 - Consistent with NUREG 1560 IPE results
- Representative accident sequences similar to those selected for NUREG-1465
 - Provides coverage of all major sequences
- Incorporates SBO, LOCA and ATWS scenarios and range of mitigating system operation

- More recent PRA studies may potentially show different core damage contributors
- For the intended applications the scenarios used in the current [SAND2023-01313] appropriate with regards to the progression of severe accidents, radionuclide release and transport.

Peach Bottom Accident Scenarios

Events 7 SBOs

• 4 immediate loss of

DC power

Initiating • 3 with prolonged DC

power 2 LOCAs

RCIC operation

Injection • 3 scenarios credited RCIC

No coolant Coolant injection

• 6 scenarios had no credit for any coolant injection system

Status **RPV** at low pressure prior to lower head failure P< • 8 low pressure

<u>c</u>

scenarios RPV at high pressure until lower head failure

• 1 high pressure scenario

Early failures

- Status • Drywell liner meltthrough
 - Torus overpressure
 - Drywell head flange leakage

Containment Late Failure

• High-temperature penetration failure

Containment failures occurred at or after lower head failure

Grand Gulf Accident Scenarios

Events 5 SBOs 1 ATWS 1 LOCA Initiating • Recirculation line break

RCIC operation

- 3 scenarios credited RCIC
- Injection No coolant Coolant injection
 - 4 scenarios had no credit for any coolant injection system

Status **RPV** at low pressure prior to lower head failure RPV • 6 low pressure scenarios RPV at high pressure until lower head failure

> • 1 high pressure scenario

Early failures

- Hydrogen
- Status deflagration Containment
 - High containment pressure (ATWS) Late Failure
 - High containment
 - pressure

Containment failures generally occurred at or after lower head failure

Surry Accident Scenarios

Events 2 SBOs 3 LOCAs Initiating

1 scenario Coolant Injection crediting coolant injection 4 scenarios with no coolant injection

Status **RPV** at low pressure prior to lower head failure RPV • 3 low pressure scenarios **RPV** at high pressure in SBOs

> • All SBOs exhibit hotleg creep rupture prior to lower head failure

Status Early failures

• Hydrogen

deflagration

Containment Late Failure

• High containment pressure

Containment failures occurred at or after lower head failure
Sequoyah Accident Scenarios

Events 2 SBOs 5 LOCAs Initiating

5 scenarios Coolant Injection crediting coolant injection 2 scenarios with no coolant injection

Status **RPV** at low pressure prior to lower head failure RPV • 2 low pressure scenarios RPV at high pressure in SBOs

> • All SBOs and RCP seal LOCAs exhibit hot-leg creep rupture prior to lower head failure

Early failures Status

• Hydrogen

deflagration

Containment Late Failure

• High containment pressure

Containment failures occurred at or after lower head failure

BWR Radionuclide Inventories

	60 GWd/MTU -	80 GWd/MTU -	60 GWd/MTU -	80 GWd/MTU -
Class (kg)	5 wt% Enrichment	5 wt% Enrichment	10 wt% Enrichment	10 wt% Enrichment
	BV	VR Mark I – Peach Botto	m	
Noble Gases	1323.99	1848.13 (+40%)	1280.34 (-3%)	1790.12 (+35%)
Halogens	52.83	73.70 (+40%)	49.41 (-6%)	69.53 (+32%)
Alkali Metals	748.78	980.11 (+31%)	817.97 (+9%)	1082.33 (+45%)
Te Group	142.94	195.01 (+36%)	139.99 (-2%)	190.51 (+33%)
Ba/Sr Group	551.99	763.09 (+38%)	586.41 (+6%)	814.05 (+47%)
Ru Group	1058.01	1598.56 (+51%)	919.02 (-13%)	1374.61 (+30%)
Mo Group	973.05	1305.64 (+34%)	1007.92 (+4%)	1364.59 (+40%)
Lanthanides	2943.70	3702.34 (+26%)	2922.84 (-1%)	3686.46 (+25%)
Ce Group	2469.33	2916.84 (18%)	2559.90 (+4%)	3107.02 (+26%)
*percent differences show	n relative to reference core	(60 GWd/MTU - 5 wt% enr	ichment)	
** all fuel hundles assumed to reach reported hurnup				

Peer Review Findings

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

PWR Radionuclide Inventories

	60 GWd/MTU -	80 GWd/MTU -	60 GWd/MTU -	80 GWd/MTU -	
Class (kg)	5 wt% Enrichment	5 wt% Enrichment	8 wt% Enrichment	8 wt% Enrichment	
	PWR wit	h Large-Dry Containmen	nt – Surry		
Noble Gases	740.20	987.15 (+33%)	717.66 (-3%)	959.00 (+30%)	
Halogens	29.31	39.35 (+34%)	27.44 (-6%)	37.06 (+26%)	
Alkali Metals	421.27	537.41 (+28%)	455.26 (+8%)	584.21 (+39%)	
Te Group	74.62	99.01 (+33%)	73.02 (-2%)	96.81 (+30%)	
Ba/Sr Group	305.28	401.76 (+32%)	323.92 (+6%)	428.01 (+40%)	
Ru Group	559.35	807.23 (+44%)	487.92 (-13%)	701.18 (+25%)	
Mo Group	530.59	689.06 (+30%)	546.71 (+3%)	714.95 (+35%)	
Lanthanides	1035.01	1396.16 (+35%)	1048.46 (+1%)	1409.24 (+36%)	
Ce Group	1535.14	1780.67 (+16%)	1599.41 (+4%)	1903.19 (+24%)	
*percent differences shown relative to reference core (60 GWd/MTU - 5 wt% enrichment)					

** all fuel bundles assumed to reach reported burnup

Peer Review Findings

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

Iodine and Cesium Chemical Form

- NUREG-1465
 - 5% lodine inventory is gaseous (I₂ and other organic iodides)
 - 95% lodine inventory is Csl
 - Remaining Cs inventory assumed volatile (CsOH)
- SAND2023-01313 consistent with SOARCA
 - 100% lodine inventory reacts with Cesium to form Csl
 - 5% of the total lodine and Cesium inventory present in gap
 - Of Cesium not forming Csl
 - 5% assumed to form CsOH
 - 95% assumed to form Cs₂MoO₄

Peer Review Findings

- Uncertainty in Iodine speciation persists despite experimental studies (FPT3, DF-4, and BECARRE)
- Fukushima Daiichi post-accident analyses confirm assumption that Cs₂MoO₄ is dominant chemical form of Cs
- Recommended consideration of/validation against French CEA HBU VERDON tests

Other Analysis Assumptions

- In-containment source term does not consider impact of
 - Variation in the gap inventory at the start of the accident
 - Fraction of aerosolized iodine in containment
 - Radionuclide removal and retention in containment
- Source term analyses based on current state-of-the-art
 - Latest major code version MELCOR 2.2
 - Majority of modeling best-practices established under SOARCA
- Some modeling best-practices have evolved since SOARCA
 - Time-at-temperature fuel rod failure model uses default time-at-temperature fuel rod lifetime curve
 - UO₂ and ZrO₂ liquefaction temperatures reduced to 2479 K to account for material interactions
 - Failure temperature of oxidized fuel rods have been reduced to 2479 K

Other Analysis Assumptions

- Relative contribution of accident sequences to total BWR/PWR CDF not changed by cores with extended enrichment HBU
- Dominant uncertainty from range of possible accidents that could be realized (i.e., aleatory uncertainty)
 - Phenomenological (or epistemic) uncertainty not incorporated into BWR/PWR incontainment source terms
 - Impact of phenomenological uncertainties considered through sensitivity calculations
 - Key phenomena identified in a PIRT study are investigated through sensitivity studies
- Containment removal mechanisms not credited
 - Some removal mechanisms, such as containment sprays, are incorporated in downstream RADTRAD calculations
 - Suppression pool scrubbing not credited
- Release fractions (source terms) below 1×10⁻⁶ considered negligibly small and truncated

Non-Parametric Statistical Analysis

- Non-parametric bootstrap methodology used to determine statistically representative source term across accident scenarios
 - Can be applied to data that follow any distribution
 - Utilizes repeated re-sampling (bootstrapping) of data
 - Estimates empirical cumulative distribution function (ECDF) of a given quantity of interest (QoI)
- Representative source term is the median (50th percentile) estimate from the ECDF
 - Equally weights all simulations

*Dashed colored lines illustrate confidence intervals spanning \pm standard deviation (σ) at each percentile

Peer Review Finding

Representative source term based on median value appropriate to avoid introducing bias from potential outliers

EARLY IN-VESSEL: PHASE DURATION

Bootstrap Procedure

- Incorporates variability due to different plants and accident scenarios in representative source term
 - Bounds on empirical cumulative distribution function (ECDF) characterize sampling uncertainty

Results and Discussion

Restating Key Aspects of the Analysis

- Objective
 - Extend the NUREG-1465 alternative source term to address LWRs with cores designed to utilize HBU fuel with varied fuel enrichments
- Plants analyzed
 - BWR: Mark I containment (Peach Bottom) and Mark III containment (Grand Gulf)
 - PWR: Ice Condenser containment (Sequoyah) and Large-dry containment (Surry)
- Reactor cores analyzed
 - 1. Core average burnup of 60GWd/MTU for enrichment of 5 wt%
 - 2. Core average burnup of 80GWd/MTU for enrichment of 5 wt%
 - 3. Core average burnup of 60GWd/MTU for enrichment of 8 wt% (peak 10 wt% for BWRs)
 - 4. Core average burnup of 80GWd/MTU for enrichment of 8 wt% (peak 10 wt% for BWRs)
- Accident scenarios analyzed
 - BWR: SBLOCA, LBLOCA, STSBO, LTSBO, ATWS
 - PWR: SBLOCA, LBLOCA, STSBO

Phase	Onset Criteria	End Criteria
Gap Release	RPV water level below top of active fuel	Release of 5% of initial, total Xe inventory from fuel
Early In-Vessel	Release of 5% of initial, total Xe inventory from fuel	Lower Head Failure
Ex-Vessel	Lower Head Failure	95% of total ex-vessel Cs releases
Late In-Vessel	Lower Head Failure	95% of total late in-vessel Cs releases

Revisiting the Impact of Reactor Core on Incontainment Source Term

		:	arly Ir	n-vesse	el				arly Ir	n-vesse	el
	Core Type	(1)	(2)	(3)	(4)		Core Type	(1)	(2)	(3)	(4)
~	Phase Duration	67	63	65	63	~	Phase Duration	4.0	3.8	4.2	3.8
	Nabla Casas	0.7		0.04		WF	Noble Gases	0.93	0.92	0.91	0.92
	Noble Gases	0.94	0.96	0.94	0.94	L					
	Halogens	0.71	0.71	0.76	0.71		Halogens	0.57	0.56	0.57	0.58
	Alkali Metals	0.31	0.31	0.31	0.26		Alkali Metals	0.5	0.5	0.5	0.51

Core Type

PWR-(1) PWR-(2) PWR-(3)

PWR-(4)

BWR-(1)

BWR-(4)

Core Types:

(1) 60 GWd/MTU LEU,

(2) 80 GWd/MTU LEU

(3) 60 GWd/MTU HALEU

(4) 80 GWd/MTU HALEU

An increase in burnup and enrichment does not strongly impact the in-containment source term

BWR In-containment Source Term Evolution

		Gap Release	-		Early In-vessel	-
Study	2023	2011	NUREG-1465	2023	2011	NUREG-1465
Phase Duration (hr)	0.70	0.16	0.50	6.7	8.0	1.5
Noble Gases	0.016	0.008	0.050	0.95	0.96	0.95
Halogens	0.005	0.002	0.050	0.71	0.47	0.25
Alkali Metals	0.005	0.002	0.050	0.32	0.13	0.20
Te Group	0.003	0.002	0.0	0.56	0.39	0.050
Ba/Sr Group	0.0006	0.0	0.0	0.005	0.005	0.020
Ru Group	<1.0e-6	0.0	0.0	0.006	0.003	0.003
Mo Group	1.9E-05	0.0	0.0	0.12	0.020	0.003
Lanthanides	<1.0e-6	0.0	0.0	<1.0e-6	<1.0e-6	0.0002
Ce Group	<1.0e-6	0.0	0.0	<1.0e-6	<1.0e-6	0.0005

- SAND2023-01313 and SAND2011-0128 utilized MELCOR
- Accident scenarios and modeling best-practices lead to tendency for increased early in-vessel halogen releases
- Peach Bottom and Grand Gulf modeling best-practices in SAND2023-01313 represent improvements due to SOARCA

BWR In-Containment Source Terms Consistent with SOARCA

• SOARCA found limited in-vessel halogen retention during early-in vessel phase

*In-containment source terms reported in SAND2023-01313 characterize **total** radioactive inventory in containment

PWR In-containment Source Term Evolution

- SAND2023-01313 and SAND2011-0128 utilized MELCOR
- Accident scenarios and modeling best-practices lead to tendency for increased early in-vessel halogen releases
- Surry and Sequoyah modeling best-practices in SAND2023-01313 represent improvements due to SOARCA

MELCOR

PWR In-Containment Source Terms Consistent with SOARCA

 SOARCA found limited halogen in-vessel retention after hot leg creep rupture

*In-containment source terms reported in SAND2023-01313 characterize **total** radioactive inventory in containment

MELCOR

In-containment Release Rate Evolution

		BWR			PWR	
	Early In-vessel			Early In-vessel		
Study	2023	2011	NUREG- 1465	2023	2011	NUREG- 1465
Noble Gases	0.14	0.12	0.63	0.21	0.21	0.73
Halogens	0.11	0.059	0.17	0.16	0.082	0.27
Alkali Metals	0.047	0.016	0.13	0.15	0.051	0.19
Te Group	0.091	0.049	0.033	0.15	0.067	0.038
Ba/Sr Group	0.0009	0.0006	0.013	0.0007	0.0009	0.015
Ru Group	0.0009	0.0003	0.002	0.002	0.001	0.002
Mo Group	0.017	0.003	0.002	0.045	0.018	0.002
Lanthanides	<1.0e-6	<1.0e-6	0.0001	<1.0e-6	<1.0e-6	0.0002
Ce Group	<1.0e-6	<1.0e-6	0.0003	<1.0e-6	<1.0e-6	0.0004

Reported as [release fraction/hour]

Fuel Thermal Conductivity Sensitivity

Increased burnup leads to decrease of fuel thermal conductivity

Sensitivity Case	Fuel Thermal Conductivity [W/m-K]
Reference	4.92
Reduced	2.02
Low	0.2

No impact from variation of fuel thermal conductivity

In-vessel Particulate Debris Porosity

Very high burnups have been postulated to promote disintegration of the fuel material

Three sensitivity cases to assess impact on in-containment source term

Sensitivity Case	In-Vessel Particulate Debris Porosity
Reference	0.4
High	0.6
Low	0.2

No impact from variation of in-vessel particulate debris porosity

Diameter of In-vessel Particulate Debris Sensitivity

Higher burnups result in a greater degree of fuel breakup

Sensitivity	In-core Particulate Debris Diameter [cm]	Lower Plenum Particulate Debris Diameter [cm]
Reference	1.0	0.2
High	1.5	0.5
Low	0.5	0.1

Variation in particulate debris diameter impacts in-containment source term Impact smaller than changes across accident scenarios

56

Particulate Debris Falling Velocity Sensitivity

Particulate debris sizes could impact particulate debris fall velocity into lower plenum

Sensitivity	In-Vessel Particulate Debris Fall Velocity [m/s] <i>Peach Bottom</i>	In-Vessel Particulate Debris Fall Velocity [m/s] <i>Surry</i>
Reference	0.94	0.094
Low	0.094	0.064

No impact on source term due to variation in particulate debris fall velocity

Fuel Relocation Temperature Sensitivity

Material interactions can cause early failure of fuel assemblies and other core components

• MELCOR uses either the interactive materials model or eutectics model to represent material interactions

Sensitivity	Fuel Relocation Temperature [K]
Reference	2479
High	2728
Low	2230
Eutectics	Eutectics model

Material interactions that cause early fuel failure and can impact accident progression timings and in-containment source terms based on SOARCA uncertainty studies

Fuel Rod Lifetime Sensitivity

Fuel assemblies at high temperatures exhibit early failures

• Early failures captured in MELCOR simulations using a lifetime function

Sensitivity	Fuel Rod Lifetime Model
Reference	Default time-at-temperature model
Increased Lifetime	Lifetime function that accrues damage from 22.2 hours to 20 minutes at temperatures from 2100K – 2600K
Reduced Lifetime	Lifetime function that accrues damage from 1.67 hours to 3.3 minutes at temperatures from 2100K – 2600K
SOARCA Lifetime	Lifetime function that accrues damage from 10 hours to 5 minutes at temperatures from 2100K – 2600K

No impact due to variation of the fuel rod lifetime modeling on source term Oxidized fuel assembly temperature failure model generally dominates

Hot Leg Creep Rupture Sensitivity

Key insight from SOARCA is potential for induced RPV pressure boundary failures

- JUCEO KING Severe accident conditions lead to most temperature conditions at RPV boundary Thermally-induced hot leg creep rupture found likely for PWRS mally-induced seizure of cycling

Sensitivity	RPV Induced Pressure Boundary Failure Modeling
Reference	Hot leg creep rupture enabled
No HLCR	Hot leg creep rupture disabled

Significant increase in early in-vessel source term for induced RPV failure for SBOs

In-containment Source Term Variability

Peer Review Finding

• Potential for combined effects of various sensitivity studies to be larger than separate effects *Nonlinear processes in severe accidents tend to limit amplification of response variability in multi-parameter sensitivity studies such that single scenario variability is less than variation across scenarios*

In-containment source term variation dominated by variation across sequences

SANDIA REPORT SAND2023-01313 Printed April 2023

High Burnup Fuel Source Term Accident Sequence Analysis

L.I. Albright, L. Gilkey, D. Keesling, C. Faucett, D.M. Brooks, K.C. Wagner, L.L. Humphries, J. Phillips, D.L. Luxat

Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Summary

- Increased burnup or extended enrichment does not significantly impact source term
 - Most significant variation in source term arises due to differences between accident scenarios
- Status of RPV has significant impact on early in-vessel releases
 - Low pressure scenarios exhibit more significant releases to containment
 - NUREG-1465 prescribed larger number of high pressure scenarios than SAND2023-01313
- Early in-vessel source term greatly reduced if RPV pressure boundary intact

Independent Peer Review

Focus of SAND2023-01313 Peer Review

PEER REVIEW OF THE IN-CONTAINMENT SOURCE TERM STUDY FOR HIGH-BURNUP AND HIGH-ASSAY LOW ENRICHED URANIUM FUELS

 Review technical basis of SAND2023-01313

Work Performed under the Auspices of the United States Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555

- Recommend improvements to SAND2023-01313
- Assess suitability of SAND2023-01313 source terms for regulatory applications

Peer Review Organization

Panel Membership

- Dr. Mohsen Khatib-Rahbar Panel Chair
 - Energy Research, Inc. (ERI)
- Dr. Richard S. Denning
 - Consultant
- Mr. Jeff Gabor
 - Jensen Hughes
- Dr. Didier Jacquemain
 - Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA)
- Dr. Luis E. Herranz
 - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)
- Dr. Yu Maruyama
 - Japan Atomic Energy Agency (JAEA)

Panel Objectives

- Assess technical adequacy with respect to:
 - Overall analysis approach
 - Specific applications of MELCOR to development of in-containment source terms
- Assess appropriateness of severe accident sequences selected
- Assess applied models and assumptions in terms of
 - Current understanding of severe accidents and source terms
 - Adequacy considering available experimental data, and observations
- Assess that source terms are representative, rather than conservative or bounding
- Assess adequacy of documentation against
 - Completeness of technical bases specification
 - Approach to analysis of uncertainties

Peer Review Process

- Draft High Burnup Fuel Source Term Accident Sequence Analysis (Completed 2021)
- Virtual Meetings (began in 2022)
 - 1. Briefing on the peer review objectives and the draft report by NRC and SNL
 - Panelist review reports delivered to SNL
 - Preliminary resolution of comments by SNL
 - Preparation of the draft peer review report
 - 2. Discussion of draft peer review report, comment resolution, and summary of unresolved comments
 - Final resolution of comments by SNL
 - Revision of High Burnup Fuel Source Term Accident Sequence Analysis report
 - 3. Discussion of revised report, peer review panel findings, and conclusions
 - Final High Burnup Fuel Source Term Accident Sequence Analysis report released (2023)
 - Final peer review report released (2023)

Acceptability of the SAND2023-01313 Source Term

- "[The peer review panel] **endorses the approach** taken in [SAND2023-01313]"
- "[SAND2023-01313] provides a defendable technical basis for the proposed source terms"
- "The peer review panel finds that the four nuclear power plants considered in the [SAND2023-01313] **reasonably represent the U.S. nuclear fleet**"
- "The **spectrum of accidents is sufficient** to satisfy the following stated attributes of an acceptable alternative accident source term (RG 1.183):

The accident source term must be expressed in terms of times and rates of appearance of radioactive fission products released into containment, the types and quantities of the radioactive species released, and the chemical forms of iodine released.

Qualities of the SAND2023-01313 Source Term

- Study is a significant technical improvement using state-of-the-art methods implemented in latest version of MELCOR
- In-containment source terms for HBU/HALEU fuels are representative MELCOR estimates, rather than conservative or bounding estimates
- No bias in the approach identified that could overestimate in-containment source terms
- Sensitivity studies documented in SAND2023-01313 valuable in supporting applications
 - Sensitivities explored limitations in understanding of HBU/HALEU fuel response under severe accident conditions
 - Results demonstrated impact of thermally induced (creep) depressurization of RCS for PWRs on in-containment source terms

Peer Review Report Recommendations

- Gap release phase incorporated into the early in-vessel phase
 - The panel considers the current approach of separating the gap and early in-vessel release phases, a product of the simplified single channel treatment of the STCP models of circa 1980s that is reflected in the NUREG-1465 source terms, outdated. During severe accidents, the gap and in-vessel releases from the fuel overlap to the extent that it is not possible to truly separate the two as distinct phases. Therefore, it is recommended that the gap release be incorporated into the early in-vessel release phase.
- More appropriate to represent impact of burnup using core inventories for HBU expressed in terms of radiological activities
 - The implication of comparison of mass inventories in kilogram [SAND2023-01313] is to incorrectly conclude that at higher fuel burnups, off-site doses would likely be substantially higher for high burnup fuels as the direct result of larger core mass inventories of radionuclides. In fact, when compared on the basis of integrated radiological activity, there would not be any significant differences for the two levels of fuel burnup.
 - Examples shown in the next presentation: "Follow-on Calculations"

Other Comments And Recommendations

- Panelists requested additional clarification (reflected in final report) that
 - Containment bypass scenarios and air ingression not considered in development of tabular source terms
 - Fission product removal mechanisms in containment not included in tabular source terms
 - Captured in MELCOR simulations, but post-processed out of reported MELCOR source terms
- Peer reviewers acknowledged more recent PRA studies could have different contributors to core damage
 - For the intended applications the scenarios used in the current [SAND2023-01313] appropriate with regards to the progression of severe accidents, radionuclide release and transport
- Panelists noted for most radionuclides no increase in activity with burnup sufficient to impact siting calculations
- Peer reviewers noted the uncertainty in lodine speciation based on experiments (FPT3, DF-4, and BECARRE)
- Peer review noted that current Fukushima Daiichi post-accident analyses confirm the assumption that Cs₂MoO₄ is dominant chemical form of Cs
- Peer review panel considered the use of median estimates appropriate to avoid bias due to potential outliers

Other Comments And Recommendations

Finally, even though tabular severe accident in-containment source terms provide a simplified tool for regulatory applications and analyses, it is important to recognize their limitations and the panel encourages the direct application of a state-of-the art severe accident code to specific issues when appropriate.

Fission Product Retention in Suppression Pools

	Gap Release		Early In-vessel	
Release Category	Including Suppression Pool	Excluding Suppression Pool	Including Suppression Pool	Excluding Suppression Pool
	Inventory	Inventory	Inventory	Inventory
Noble Gases	0.016	0.016	0.95	0.95
Halogens	0.005	1.30E-06	0.71	0.06
Alkali Metals	0.005	1.20E-06	0.32	0.006
Te Group	0.003	<1.0e-6	0.56	0.038
Ba/Sr Group	0.0006	<1.0e-6	0.005	0.0003
Ru Group	<1.0e-6	<1.0e-6	0.006	7.40E-06
Mo Group	1.90E-05	<1.0e-6	0.12	0.0001
Lanthanides	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6
Ce Group	<1.0e-6	<1.0e-6	<1.0e-6	<1.0e-6

Peer Review Findings

- In-containment source terms should consider the impact of retention in suppression pools, especially for SBO scenarios that discharge directly into the suppression pool
- Estimates of retention in suppression pools provided in SAND2023-01313 could be used in regulatory guidance to establish suppression pool decontamination factors

Significant effect of retention in suppression pool on key radionuclide groups

Acronyms

Acronym	Definition	Acronym	Definition
AC	Alternating current	NRC	Nuclear Regulatory Commission
ADS	Automatic depressurization system	ORNL	Oak Ridge National Laboratories
AFW	Auxiliary Feedwater	PB	Peach Bottom
AST	Alternative source term	PIRT	Phenomena Identification and Ranking Table
ATF	Accident tolerant fuel	PORV	Pilot-operated relief valve
ATWS	Anticipated transient without scram	PRA	Probabilistic risk assessment
BWR	Boiling water reactor	PRT	Pressurizer relief tank
CCFL	Counter current flow	PWR	Pressurized water reactor
CDF	Core damage frequency	Qol	Quantity of interest
DC	Direct current	RCIC	Reactor core isolation cooling system
ECCS	Emergency core cooling system	RCP	reactor coolant pump
ECDF	Empirical cumulative distribution function	RCS	Reactor coolant system
GG	Grand Gulf	RHR	Residual heat removal
HALEU	High-assay low-enriched uranium	SBLOCA	Small-break loss of coolant accident
HBU	High burnup	SBO	Station blackout
HLCR	Hot leg creep rupture	SOARCA	State-of-the-Art Reactor Consequence Analyses
HPCI	High pressure coolant injection system	SQN	Sequoyah
HPSI	High-pressure safety injection	SRV	Safety relief valve
LBLOCA	Large-break loss of coolant accident	STCP	Source Term Code Package
LEU	Low-enriched uranium	STSBO	Short-term station blackout
LOCA	Loss of coolant accident	SU	Surry
LPCI	Low-pressure coolant injection	TDAFW	Turbine-driven auxiliary feedwater
LPSI	Low-pressure safety injection	TID	Technical information document
LTSBO	Long-term station blackout	TMI-2	Three Mile Island Unit-2
LWR	Light water reactor		
Cs and I Releases

Vapor Pressures

10

10⁶

10

10

 10^{-6}

 10^{-9}

 10^{-12}

600

800

1000

Temperature [K]

Pressure [Pa]

- SAND2011-0128 considered deposition of radionuclides on the lower head, leading to significantly decreased in-vessel phase releases.
 - This consideration delays a significant fraction of radionuclide release to containment until after lower head failure during the ex-vessel phase (employed for Peach Bottom and Sequoyah)
 - This practice is no longer considered appropriate, and was not employed in SAND2023-01313

Containment Release: Halogens

GG5a 80 GWd/MTU HALEU

Time [h]

--- Escaped

Vessel Depressurized

10

10

10

Time [h]

Fractior

- CsI (all original I inventory and ~10% original Cs inventory) transports readily from the primary system to containment during core damage due to the relatively large CsI vapor pressures at elevated primary system temperatures
 - Consistent with Peach Bottom SOARCA results

10

Fraction

Mass |

lemental lodine

Cesium Molybdat

1400

Cesium lodide

1200

10

NUREG-1465 Accident Selection

- Dominant sequences were chosen based on impact on source term
 - PWRs are predominantly LOCA accidents
 - BWRs are predominantly SBO/ATWS accidents

PWR Plants	Sequence	Description	BWR Plants	Sequence	Description
Surry	AG	LOCA (hot leg), no containment hear removal systems	Peach Bottom	TC1	ATWS w/ reactor depressurized
	TMLB	LOOP, no PCS and no AFWS		TC2	ATWS w/ reactor pressurized
	V	Intefacing system LOCA		тсз	TC2 with wetwell venting
	S3B	SBO with RCP seal LOCA		TB1	SBO with battery depletion
	S2D- δ	SBLOCA, no ECCS and H2 combustion		TB2	TB1 with containment failure at vessel failure
	S2D-β	SBLOCA w/ 6" hole in containment		S2E1	LOCA (2"), no ECCS and no ADS
Oconee 3	TMLB	SBO, no active ESF systems		S2E2	S2E1 with basaltic concrete
	S1DCF	LOCA (3"), no ESF systems		V	RHR pipe failure outside containment
Sequoyah	S3HF1	LOCA RCP, no ECCS, no CSRS w/ reactor cavity flooded		TBUX	SBO with loss of all DC power
	S3HF2	S3HF1 w/ hot leg induced LOCA	LaSalle	ТВ	SBO with late containment failure
	3HF2	S3HF1 w/ dry reactor cavity	Grand Gulf	тс	ATWS early containment failure fails ECCS
	S3B	LOCA (1/2") w/ SBO		TB1	SBO with battery depletion
	ТВА	SBO induces hot leg LOCA - H2 burn fails containment		TB2	TB1 w/ H2 burn fails containment
	ACD	LOCA (hot leg), no ECCS no CS		TBS	SBO, no ECCS but reactor depressurized
	S3B1	SBO delayed 4 RCP seal failures, only steam driven AFW operates		TBR	TBS with AC recovery after vessel failure
	S3HF	LOCA (RCP seal), no ECCS no CSRS			
	S3H	LOCA (RCP seal) no ECCS recirculation			