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Industry Adoption of AI
• Operating plants are approaching artificial intelligence 

cautiously; learning what is real about AI takes research, 
experimentation, and time

• Pilot projects focus on a clearly defined problem
• Typical pilot seeks to streamline a repetitive process and reduce 

human drudgery and labor hours in that process
• Costs of building AI infrastructure (data acquisition and curation, 

model development and training, user interface, maintenance) 
can be significant

• Many choose on-premises designs to protect company IP
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NEI Member Interests in Artificial Intelligence

Use Category Now Near Future

Work Management Few Many All
Corrective Action Management Many Most All
Maintenance Management Many Many All
Operations Support Few Several All
Outage Management Few All
Regulatory Affairs Few Many All
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Standards and Best Practices
 The standards community is challenged to keep up with the 

pace of AI development
 Many US and international standards pertaining to AI are already 

available; the NRC's gap analysis report provides a valuable 
catalog of those standards

 More are in development
 Legislation (e.g., the EU AI Act) and government-wide direction 

(e.g., Executive Orders) can impose additional requirements
 Corporate policies impose additional requirements on licensee 

AI projects, such as data governance
 Best practices are in early stages of development
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Recommendations
 Recognize that AI is evolving more rapidly than regulations can 

keep up; look for ways to speed up and streamline development 
of guidance

 Rely on the existing regulatory framework as much as possible
 Interact through the use of table tops and pilot tests in the 

revision or creation of requirements for AI (e.g., Reactor 
Oversight Process)

 Strive to keep the regulatory touch commensurate with impact 
on safety to allow for continued rapid innovation

 Allow flexibility and credit for use of industry-developed guidance
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Final Thoughts
 Education of the public about AI use in nuclear 

facilities will be important to maintain public trust.
 We appreciate the NRC’s engagement thus far.
 We look forward to working with the NRC to find an 

appropriate balance between regulatory oversight and 
creative freedom to enable NRC and industry to innovate 
with AI tools to improve safety, efficiency, and quality of 
work life.
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AIMS @ U of Michigan
• Established in January 2023.
• Students’ background: Nuclear 

engineering, Computer 
Science, 
Mathematics/statistics, 
Software engineering.

• Fall 2024 roster (22 members): 
2 postdocs, 9 PhD students, 5 
Masters students, 6 
undergraduate students.

• PI: Majdi Radaideh (Assistant 
Professor)
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AIMS Ongoing Projects
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NLP and LLM for sentiment analysis and public engagement

Computer vision for stress-corrosion cracking detection and 
tracking in LWR fuels

Autonomous control in microreactors: Classical control vs 
Reinforcement Learning 

Tensor train methods for accelerated neutron transport 
solutions

Low-to-high fidelity mapping with ML for accelerated CFD 
simulations for advanced reactor 

Robotics and drones for autonomous inspection and 
radiation mapping 

Fast multi-objective optimization algorithms to enable 
reactor design in expensive simulations.   

Mathematical Foundations and Computational 
Implementation for Nuclear Digital Twins 

AI/ML framework development, regulation and licensing in 
nuclear power 
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• Work done mostly by the AIMS 

Reactors sub-group (Nataly Panczyk, 
Patrick Myers, Omer Erdem, and Leo 
Tunkle).

• Most of the topics presented were 
sponsored by the NRC University R&D 
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• Some of the topics presented were 
sponsored by the DOE Distinguished 
Early Career Program.
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Content
• Background
• What is explainable AI?
• Our proposed AI regulatory framework?
• Preliminary results 
• Group discussion
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AI Regulatory Gap
• If some vendor came in and said they want to use some non-

traditional model to control/model a process in a nuclear facility 
• e.g., equipment degradation, predictive maintenance, control rod movement, 

non-safety process

• They give the NRC the model they built, the routine they used to build 
the model, and a set of testing scenarios of the model under different 
conditions 

• Here we assume the data are not shared with the NRC.

• “As a regulator, what do you want to know about this model to 
license it?”

7



Simplified Flowchart
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Content
• Project Background
• What is explainable AI?
• AI Applications (without explainability)
• Our proposed AI regulatory framework?
• Preliminary results 
• Group discussion
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Explainability vs Interpretability in AI
• Interpretability and explainability are 

often used interchangeably, but they 
have nuanced differences.

• Interpretability refers to the ability to 
understand how a model works 
internally. It means that the model 
itself is simple enough for a human to 
understand how it makes decisions. 

• Explainability refers to the ability to 
explain the decision-making process of 
a model, even if the model itself is 
complex and not inherently 
interpretable. 
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Model Interpretability curve
• Rule-based learning refers to the class of 

methods where you encode every 
rule/action in the system in if else if … 
statements, where you know every 
possible action/prediction the model 
could do. 

• Classical models include linear regression, 
decision trees, and K-nearest neighbors. 

• Black-box models involve deep neural 
networks and transformers (i.e., the core 
of generative AI models).

11

LLM is like here 



Feedforward Neural Networks

𝜃𝜃 = (𝑊𝑊, 𝑏𝑏) 
Are usually grouped 
into one variable 
called model 
parameters

Weight matrices 𝑊𝑊 might also be called kernels

Input/feature layer, 
the 𝑋𝑋 array. 

b𝑖𝑖, where i=1,2,3.
Are network biases (to be 
determined).

W𝑖𝑖, where i=1,2,3.
Are Weight matrices 
(to be determined).

𝑔𝑔𝑖𝑖(.), where i=1,2,3.
Called non-linear transformers or 
activation functions.

Output/label layer, the 𝑌𝑌 array, 
estimated by function 𝑓𝑓. 

h𝑖𝑖(.), where i=1,2.
Called hidden layers.



SHAP (SHapley Additive Explanations)
• SHAP assigns each feature (𝑥𝑥) a value that represents its contribution to the 

prediction (𝑦𝑦), based on the Shapley value calculation. 
• Theoretically, it considers all possible combinations of features to measure their individual 

impact on the prediction.
• It is model-agnostic and can be used with neural and non-neural network models. 
• Features with positive SHAP values positively impact the prediction, while those 

with negative values have a negative impact on the prediction. The magnitude is 
a measure of how strong the effect is.
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End goal: Layer and 
node attributions
• A more microscopic look on what each 

node and layer in a complex neural 
network is doing to the model 
prediction.

• Offering global input/output model view, 
layer view, and neuron view.  

• Classical methods like SHAP can be 
repurposed with visualization tools to 
allow for neuron and layer views.
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Kolmogorov-Arnold Networks (KANs) as a path for 
interpretable AI
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In a neural network, activation functions 
are fixed across the entire network, and 
they exist on each node.

In KAN, however, activation functions exist on edges 
(which correspond to the weights of a traditional neural 
network), and every edge has a different activation 
function.



Control points
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• KAN builds on the concepts 
of Bezier curves and B-
splines.

• KAN uses the positions of 
control points learnable in 
the activation function so 
that the model is free to 
learn any arbitrary shape 
activation function that fits 
the data best.



Symbolic Regression with KAN
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Model Extrapolation  
• AI is not doing well in extrapolation. 
• No good solution is currently there:

• LLM hallucination. 
• Completely erroneous prediction when used outside 

the data regime. 
• Potential mitigation:

• Strict definition of input and output boundaries. 
• Expand data coverage to allow more room for 

interpolation.
• Use model interpolation uncertainty as guidance for 

poor prediction.  
• Only use the model for interpolation.
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Extrapolation Example
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Researcher  
experience 
is not 
correct



Content
• Project Background
• What is explainable AI?
• AI Applications (without explainability)
• Our proposed AI regulatory framework?
• Preliminary results 
• Group discussion
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Reactor Siting in the United States

21

A total of 22 objectives to optimize for each site 
location:
• Socioeconomic objectives (State Electricity Price, 

State Net Electricity Imports, Population Sentiment 
Towards Nuclear Energy), 

• Safety Objectives: No Landslide Area, No Fault Line 
Intersection, No Open Water Or Wetland Intersection 

• Proximity objectives: Existing Nuclear R&D Center in 
100 Miles, Transportation System Distance, Retiring 
Facility Distance.

• Comparing coal power plant sites with Brownfield sites 
in the US. High dimensional combinatorial 
optimization without any “specified weights” was used 
to analyze +30,000 potential sites in the US.



Predicting Site Metrics with Neural Networks
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• Site coordinates,
• County, 
• State

• Site score, 
• Site attributes,
• Ranking of each 

attribute to the 
site score



Microreactor Control with Reinforcement Learning

23

Radaideh, M. I., Tunkle, L., Price, D., Abdulraheem, K., Lin, L., & Elias, M. (2024). Multistep Criticality Search 
and Power Shaping in Microreactors with Reinforcement Learning. Under Review in Nuclear Science and 
Engineering. arXiv preprint arXiv:2406.15931.

Problem statement: In real-time in a load-following setup, 
find the right position of the control drum to keep the reactor 
critical and without violating any safety constraints.






RL Agent learns and generalizes well! 
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Load-following Training Scenario Load-following Test Scenario Load-following Longer timescale



Accident Forecasting with Long Short Term Memory
• The accident starts with a break in 

one of the reactor pipes.
• The lack of cooling causes the 

temperature to rise to very 
dangerous levels. 

• Emergency systems start providing 
additional cooling to the system to 
cool it down. 

• The objective is to model 
important core parameters during 
accident time.

25
Radaideh, M. I., et al. "Neural-based time series forecasting of loss of coolant accidents in nuclear 
power plants." Expert Systems with Applications 160 (2020): 113699.



Data Preparation and Generation 
• 6000 random samples (Training & Validation) 
• 500 Random samples cases (Testing)
• 1 Nominal/Real test case  (Testing)
• A total of 6501 samples is available. 
• 40 Parameters/Features are perturbed causing huge spread in the 

responses.
• 400 time-steps are monitored.
• The features describe important physical model parameters in 

TRACE (nuclear code) that are sensitive to the LOCA scenario.

26

The raw input data 𝑿𝑿 has size 6501 × 40.
The raw output data 𝒀𝒀 has size 6501 × 400 × 4.

Peak Clad 
Temperature

Break Flow

Two additional outputs:
1- Core pressure
2- Core level



Digital Twin for Nuclear Accident Forecasting

Radaideh, M. I., et al. "Neural-based time series forecasting of loss of coolant accidents in nuclear 
power plants." Expert Systems with Applications 160 (2020): 113699.






Content
• Project Background
• What is explainable AI?
• Our proposed AI regulatory framework
• Preliminary results 
• Group discussion
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A high-level look

29

Focus of the 
discussion



What “AI model” means to us 
(Anything that survives from this list for a specific problem)

• Linear regression
• Lasso, Ridge, ElasticNet
• Gaussian Processes (and its 

variants like Sparse GP)
• K-nearest neighbors
• Support vector machines
• Decision trees
• Random forests
• Gradient boosting 
• Other ensemble Models 

(Stacking, Adaboost, 
Bagging)
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• Feedforward neural 
networks

• Recurrent neural 
networks (LSTM)

• Convolutional neural 
networks

• Residual neural 
networks

• Graph neural 
networks

• Deep Gaussian 
Processes

• Transformers
• Variational autoencoders
• Generative adversarial 

networks



AutoML
• Automatic Machine Learning (AutoML) is 

a subfield of machine learning that 
focuses on automating the end-to-end 
process of applying machine learning to 
real-world problems. 

• This includes tasks like data 
preprocessing, feature engineering, 
model selection, hyperparameter tuning, 
and deployment. 

32

Define 
Problem

Collect Data

Pre-process 
Data

Train Model

Hyperparameter 
Tuning

Evaluate & 
Deploy

Define Problem

Collect DataAutoML

Traditional ML 
Workflow

AutoML 
Workflow



pyMAISE: Michigan Artificial Intelligence Standard Environment

• pyMAISE is an artificial intelligence 
(AI) and machine learning (ML) 
benchmarking library for nuclear 
reactor applications. It offers to 
streamline the building, tuning, and 
comparison of various ML models 
for user-provided data sets. Also, 
pyMAISE offers benchmarked 
datasets, written in Jupyter 
Notebooks, for AI/ML comparison. 
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“An impressive work was done by a senior 
design team led by Patrick Myers (now PhD 
student in NERS), Connor Craig (Now at 
Westinghouse), and Veda Joynt (now 
pursuing Masters in Germany)”



pyMAISE: Michigan Artificial Intelligence Standard Environment

• Current ML algorithm support includes:
• Linear, ridge, lasso, logistic, ElasticNet, decision 

trees, support vectors, random forests, k-nearest 
neighbors, Gaussian Processes, Gradient Boosting, 
Stacking,  Adaboost, among others.

• Available as regressors and classifiers 

• These models are built using scikit-learn and 
Keras/Tensorflow. pyMAISE supports the 
following neural network layers:

• dense, dropout, 
• LSTM, GRU,
• 1D, 2D, and 3D convolutional,
• 1D, 2D, and 3D max pooling,
• flatten and reshape.

34



Phase I: Model Selection (90% done)

Dataset
(Define X/inputs/features and 

Y/outputs/labels)
Model Selection

K-fold cross-validation 
(eliminating data bias)

Hyperparameter Tuning 
(eliminating model form 

bias)

Classical Models (Linear, decision tree, 
random forests, support vectors, …) 

Model Ranking
(Keep the best with a 

cutoff “threshold”)

Deep Neural Networks (feedforward, 
convolutional, recurrent, ...) 

Transformers and Generative Models 
(e.g., GAN, Variational Autoencoders, 

Diffusion models)

Phase I: Model 
Selection 

What pyMAISE can do so far

Top Models
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Phase II: VVUQ (20% done)
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Dataset
(Define X/inputs/features and 

Y/outputs/labels)
Model Selection

K-fold cross-validation 
(eliminating data bias)

Hyperparameter Tuning 
(eliminating model form 

bias)

Uncertainty 
Quantification

Model Confidence 
Interval EstimatesExtrapolation Tests

Classical Models (Linear, decision tree, 
random forests, support vectors, …) 

Model Ranking
(Keep the best with a 

cutoff “threshold”)

Deep Neural Networks (feedforward, 
convolutional, recurrent, ...) 

Transformers and Generative Models 
(e.g., GAN, Variational Autoencoders, 

Diffusion models)

Phase I: Model 
Selection 

Phase II: VVUQ

What pyMAISE can do so far

Top Models

Regulator & Vendor 
communications to cover 
all operating conditions



Phase III: Explainability (20% done)
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Metrics and Statistical 
Tests to “Pass”

(F1, Precision, Accuracy, R2, 
extrapolation uncertainty)

Final Model(s) and 
generate a final report 

Uncertainty 
Quantification

Model Confidence 
Interval EstimatesExtrapolation Tests

Phase II: VVUQ

Microscopic Model 
Explainability

(Node attribution, layer attribution, etc.)

Global Ad-hoc 
Explainability 

(SHAP, LIME, DeepLIFT, etc.)

Top Models

Regulator & Vendor 
communications to cover 
all operating conditions

Phase III: 
Explainability 
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Leo  + Nataly 

Nataly

Patrick
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• What is explainable AI?
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• Preliminary results 
• Group discussion
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Dataset Overview

40

Fig. 1: Still image of CHF 
footage captured at the 
Transient Reactor Test Facility 
at Idaho National Lab in 2021 
[INL experiment].

• Over 21,000 experimental samples of Critical Heat Flux (CHF) from a variety 
of facilities

• Parameters include:
• Geometric

• Test Section Diameter (D) 
• Heated Length (L)

• Boundary
• Pressure (P)
• Mass Flux (G)
• Inlet Temperature (T)

• Measured
• Outlet Quality (X)
• CHF

• Goal: Predict CHF using a combination of the dataset parameters using AI, 
then compare explainability methods used on a Deep Neural Network (DNN) 
against metrics from a model with better transparency, a Random Forest 
(RF).

• Our reference case is: 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐹𝐹(𝐷𝐷,𝑃𝑃,𝐺𝐺,𝑇𝑇, 𝐿𝐿)



Correlation Matrix

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝔼𝔼[ 𝑋𝑋 − 𝜇𝜇𝑋𝑋 𝑌𝑌 − 𝜇𝜇𝑌𝑌 ]

𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎
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• Each parameter in the dataset 
is shown with its 
corresponding correlation to 
each parameter as a heatmap.

• Correlations are calculated 
using Pearson’s correlation 
coefficient:



Selected Models for XAI
• Deep Neural Network (DNN)

• Black-box algorithm
• Contains many hidden layers, leading to very 

limited transparency
• Test algorithm for explainability (XAI) metrics

• Random Forest (RF)
• High transparency and inherent explainability
• An ensemble of decision trees
• Control algorithm to verify and measure DNN 

explainability metrics
• Feature importance

• Permutation and Mean Decrease in Impurity 
(MDI)
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Deep Neural Network – Explainability Results 
(Exact SHAP)
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DeepLIFT and Integrated Gradients 
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DeepLIFT

Integrated Gradients



Verification of XAI Using Random Forest Metrics
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Neural NetworksRandom Forests



Symbolic Regression with KAN

46Traditional Feedforward Net score on same dataset: 0.999

KAN Application to nuclear dataset to predict Critical Heat Flux 



Real-time UQ with Variational Inference
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Promising results on renewable energy load forecasting
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• Finish training 
based on 4 days 
of data in 10 
minutes using a 
modest GPU.

• What about 
nuclear? We have 
an NEUP pending 
to answer that. 



Linear Sigmoid 
Growth

Sigmoid Decay

Step-up Constant

Tightest uncertainty bounds,
best predictions

KL divergence dominates loss

Large bounds, but good UQ Large bounds, but good UQ

- Too much KL divergence at the 
end can force the model to 
unlearn data in order to move 
towards prior

- Balancing act between 
regulating posterior and learning 
data

You can embed conservatism in variational UQ



Path forward
• Technical: Exploring KAN capabilities on a larger scale as an approach for 

interpretable AI
•  Imitation learning from black-box neural networks learning. 

• Research gap analysis: To draft a paper where we look at the intersection 
between literature review in other fields, targeted surveys (interviews with 
government, industry, labs, and academia), and our proposed framework.

• Do we have a good plan?  

• PyMAISE development: Migrate to Pytorch backend, adding microscopic 
explainability, and document the results on nuclear applications.

• Data: Getting real data from plants! 

50



Group Discussion
1. What does AI mean for the NRC? Is it neural networks, simple regression models, everything?
2. How aligned is our approach with the NRC's vision for trusting AI models? If it's not aligned, what changes would you suggest 

we consider?
3. How do you define Verification, Validation, and Uncertainty Quantification (VVUQ) for AI/ML? Does it include predicting 

confidence intervals and identifying when the model is unreliable? Does it involve validating the model on scenarios (e.g., test 
scenarios) unknown to the model?

4. Is cross-validation sufficient for AI/ML? For example, training and testing the model with various settings, including different 
hyperparameters and train/test splits.

5. Given that machine learning performs poorly in extrapolation, how much tolerance do you have for ML extrapolation? For 
example, training a model on PWR data and expecting it to work well for BWR is unrealistic. This is akin to using TRACE/RELAP5 
for HTGR safety analysis, even though we know they are not designed for such reactors..

6. Would automating the process of model selection, VVUQ, and XAI analysis benefit the NRC (e.g., through tools like pyMAISE)?
7. Are there any other applications or datasets (e.g., similar to the CHF or MIT reactor) where the NRC would like to see this 

framework applied?
• Can we have access to other sources of data from the NRC if you have those for public use?

8. As a regulator, do you prefer more of a visual GUI interface for this framework, or do you prefer working with coding and input 
file preparation similar to nuclear codes?

9. Would you be interested in having students do summer internships to learn the intricacies of the day-to-day responsibilities of 
a regulator?

10. What kind of regulation changes will need to be made to implement explainable AI into the nuclear licensing process?
11. After this project is completed or through other relevant projects, how does the NRC hope to be able to modify their licensing 

process/workflow? 
51
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Machine Learning, AI Experts,  Real-World Nuclear

Extensive, real-world nuclear experience
§ More than half of US BWRs use our software and 

services. 
§ Have solved several long-standing reactor issues
§ Have intimate knowledge of modern nuclear core 

design across utilities, fuel brands, and product lines

People
§ Engineers and physicists with broad, nuclear, AI and 

simulation experience

Collaboration
§ Located near Purdue University 
§ Close relationships with Purdue Nuclear Engineering 

Department
§ Sponsored PhD student working to integrate  AI into 

modern core simulators 
§ Sponsored Purdue Data Mine project on Generative AI
§ NRC/DOE and National Lab joint projects

About Blue Wave
Founded in 2016, and already trusted by over half 
the boiling water reactors in the U.S. domestic 
fleet. We are an AI-centric, industry-focused 
innovation company serving the nuclear energy 
industry. We combine the insight of exceptional 
scientific technical talent with the latest 
advancements in AI and Machine Learning to 
transform data into solutions for the world’s most 
difficult problems.

BW Locations

2© 2024 Blue Wave AI Labs. All Rights Reserved.



Figure 1 from “Artificial Intelligence Strategic Plan, Fiscal Years 
2023-2027”, U.S. NRC. NUREG-2261 

Proven AI/ML Capabilities
Product Portfolio and Pipeline

3

Nuclear News, February 2022

© 2024 Blue Wave AI Labs. All Rights Reserved.



AI Implementation Lessons Learned

4

§ Ensure implementation supports the mission
§ Solution fits need

§ Don’t implement AI just to say you are using AI

§ Provide real value add to the company
§ Cost savings
§ Minimize the mundane
§ Opportunity costs
§ Employee retention
§ Knowledge transfer

§ Cybersecurity
§ Set proper expectations

§ Human factors
§ Safety culture responsibility

© 2024 Blue Wave AI Labs. All Rights Reserved.



Nuclear AI Insights

5

§ “Augmented Intelligence” 
§ Human decision-making 

§ Discrete solutions – system boundaries 
§ Defense in depth
§ Working within existing systems

Credit: Considerations For Developing AI Systems in Nuclear Applications, September 2024 – CNSC, ONR, NRC

© 2024 Blue Wave AI Labs. All Rights Reserved. 5



Integrating into Design Process 

eigenvalue.ai

MCO.ai

ThermalLimits.ai

eigenvalue.ai

MCO.ai

ThermalLimits.ai

Step1: start with a viable 
base reload pattern

Step2: check eigenvalue

Step3: check MCO
Step4: check TL

…If 2-4 are good…

Step 5: remove fuel assemblies

REPEAT 2-5 until minimum 
viable design is found

6© 2024 Blue Wave AI Labs. All Rights Reserved.



Moisture Carry Over (MCO)
Finding a Solution
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 MCO ≥ 𝟎. 𝟑𝟎	%

 MCO ≥ 𝟎. 𝟏𝟎	%

MCO < 𝟎. 𝟏𝟎	%Ex
po

su
re

 L
ev

el
s 

an
d 

Co
st

s 
$$

Resulting in powerful predictive capability to prevent elevated MCO

§ The current practice
§ Mitigate MCO on ad-hoc basis during reactor operation
§ Poor to no ability to forecast MCO behavior prior to 

reactor startup 

§ The ability to accurately predict is needed
§ The ability to mange elevated levels of MCO (at the 

operational stage)
§ AND the capability of designing future fuel cycles to 

prevent high MCO from occurring entirely

§ The new approach
§ Capitalizes on the power of Machine Learning 
§ Leverages a generating station’s historical data sets

7
© 2024 Blue Wave AI Labs. All Rights Reserved.



Moisture Carry Over (MCO.ai)
A physics constrained approach using AI coupled with Machine 
Learning to enable unforeseen visibility into MCO prediction

§ Objective
§ Reliably predict MCO prior to and during a fuel cycle

§ Implementation
§ Utilizes a neural representation of MCO dynamics
§ Leverages historical fuel cycle data, output from core 

simulators, and past MCO measurements

§ Benefits
§ Reduce plant dose rates and collective radiation exposure 

to meet ALARA goals
§ Reduce fresh fuel purchases for cycles that would 

otherwise be MCO limited
§ Decrease erosion of main steam isolation valves and 

turbine blades
§ Prevent electrical output derates

§ Results
§ Ability to immediately evaluate deviations in operating 

strategy for impact on MCO, preventing derates and 
decreasing radiation exposure 

§ Optimized reload core designs with unparalleled MCO 
prediction capability

MCO Limit 

An operating scenario was determined with MCO.ai that prevented an extended 
power de-rate or mid-cycle outage 

BW Prediction of 
original plan 
modified to include 
suppression blades

Optimized & 
Modified Plan 
with MCO.ai 

§ Predicted MCO within ±0.011% for current cycle
§ History of current cycle data included in training

§ Predicted MCO within ±0.018% for Future-Cycles

8© 2024 Blue Wave AI Labs. All Rights Reserved.



§ Number of features needed 
 à Determined by fundamental dynamics governing MCO

§ Number of features allowed for training
 à Determined by size of training set
 (to avoid overfitting)

Predicting MCO through Machine Learning

H
ist

or
ic

al
 D

at
aTargets

(MCO measurements)

Features
(Derived from core conditions)

§ Procedure
§ Determine features and targets from historical data
§ Develop Neural Net regression architecture + train
§ Validate MCO model’s predictive capability on reserve data
§ Determine new features + repeat

§ Feature Engineering Objectives
§ Reduce the thousands of potential inputs to a canonical set 

of features that capture the dynamics governing MCO

§ Integrate domain knowledge to construct features that can 
be controlled by engineers and operators

e.g. Core Flow, Thermal Power, Control Rod Patterns, …

9
© 2024 Blue Wave AI Labs. All Rights Reserved.



The solid markers 
indicate the value of the 
given reactor variable 
for

exposure index = 
392

10

MCO Data & Core Data Structure
Example Data Point

This constitutes a 
single data point

10
© 2024 Blue Wave AI Labs. All Rights Reserved.



In-Cycle Management

Actual Event: fuel defect occurred partway through cycle
§ Suppression rod(s) insertion can exacerbate MCO 
§ MCO exacerbated as core flow increases, knew it would be a 

significant challenge to maintain MCO below their limit

Fuel defect management options without MCO.ai
§ Option A: Derate? ($6-12M for ~120 days derate)
§ Option B: Outage? ($10-12M for outage)

Fuel defect management with MCO.ai predictive visibility
§ Option C: Remain at Full Power for Remaining Cycle
§ Continue operation with confidence in a strategy that keeps MCO 

below limit
§ As shown on the right, operator used MCO.ai and found a 

workable solution to prevent outage or derate (ran ~20 
scenarios), would not have been possible without MCO.ai

MCO.ai SAVED $10M IN THIS FUEL DEFECT EVENT 
Constellation has worked with Blue Wave over the last
four years to unlock powerful new capabilities with
Machine Learning which allows us to reach new levels in
nuclear fuel cycle planning and efficiency. This can lead to
reduced fuel costs and insights into core design and cycle
management as new fuel strategies are introduced.

Jason Murphy, Vice President for Nuclear Fuels at Constellation
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K-effective (Eigenvalue)

Δ!"#$%&

§ The Significance
§ K-effective is one of the most fundamental parameters in 

nuclear engineering
§ Its trend directly impacts the energy capability of the core
§ If not accurately predicted, the result is

§ Not loading enough fresh fuel (Generation Impact)
§ Or loading more fresh fuel than necessary (Direct Cost 

Impact)

§ The Problem
§ Its predictability from one cycle to another has been an 

issue with BWRs
§ Inaccurate Eigenvalue projections result in lost generation 

revenue or increased fuel costs.

This gap has an adverse 
financial impact

12
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Eigenvalue.ai
Machine learning based predictive analysis tool to meet 
expected reload core energy capability 

§ Objective

§ Accurately predict eigenvalue (blue line) to closely match 
actual values (black line)

§ Overcome limitations of traditional eigenvalue prediction 
methods (red line)

§ Implementation
§ Utilizes a convolutional neural network and machine 

learning to process hundreds of thousands of pin-by- pin 
fuel attributes with global reactor variables affecting 
eigenvalue behavior 

§ Benefits
§ Accurate eigenvalues translate into either reduced fuel 

costs or preserved generation revenue by precisely 
meeting energy commitments for the fuel cycle

§ Results
§ Typical accuracy of eigenvalue prediction is ±50pcm
§ Reduces design uncertainty 4-fold on average in 

eigenvalue design prediction across BWR plants

13
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Benchmark Testing Sample Procedure

Train on these cycles

14
14
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Thermal Limit Biases
§ Compliance with Technical Specification and Thermal Operating 

Limits are essential to the safe operation of an NPP.

§ In a BWR, three major limits are tracked (MFLPD, MFLCPR, and 
MAPRAT). Example of typical limits are

§ Challenge: A large and inconsistent bias between offline and 
online limits makes it difficult to engineer in appropriate levels of 
margin to these limits. 

§ Excess margin = Over-fueling the core (excess direct fuel costs)
§ Insufficient margin = Operation challenges resulting in power 

derates and decreases energy capability of the core to avoid 
exceeding a limit (power generation losses). 

§ Blue Wave Product: A method for consistent and accurate estimation of 

online thermal limits from training data coming from earlier cycles. 

15

Offline

CORE SIMULATOR 
MODELING

Online

LPRM results + BW 
corrections
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§ Objective
§ Compliance with Tech Specs and thermal operating limits, 

i.e., maintaining safety
§ Reduce the bias between offline (black line) and online 

(blue line) by more consistently and accurately estimating 
thermal limits (purple line)

§ Implementation
§ AI enabled tool supporting reload core design
§ Ability to adjust design goals for scenario planning during 

fuel cycle

§ Benefits
§ Reduces excess margin or over-fueling the core resulting in 

direct fuel cost savings
§ Restores margin and lessens operational challenges when 

approaching administrative limits, thereby preventing 
power generation losses

§ Results
§ Online to offline bias consistently reduced by a factor of 3 

to 5, on average, across all generating stations. 
§ Accurate in-cycle thermal limit predictions along with 

FelexGenius.ai have already prevented costly actions

Thermal limit.ai
Thermal Limit bias reduction through an encoder-decoder 
convolutional neural network

Bias between 
online and 
offline limit

Issue with in-core 
instrumentation

Parameter Typical Average Bias 
Compared to Online Values 

Keff 50 pcm 
MFLCPR 0.30% 
MAPRAT  0.75% 
MFLPD 0.75% 

 

Offline
MSEarray : 11.74*10-4

MSEMFLPD : 23.28*10-4

BIASmean : 4.26*10-2

BIASmax : 9.61*10-2

Blue Wave Model
MSEarray : 0.21*10-4

MSEMFLPD : 0.45*10-4

BIASmean : 0.53*10-2

BIASmax : 2.38*10-2

16
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Core 
Monitoring 
System

q Online Power Distribution

q Online Thermal Limits

q Compliance with Tech Specs
q Real Plant Operation

LPRMs

TIPs

Core 
Simulator

q Offline Power Distribution

q Offline Thermal Limits

q Used for reload core design

q Intended Plant Operation

Feedback from Nuclear 
InstrumentationDetector 

Calibration

Δ

Operation

Design

q Gaps in modeling & simulation

q Error & uncertainty in physical 
measurement

q Leads to overly conservative design 
and/or operational challenges; 
costs millions per reload

Thermal limit monitoring architecture
Blue Wave Provides AI systems for TIP Alignment, LPRM Analysis and Thermal Limit Predictions

17

Gaps in key plant parameters 
limit design and operation
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THERMAL LIMIT MODELING APPROACH

18

§ Direct-Bias Methodology
§ Error correction network that takes offline thermal limit as input 

and adjusts the power distribution to more accurately predict 
the expected online thermal limit

§ Convolutional Neural Network (CNN) encoder-decoder network
Inputs: Offline MFLPD array and other cycle parameters
Output: Online MFLPD array

Convolutional Neural Networks are Computationally Efficient in Dealing with Large Arrays

Input to BWnuclear.ai BWR Core Prediction Software Suite
(ThermalLimit.ai, MCO.ai, eigenvalue.ai)
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Typical bias for mflpd

• The Bias requires use of larger 
thermal limit design margins, 
which increases fuel costs.

• The Bias forces deeper than 
planned use of control rods that 
can lead to power derates and 
generation revenue losses.

• Unplanned rod patterns lead to 
MFLPD management challenges 
for Operations and re-work for 
Nuclear Analysis engineers.

• Online values depend upon 
accurate LPRM and TIP operation.• Scale of BIAS is 10-2  and scale of MSE is 10-4

• MFLPD is the maximum over a 30x30x25 array. MSEarray is 
across the whole array. MSEMFLPD is the squared error of the 
max values (= MFLPD values).

• BIAS is calculated for the MFLPD values.

Offline
MSEarray : 4.18
MSEMFLPD : 14.77
BIASmean : 3.44
BIASmax : 7.37

19
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Blue Wave MFLPD model performance

Training Set: 
§ The eight previous Fuel Cycles

Performance Improvement:
§ Mean bias is reduced by a factor of 

3.62
§ Max Bias reduced by a factor of 2.03

Potential Savings
§ Revise the design to have fewer fuel 

bundles
§ Avoid generation losses due to derates.

Note: Scale of BIAS is 10-2. Scale of MSE is 10-4

MFLPD is the maximum over a 30x30x25 array. MSEarray is across the whole array. MSEMFLPD is the squared error of the max values (= MFLPD values)
BIAS is calculated for the MFLPD values

Offline
MSEarray : 4.18
MSEMFLPD : 14.77
BIASmean : 3.44
BIASmax : 7.37

Blue Wave Model
MSEarray : 1.65
MSEMFLPD : 1.34
BIASmean : 0.95
BIASmax : 3.63

20
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MFLPD AXIAL ACCURACY

21

§ The Blue Wave model prediction is significantly more accurate than the physics model prediction

max
!

|𝑦"#! 	− 𝑦$#!
% |max

!
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& |

Cycle 17

Online vs. Offline Online vs. BW Model
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Flexgenius.ai

22

§ Local Power Range Monitor (LPRM) Diagnostic Tool

§ Display
§ LPRM readings
§ 3D view with anomalous LPRMs highlighted in red
§ List of anomalous LPRMs
§ Rod pattern and power distribution
§ Total power and core flow

§ Anomaly Detection Algorithms
§ Drift
§ Frozen LPRM
§ Outlier
§ Change in noise

§ Remaining Useful Life (RUL) Algorithm
§ Neural network predicts calibration current based on cycle data

§ LPRM Reading Predictions based on ThermalLimit.ai model
§ Real Time Data Feed

§ Benefits

§ Significant savings from avoiding unnecessary maintenance actions 
resulting from incorrect power readings

§ Secures reactor safety by helping keep LPRM instrumentation 
operating and accurately calibrated

§ Future

§ Support PWR ICI Diagnostics with similar tool
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TIP.ai – TIP TRACE ALIGNMENT
§ LPRM Calibration using TIP (Traversing In-Core Probe)

§ The TIP is pushed into the TIP tube from the bottom.

§ The exact vertical location of the TIP at the beginning of the TIP 
run is unknown.

§ The fuel has 8 spacers at standard distance from each other and 
the neutron flux at the spacers is lower, which is visible as a dip in 
the TIP trace. Trace alignment is based on these dips.

§ The standard CMS alignment algorithm has proven to be inaccurate.

§ Blue Wave has developed a more accurate algorithm

§ A custom filtering kernel with peaks separated by the nominal 
distance between the spacers in the fuel. 

§ The filtering kernel is shifted up and down by varying amounts 
and convolved with the TIP measurements at each shift value.

§ The location of the minimum of the convolution-vs-shift function 
corresponds to the shift value that best aligns with the spacers 
given the nominal separation values.

§ Blue Wave TipTrace.ai enables more accurate TIP traces and therefore 
more accurate LPRM calibration

§ Benefits:

§ Accurate LPRM readings are the basis of Thermal Limit Monitoring 
and avoiding unnecessary generation losses, that can result from 
incorrect measurements.

§ Incorrect measurements are also a safety issue as Thermal Limits 
may be underestimated.

23

Instrument Tube
145”

TIP Tube

TIP

R1
R2
R3

R140
R141
R142

Cross-Section at
LPRM Layer A
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Case Study

24

Actual Event: Approaching thermal limits limit within a matter of days
§ Runaway MFLPD at 0.96 on path to reach procedural limit of 0.98 within days, 

Blue Wave model predicted .918

§ Operators thought some LPRMs may need to be placed out of service due to 

mis-calibration, but couldn’t efficiently verify this claim. 

Without Intervention, a short-term derate would be eventual course of 
action, followed by insertion of shaper control blades
§ MLFPD getting worse, up to 0.975 (model predicted 0.92) 

§ Operator requested Blue Wave to analyze ALL LPRMs…we did, rank ordering 
them from most-to-least problematic

§ We identified 7 LPRMs with issues, recommending bypass à reducing MFLPD 
from 0.975 to 0.955 

Blue Wave predictions proven true and accurate
§ Blue Wave recommended performing recalibration with TIP, based on model 

predictions (still 0.92) … After TIP the MFLPD went to 0.92!

§ Blue Wave tools helped address and closeout three related IRs

§ Operator estimates that this support avoided generation losses of 

approximately $1.23M

§ The Blue Wave Method won NEI Top Innovative Practice award
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Making a Material Impact on the Nuclear Fleet
with bwnuclear.ai (mco+eigenvalue+thermal limit)

(Fresh Fuel = $500K/assembly, Spent Fuel = $100K/assembly)
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Unit # # BW 
Cycles

Batch Size 
before 

BWnuclear

Batch Size
2 Cycles

Ago

Savings
2 Cycles

Ago

Batch Size 
Previous 

Cycle

Savings 
Previous 

Cycle

Batch Size 
Current 

Cycle

Savings 
Current
 Cycle

Total Saved 
Bundles

Fresh Fuel 
Savings

Spent Fuel 
Savings

1 2 272 268 4 260 12 16 $8M $1.6M

2 3 272 272 0 260 12 264 8 20 $10M $2M

3 2 272 268 4 262 10 14 $7M $1.4M

4 3 276 272 4 260 16 268 8 28 $14M $2.8M

5 2 272 268 4 256 16 20 $10M $2M

6 3 200 196 4 192 8 188 12 24 $12M $2.4M

7 2 316 304 12 312 4 16 $8M $1.6M

8 2 308 300 8 304 4 12 $6M $1.2M

9 2 144 140 4 140 4 8 $4M $0.8M

10 1 308 292 16 16 $8M $1.6M

11 2 208 204 4 200 8 12 $6M $1.2M

12 2 208 200 8 200 8 16 $8M $1.6M

13 1 228 220 8 8 $4M $0.8M

Total 27 210 $105M $21M

27 Cycles Planned with BWnuclear.ai 210 Fuel Bundles Saved

$105M Fresh Fuel Cost Savings

$21M Spent Fuel Cost Savings

$81M Avoided Operational Costs

$207M 
Total Cost Savings for
13 Units

Average savings per unit 
per cycle: $7.7M

Average fresh fuel savings 
per unit per cycle: 3.8M

Cycles planned with BWnuclear.ai



Challenges of Documentation 
in the Nuclear Industry

• Nuclear facilities must maintain comprehensive 
documentation throughout their lifecycle, from design to 
decommissioning. 

• Nuclear power plants face an average of 173,459 
paperwork hours per facility annually, equivalent to 
about 86 full-time employees dedicated to regulatory 
compliance documentation per plant [1].

• Coupled with the problem of an aging nuclear 
engineering workforce, this is a problem that could really 
benefit from AI technologies.

[1] https://www.americanactionforum.org/research/costs-benefits-nuclear-regulation/
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Blue Wave Nature Language Processing Strategy

27

§ Objectives
§ Minimize the Mundane
§ Maximize the Staff Hour Savings

§ Strategy
§ Develop targeted applications 

relying on Blue Wave Nuclear 
Corpus and Large Language Models 
to streamline specific regulatory 
activities.

§ First target
§ 10 CFR 50.59 Screening

§ 50.59 Product Business Case
§ The effort involved in collecting and 

reviewing the licensing basis and other 
documentation required for a 50.59 
Screening can take on average 40 hours 
per screen with hundreds of screenings per 
year performed at each site.

§ All NRC Part 50 licensed reactors maintain 
a licensing basis and are required to 
perform 50.59 Screenings against that 
licensing basis for making changes, and 
therefore can benefit from an AI tool.

§ Added benefits include knowledge 
transfer, training for inexperienced 50.59 
preparers, and investigating the licensing 
basis for other licensing actions.
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50.59 Current Workflow

• NEI 96-07, "Guidelines for 10 CFR 50.59 Evaluations," 
provides detailed guidance on implementing the 
50.59 process.

• An engineer performs a keyword-based search over 
the licensing basis including the Updated Final Safety 
Analysis Report (UFSAR) and the plant's Technical 
Specifications.

• Based on their search output and reading of the 
sections, provide a description of why the section is 
pertinent.

28
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Proposed Tool

• A 50.59 Screener tool would reduce time 
spent manually searching through the plant’s 
licensing basis

• This is accomplished using a hybrid search 
solution which uses AI-based semantic search 
for enhanced context understanding,
all the while retaining traditional 
search functionality

• Conditioned on the input provided
and retrieved chunks, a justification is 
provided as to why the section is relevant.

https://www.tylercrosse.com/ideas/semantic-search

https://www.pinecone.io/learn/hybrid-search-intro/
29
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Data Pipeline
• The hardest part of any machine learning workflow is the data cleaning and pre-

processing. Depending upon the nature of the documents, a rule-based conditional 
strategy was created. 

• We performed several experiments to determine the most optimal chunking strategy 
eventually settled on a version of the recursive text splitter.

• With the chunks in place, we wrote custom algorithms to tag metadata onto them. 
For the most part, the metadata is what the end user is interested in.

• Finally, we use an encoder only transformer model to create the vector embeddings.

Parsed 
documents

Chunking Metadata 
tagged chunks

Vector 
database

Example 
chunk
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Hybrid Search

• Hybrid search combines traditional keyword search 
with vector embeddings, capturing both exact 
matches and the semantic meaning of queries. 

• In our approach, we use a Okapi BM25 keyword 
retriever and a Dense Passage Retriever (DPR) 
based embedding model as our vector retriever.

• Search results from both retrievers are aggregated, 
and reranked.

• The retrieved chunks and a few other surrounding 
ones become the context for generation for the 
LLM.

https://levelup.gitconnected.com/the-best-rag-technique-yet-
anthropics-contextual-retrieval-and-hybrid-search-62320d99004e
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Summary Generation

• The retrieved chunks and a few other surrounding 
ones become the context for generation for the 
LLM.

What are sections relevant to Small Break 
Loss of Coolant Accident (LOCA) analysis 
and Large Break LOCA analysis?

Section 14.5.1 Major Reactor Coolant 
System Pipe Ruptures (Large Break Loss-
of-Coolant Accident) 

This subsection provides detailed 
information on the analysis of
Large Break LOCAs, including the 
identification of cause and accident 
description, method of analysis, and results.

32
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Results and Future Work
• Plenty of excitement regarding 

the first demo of the screener 
tool

• Next iterations to fine-tune 
LLMs to assist with screening 
decisions

• Lack of domain expertise 
implies, the LLM cannot 
“reason” with limited context

Thus, we plan on using historical 
documents and convert the 
problem into one of “statistical 
learning”

33
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Thank You
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