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Industry Adoption of Al

NEI

Operating plants are approaching artificial intelligence
cautiously; learning what is real about Al takes research,
experimentation, and time

Pilot projects focus on a clearly defined problem

Typical pilot seeks to streamline a repetitive process and reduce
human drudgery and labor hours in that process

Costs of building Al infrastructure (data acquisition and curation,
model development and training, user interface, maintenance)
can be significant

Many choose on-premises designs to protect company IP
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NEI Member Interests in Artificial Intelligence

Many

Many Most All
Many Many All
Few Several All
Few All
Few Many All
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Standards and Best Practices

= The standards community is challenged to keep up with the
pace of Al development

NEI

= Many US and international standards pertaining to Al are already
available; the NRC's gap analysis report provides a valuable
catalog of those standards

= More are in development

= |egislation (e.g., the EU Al Act) and government-wide direction
(e.g., Executive Orders) can impose additional requirements

= Corporate policies impose additional requirements on licensee
Al projects, such as data governance

= Best practices are in early stages of development
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Recommendations

= Recognize that Al is evolving more rapidly than regulations can
keep up; look for ways to speed up and streamline development
of guidance

» Rely on the existing regulatory framework as much as possible

» |nteract through the use of table tops and pilot tests in the
revision or creation of requirements for Al (e.g., Reactor
Oversight Process)

= Strive to keep the regulatory touch commensurate with impact
on safety to allow for continued rapid innovation

= Allow flexibility and credit for use of industry-developed guidance

NEI
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Final Thoughts

= Education of the public about Al use in nuclear
facilities will be important to maintain public trust.

= We appreciate the NRC’s engagement thus far.

= We look forward to working with the NRC to find an
appropriate balance between regulatory oversight and
creative freedom to enable NRC and industry to innovate
with Al tools to improve safety, efficiency, and quality of
work life.

NEI
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AIMS @ U of Michigan AIMS

Artificial Intelligence &
Multiphysics Simulations

 Established in January 2023. .

 Students’ background: Nuclear g
engineering, Computer

Science, poll | |
Mathematics/statistics, Analysis | Complex Models —p
Software engineering. DE
Operation Decisions

* Fall 2024 roster (22 members): N A
2 postdocs, 9 PhD students, 5 v - K
Masters students, 6 B Agent
undergraduate students. (r) e

* Pl: Majdi Radaideh (Assistant
Professor)
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NLP and LLM for sentiment analysis and public engagement

AIMS Ongoing Projects

Reinforcement Learning

Mathematical Foundations and Computational
// Implementation for Nuclear Digital Twins

Tensor train methods for accelerated neutron transport
solutions

Low-to-high fidelity mapping with ML for accelerated CFD
simulations for advanced reactor

QY TIRAIVINY

YIADIHOIM

Robotics and drones for autonomous inspection and
radiation mapping

Fast multi-objective optimization algorithms to enable
reactor design in expensive simulations.

Computer vision for stress-corrosion cracking detection and
tracking in LWR fuels

Al/ML framework development, regulation and licensing in
nuclear power

Idaho Nafional Laboratory
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Al Regulatory Gap

* |[f some vendor came in and said they want to use some non-
traditional model to control/model a process in a nuclear facility

* e.g., equipment degradation, predictive maintenance, control rod movement,
non-safety process

* They give the NRC the model they built, the routine they used to build

the model, and a set of testing scenarios of the model under different
conditions

e Here we assume the data are not shared with the NRC.

* “As a regulator, what do you want to know about this model to
license it?”
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Simplified Flowchart
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Explainability vs Interpretability in Al

* Interpretability and explainability are
often used interchangeably, but they

have nuanced differences. Aspect Interpretability
one . Model Typically simple models (e.g.,
* Interpretability refers to the ability to  complexity  incar models decison trees
u ndersta nd hOW a mOdeI WO rks Understanding Direct understanding of how the

model works

internally. It means that the model
itself is simple enough for a human to  ramspareny  High tthe modei seiis
understand how it makes decisions. transparen)

Examples Linear regression, decision trees

* Explainability refers to the ability to
explain the decision-making process of
a model, even if the model itself is
complex and not inherently
interpretable.

Explainability

Can be applied to complex models

(e.g., neural networks, ensembles)

Requires additional tools or
methods to explain the model’s

decisions

Variable (depends on the method

used for explanation)

Deep neural networks, random
forests with LIME or SHAP

explanations

10



Model Interpretability curve

* Rule-based learning refers to the class of LtMislike here
methods where you encode every ®
rule/action in the system in if else if ... §  Thisproposal
statements, where you know every
possible action/prediction the model
could do.

* Classical models include linear regression,
decision trees, and K-nearest neighbors.

* Black-box models involve deep neural - \
networks and transformers (i.e., the core low " High
. odel Interpretability
of generative Al models).

L
[T
5

Model Accuracy

-
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Feedforward Neural Networks
f(z) = f(h2(hi(x)))

hidden layer  hidden layer
h4 h;
ST W

Input/feature layer, — | Output/label layer, the Y array,

the X array. - __ estimated by function f.
input X ( ';‘_) =  Width=3
- - y = g3(W3hz+bs)
: v (.), wh i=1,2,3

h.(.), where i=1,2. = Depth=2 = gi\.-), Where 1=2,2,3.

() . h1=g1(W1X+Db1) h2=g2(W2h1+Db2) Called non-linear transformers or
Called hidden layers. o ,

activation functions.

Weight matrices W might also be called kernels

6 =W,b)
WL-, where i=1,2,3. Are usually grouped bir where i=1,2,3.
Are Weight matrices » into one variable ) Are network biases (to be
(to be determined). called model determined).

parameters
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SHAP (SHapley Additive Explanations)

* SHAP assigns each feature (x) a value that represents its contribution to the
prediction (y), based on the Shapley value calculation.

* Theoretically, it considers all possible combinations of features to measure their individual
impact on the prediction.
* |t is model-agnostic and can be used with neural and non-neural network models.

* Features with positive SHAP values positively impact the prediction, while those
with negative values have a negative impact on the prediction. The magnitude is
a measure of how strong the effect is.

Model

Individual customer x Local Feature Importance

Loan Amount -
Loan Amount = $2,500
Checking Amount = $12,000
Age =23

Residence Type = Apartment
Job = Startup employee

Checking Amount-

Age-

Job-

13
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End goal: Layer and
node attributions

* A more microscopic look on what each
node and layer in a complex neural
network is doing to the model
prediction.

* Offering global input/output model view,
layer view, and neuron view.

* Classical methods like SHAP can be
repurposed with visualization tools to
allow for neuron and layer views.
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Kolmogorov-Arnold Networks (KANs) as a path for
interpretable Al

(a) Jfixed activation functions  (b) learnable activation functions
on nodes N 7o oo o n A on edges

l J J L.Z L.Z S~ sum operation on nodes

learnable weights NN N MANINV LY
T o edges

N . In KAN, however, activation functions exist on edges
In a neural network, activation functions . . .
(which correspond to the weights of a traditional neural

are fixed across the entire network, and . L
. network), and every edge has a different activation
they exist on each node. function

15
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Control points s = > 2k m
* KAN builds on the concepts cortrol ’ T Bosic

of Bezier curves and B- oints Punction N
splines. e PO

* KAN uses the positions of
control points learnable in
the activation fU nction so . ?-1;\.(t): B-spline basis functions of degree k associated with each t= O O O

. -ontrol point B,

that the model is free to controt point o
learn any arbitrary shape \
activation function that fits
the data best.

e P;: Control points that define the shape of the curve.

Coefficient Terms of a Cubic Bezier Curve

P — (1=t

0 3(1 - )%t P'3
3(1 - )t?
r3

o

=
]

P3

o
™

Coefficient Value
o
B
~
™

=
o

P oo
o t=0.00

B(t)=(1—-t)?P, +2(1 —t)tP, + t*P3, t €

e
o
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Symbolic Regression with KAN

exp(sin(zx) + yz) Step 1: train Step 2:

° with sparsification \ prune ?
oo o o o ° ® L L /

Y /

. . p. ® °
Step 3a:
set sine

Step 5: output Step 4: train _ T _ Step 3c: * Step 3b: ?

symbolic formula

affine parameters —/ set exponential Q set squared ;
. KN - N\ N\ -

l.Oel'U}Hrl’U sin (3.14x) mach machine P Ps 3
Step 6: precision ' ' !
number Snap
2si
e’ +sin(mx) [ ] ° ° ® ®

17
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Model Extrapolation

* Al is not doing well in extrapolation.

* No good solution is currently there:
e LLM hallucination.

 Completely erroneous prediction when used outside
the data regime.

* Potential mitigation:
e Strict definition of input and output boundaries.

* Expand data coverage to allow more room for
interpolation.

* Use model interpolation uncertainty as guidance for
poor prediction.

* Only use the model for interpolation.

Response Y

Regression line

New input X

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t

Prediction

f

True regression
function
r(x)=E[Y|X=x]

Predictor X

20

I
s flz)=zsin(z)
e ® Observations
— Prediction

[|mmm 95% confidence interval
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Extrapolation Example

1 I want to join a nuclear engineering research lab with a research focus on Al/ML at the
University of Michigan. Could you please guide me on potential labs and faculty to
consider?

| can guide you through some general steps about how to join a research lab at the
University of Michigan specializing in Nuclear Engineering with a focus on Al/ML:

Research Potential Labs: The first step will be identifying potential labs and professors
whose research aligns with your interest areas. The Nuclear Engineering and Radiological
Sciences-deps T ty-efudichigan is a potential start point. Professors such
as Prof. William R Martin, Prof. Thomas Downar, aad others have been known to work in

R h related= e == =—type of research they will be conducting on the

esearcner faculty section of the University's departmental webpage.

experience

iS not Understand Their Work: After identifying potential labs or professors, study their work in
detail to understand what exactly they are doing. Go through their research papers, projects,

Correct and any other relevant literature.

Reach Out: Once you have a thorough understanding of their work and are interested in it,
reach out to them. Send an email expressing your interest in their work and inguire about
potential research opportunities. Be sure to include why you are interested in their particular
research and how your skills can contribute to their endeavors.

Potential Requirements: Note that some labs may require you to have certain prerequisite
courses or experience under your belt before you apply. These requirements will usually be
listed on the lab/department's website.

17 Do you know a professor named Majdi Radaideh at University of
Michigan working on Al/ML applications for nuclear power. He is a
nice guy

Yes, Professor Majdi Radaideh at the University of Michigan is known for his research on applying
artificial intelligence and machine learning to nuclear engineering, particularly for improving the
safety, reliability, and efficiency of nuclear power systems. He's well-regarded in his field and is also
recognized as a supportive mentor and colleague. His work often involves using advanced ML
techniques for monitoring, diagnostics, and predictive maintenance in nuclear reactors. It's great to

hear positive feedback about him!
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Reactor Siting in the United States

A total of 22 objectives to optimize for each site

location:
* Socioeconomic objectives (State Electricity Price,

State Net Electricity Imports, Population Sentiment

Towards Nuclear Energy),
» Safety Objectives: No Landslide Area, No Fault Line

Intersection, No Open Water Or Wetland Intersection
* Proximity objectives: Existing Nuclear R&D Center in
100 Miles, Transportation System Distance, Retiring

Facility Distance.

 Comparing coal power plant sites with Brownfield sites
in the US. High dimensional combinatorial
optimization without any “specified weights” was used
to analyze +30,000 potential sites in the US.

min,cpn F(x) = Z?:l w; fi(x)

subject to:

where w; > 0 and Z-f:l w; = 1.

Normalized Observation Ratio ( NTR))
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Predicting Site Metrics with Neural Networks

* Sijte score,

 Site coordina  Site attributes,

. .
gounty, 2 i * Ranking of each
L] 9 H H H . Locations of Best Performing Sites
tate attribute to the -
site score
Lo1s
; § g § 0.11 o
utput Layer 2 (Y2) € R* 0.10
: . m PP
g : B g : § 2 Hidden Layers € R** o @ Brownfild l

Input Layer (X) € R* 6 Hidden Layers € R*°% Output Layer 1 (Y1) € R*
Concatenated Layer € R*®

Registry ID 110015334440 110070068631 C5H6068 110070068960 C2712 C10343 110038691939
Longitude -122.1032 -122.0370 -87.8336 -120.9098 -79.0731 -76.4530 -122.2822
Latitude 37.6677 38.7013 42.8492 40.0949 36.4833 40.8112 38.2933

State & County CA., Almeda CA, Yolo WI, Milwaukee CA, Plumas NC, Person PA, Northumberland CA, Napa

Siting Metric 1.0000 0.8506 0.8211 0.7703 0.7614 0.7501 0.7487

Merged Dataset 1 2 3 4 5 10 9 22
Rank
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Microreactor Control with Reinforcement Learning

Problem statement: In real-time in a load-following setup,
find the right position of the control drum to keep the reactor
critical and without violating any safety constraints.

{/Control Drum BeO Reﬂector \
- ﬂexagonal Fuel
4 Flake \

88304
Contamer

Shutdown Rod
Location

Radaideh, M. |, Tunkle, L., Price, D., Abdulraheem, K., Lin, L., & Elias, M. (2024). Multistep Criticality Search
and Power Shaping in Microreactors with Reinforcement Learning. Under Review in Nuclear Science and
Engineering. arXiv preprint arXiv:2406.15931.
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RL Agent learns and generalizes well!

Load-following Training Scenario
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Load-following Longer timescale

100
5 80 4
=
£ 60
—— Actual
40 4 Desired
4] 1000 2000 3000 4000 5000 6000
Time (s)
830 4 — Fuel
";" Moderator
T 820 —— Coolant
o
o
E
# 810 -
0 1000 2000 3000 4000 5000 6000
Time (s)
0.02 A
T T T T
2000 3000 4000 5000 6000
Time (s)
[}
z 44
o
=%
T 21
E]
T o0
@
o -2
e
g
h=l T T T T T
1] 1000 2000 3000 4000 5000 6000
Time (s)
77.5 A
=
S
= 75.0 4
]
g
£ 72.5 A
c
T 70.0
T T T T T
4] 1000 2000 3000 4000 5000 6000
Time (s)



COLLEGE OF ENGINEERING
M NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES

Accident Forecasting with Long Short Term Memory
TN

* The accident starts with a break in

one of the reactor pipes. e
. Storage Tank S
* The lack of cooling causes the | et
temperatu re tO rise tO Very m Pressqrizer
dangerous levels. Acchglamr ﬁ)_ - )
“ 1 ressure Injection
* Emergency systems start providing Lo Pressare Inect p
. ) . oW F'ressure lnjection Core |
additional cooling to the system to
cool it down \ Cold Leg Hothes
L Break
* The objective is to model rea N

important core parameters during

accident time. @

Radaideh, M. 1., et al. "Neural-based time series forecasting of loss of coolant accidents in nuclear
power plants." Expert Systems with Applications 160 (2020): 113699. Reactor Coolant Pump 25
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Data Preparation and Generation

Two additional outputs:

—-+= Random

9007 __ Nominal Peak Clad
Temperature

* 6000 random samples (Training & Validation)

1- Core pressure 800 4
* 500 Random samples cases (Testing) 2- Core level °
* 1 Nominal/Real test case (Testing) %700-
» A total of 6501 samples is available. 3

600 -

* 40 Parameters/Features are perturbed causin@uge spread in the

responsces.

500 A

* 400 time-steps are monitored.

0 50 100 150 200 250 300 350 400
Time (s)

* The features describe important physical model parametess in
TRACE (nuclear code) that are sensitive to the LOCA scenayjo.

—-= Random
Break Flow —— Nominal

Parameter 1D Nominal Value Distribution Distribution Parameters Distribution Limits

SubCriticalFlow_(2.3.1) 1.00E+00 Uniform 0.80, 1.20 None
2{CriticalFlow_(2.3.2) 8.80E-01 Uniform 0.80, 1.20 None
BreakOpening _(2.3.3) 3.98E-04 Uniform 0.70, 1.15 None g
ACC-C-ligVol_(2.3.4) 2.80E-01 Uniform 0.56, 1.44 None g
ACC-H-liqVol_(2.3.5) 8.30E-03 Uniform 1.00, 17.6 None o
ACC-C-GPress_(2.3.6) 4.51E+06 Uniform 0.99, 1.01 None <_E
ACC-H-GPress_(2.3.7) 4.51E+06 Uniform 0.99, 1.01 None

ACC-Temp_(2.3.8) 3.22E4-02 Uniform 0.97, 1.03 None
ACC-C-ILRes_(2.3.9) 1.13E+02 Uniform 0.80, 1.20 None 10 1
ACC-H-ILRes_(2.3.10) 6.96E+02 Uniform 0.80, 1.20 None

CorePower_(2.2.1) 9.35E+07 Normal 1.00, 0.01 0.98, 1.02

PSPressure_(2.2.2) 1.55E407 Normal 1.00, 0.01 0.98. 1.02 07 —
InitLoopFlowA _(2.2.3) 2.40E+01 Normal 1.00, 0.015 0.97, 1.03 0 50 100 150 200 250 300 35026 400

InitLoopFlowB_(2.2.4) 2.47E401 Normal 1.00, 0.015 0.97, 1.03 Time (s)
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Digital Twin for Nuclear Accident Forecasting

—-- Random —-= Random
900 1 . .
—— Nominal 50 4 —— Nominal
800 1 40 4
g 2
§ 700 A Q
g &
£ 3
e =
600 -
500 -

0 50 100 150 200 250 300 350 400 i y i : : ) ; 400
Time (s)

T 7 Lt Radaideh, M. I., et al. "Neural-based time series forecasting of loss of coolant accidents in nuclear
. power plants." Expert Systems with Applications 160 (2020): 113699.
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A high-level look
Phase II: Model Selection
Processing i

s

@; W N

o0 ot
DATA &
TN

Focus of the
discussion

Phase lll: Model Explainability

Hidden Layers ‘ High

Input Yayer . ‘ Output Layer T '*"' e iomia-
T
(CRRE S SRSA,
SREKAZFIEA RIS
T IS Ra\
O =0

02 -01 00 01 02 03 o4
\ SHAP value (impact on model output)

New Data

X
P
Feature value

n
- P “

Phase V: Deployment Phase IV: VVUQ
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What “Al model” means to us

(Anything that survives from this list for a specific problem)

* Linear regression * Feedforward neural « Transformers
e Lasso, Ridge, ElasticNet networks « Variational aut 9
- Gaussian Processes (and its * Recurrent neural ariational autoentoders
variants like Sparse GP) networks (LSTM)  Generative adversarial
* K-nearest neighbors * Convolutional neural  ,atworks
* Support vector machines networks
. Decision trees * Residual neural
networks

 Random forests
_ _ * Graph neural
* Gradient boosting networks

e Other ensemble Models . .
(Stacking, Adaboost, Efoec% S‘Gsael;sman

Bagging
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AutoML -
AutoML \

* Automatic Machine Learning (AutoML) is Workflow
a subfield of machine learning that
focuses on automating the end-to-end
process of applying machine learning to —
real-world problems.

 This includes tasks like data ”— / >
preprocessing, feature engineering, e
model selection, hyperparameter tuning, ( Traditional ML l
and deployment. Workflow

Pre-process

Data

Hyperparameter
Tuning
Train Model 32




pyMAISE: Michigan Artificial Intelligence Standard Environment

* pyMAISE is an artificial intelligence
(Al) and machine learning (ML)
benchmarking library for nuclear
reactor applications. It offers to
streamline the building, tuning, and
comparison of various ML models
for user-provided data sets. Also,
pyYMAISE offers benchmarked
datasets, written in Jupyter
Notebooks, for Al/ML comparison.

(#IMAISE

Michigan Artificial Intelligance Standard Environment

“An impressive work was done by a senior
design team led by Patrick Myers (now PhD
student in NERS), Connor Craig (Now at
Westinghouse), and Veda Joynt (now
pursuing Masters in Germany)”
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pyMAISE: Michigan Artificial Intelligence Standard Environment

e Current ML algorithm support includes:

* Linear, ridge, lasso, logistic, ElasticNet, decision
trees, support vectors, random forests, k-nearest
neighbors, Gaussian Processes, Gradient Boosting,
Stacking, Adaboost, among others.

* Available as regressors and classifiers .
* These models are built using scikit-learn and % MA I S E
Keras/Tensorflow. pyMAISE supports the Py
fO”OWlng neural network |ayerSZ Michigan Artificial Intelligance Standard Environment
e dense, dropout,
LSTM, GRU,
1D, 2D, and 3D convolutional,

1D, 2D, and 3D max pooling,
flatten and reshape.
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Phase |: Model Selection (90% done)

(#MAISE

Michigan Artificial Intelligance Standard Environment

What pyMAISE can do so far
Phase I: Model

Transformers and Generative Models
(e.g., GAN, Variational Autoencoders,
—> . .
Diffusion models)

Selection
K-fold cross-validation
(eliminating data bias)

Dataset
(Define X/inputs/features and Model Selection
Y/outputs/labels)

Hyperparameter Tuning
(eliminating model form
bias)

Deep Neural Networks (feedforward,
convolutional, recurrent, ...)

Model Ranking
(Keep the best with a
cutoff “threshold”)

Classical Models (Linear, decision tree,
random forests, support vectors, ...)

Root Nede

LN

Decision Node - Decision Node

Top Models

N N

Leaf Node Leaf Mode Leaf Node Leaf Node

l

g
“sDecdslonse
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Phase IlI: VVUQ (20% done
(FMAISE

Michigan Artificial Intelligance Standard Environment

What pyMAISE can do so far
Phase I: Model

Transformers and Generative Models
(e.g., GAN, Variational Autoencoders,

—> . .
Diffusion models)

Selection

K-fold cross-validation
(eliminating data bias)

Dataset
(Define X/inputs/features and
Y/outputs/labels)

Model Selection

Hyperparameter Tuning
(eliminating model form
bias)

convolutional, recurrent, ...)

Hiddier

Phase II: VVUQ

Regulator & Vendor
communications to cover
all operating conditions

Extrapolation Tests

Model Confidence
Interval Estimates

Deep Neural Networks (feedforward,

Classical Models (Linear, decision tree,
random forests, support vectors, ...)

Model Ranking
(Keep the best with a
cutoff “threshold”)

Uncertainty
Quantification
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Phase Ill: Explainability (20% done

Top Models

Phase II: VVUQ

Regulator & Vendor
communications to cover Extrapolation Tests
all operating conditions

Model Confidence Uncertainty
Interval Estimates Quantification

Phase llI:
Explainability

Metrics and Statistical
Tests to “Pass” Final Model(s) and
(F1, Precision, Accuracy, R?, generate a final report
extrapolation uncertainty)

Global Ad-hoc Microscopic Model
Explainability Explainability
(SHAP, LIME, DeepLIFT, etc.) (Node attribution, layer attribution, etc.)




% Transformers and Generative Models
(e.g., GAN, Variational Autoencoders,
py Diffusion models) PatriCk

Michigan Artificial Intelligance Standard Environment

What pyMAISE can do so far

Phase I: Model
Selection

Deep Neural Networks (feedforward,
convolutional, recurrent, ...)

Hidden Layers

K-fold cross-validation
(eliminating data bias)

s

\\v,///\\.\ko,,.. = Model Ranking
N .
Dataset Z ?34{{»‘;:%‘::;:. (Keep the best with a

'23"3”9 SIS R
& ‘\\”/!’0.‘\
>

(Define X/inputs/features and Model Selection RS

Y/outputs/labels)

cutoff “threshold”)

Hyperparameter Tunin
V.p a P . g Classical Models (Linear, decision tree,
(ellmlnatlng model form random forests, support vectors, ...)

bias)

Top Models

Decision Node oo [DECANGES

N Oy

LeafNode  LeafNode LeafNode LeafNode

Phase II: VVUQ

Regulator & Vendor
communications to cover Extrapolation Tests
all operating conditions

Model Confidence Uncertainty
Interval Estimates Quantification

Phase lll:
Explainability

Metrics and Statistical
Tests to “Pass” Final Model(s) and
(F1, Precision, Accuracy, R?, generate a final report
extrapolation uncertainty)

Global Ad-hoc Microscopic Model
Explainability Explainability
(SHAP, LIME, DeepLIFT, etc.) (Node attribution, layer attribution, etc.)




Content

* Project Background

* What is explainable Al?

e Our proposed Al regulatory framework?
* Preliminary results

* Group discussion
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Dataset Overview

Over 21,000 experimental samples of Critical Heat Flux (CHF) from a variety
of facilities
Parameters include:
* Geometric
e Test Section Diameter (D)
* Heated Length (L)
 Boundary
* Pressure (P)
* Mass Flux (G)
* Inlet Temperature (T)
 Measured
e Outlet Quality (X)
e CHF
Goal: Predict CHF using a combination of the dataset parameters using Al,
then compare explainability methods used on a Deep Neural Network (DNN)
against metrics from a model with better transparency, a Random Forest
(RF).
Our reference caseis: CHF = F(D,P,G,T,L)

Fig. 1: Still image of CHF
footage captured at the
Transient Reactor Test Facility
at Idaho National Lab in 2021
[INL experiment].
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Correlation Matrix

* Each parameter in the dataset
is shown with its
corresponding correlation to
each parameter as a heatmap.

e Correlations are calculated
using Pearson’s correlation
coefficient:

E[(X — ux)(Y — uy)]
oXoY

Pxy =

1.00
A 01 -0.11 -0.28 0.0051 0.12 -0.11
0.75
_ 0.3 0.17
- 0.50
a - 049 -0.25 025
o - -0.28 0.028 0.22 - 0.00
- - 0.0051 0.3 -—0.25
- ~0.50
< - 012 017  -0.49
—0.75
T - -0.11 0.25
Q
| | | _100

CHF



Deep neural network

Selected Models for XAl

* Deep Neural Network (DNN)

* Black-box algorithm

e Contains many hidden layers, leading to very
limited transparency

 Test algorithm for explainability (XAl) metrics

e Random Forest (RF)
* High transparency and inherent explainability
* An ensemble of decision trees Tre 1 s 600
* Control algorithm to verify and measure DNN Pal
explainability metrics
* Feature importance

* Permutation and Mean Decrease in Impurity Average All Predictions
(MDI) !

Random Forest
Prediction
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Deep Neural Network — Explainability Results
(Exact SHAP)

L[m]

G

Tin[°C]

D [m]

P [kPa]

Beeswarm Summary

—a

-0.2 -0.1 0.0 0.1 0.2 03
SHAP Value (Impact on Model Output)

High

Feature Value

Low

Mean of |SHAP Values| and Net +/- Effect

0.06

0.05 -

0.04

0.03 A

0.02 -

0.01 A

0.00

Absolute Mean Importance

| | I 1

L[m]

-, —_ —_ 5
2l 2 E g
< Q —

S} = a
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DeepLIFT and Integrated Gradients

DeeplLIFT

Beeswarm Summary High Absolute Mean Importance
ig
0.05 4
L[m] .
g
£ 0.04
w
kg . T
G55 L
Q
° =4
ER
T © 0.034
. > -
Tin [°C] g g
53
“ o
<
% 0.02
D [m] oy .
o
; Integrated Gradients
g —
P [kPa] 0.011 Beeswarm Summary ' Absolute Mean Importance
High
0.06
T T T T T T Low 0.00 -
-0.2 -0.1 0.0 0.1 0.2 0.3 T s Lim 0.05 1
SHAP Value (Impact on Model Output) = g ko]
kg e
G I751 4 0.04+
g 3
2 c
. s 2
Tin [°C] % $ 0.031
s 2
w o
<
I
[l
D[m] 5 0.02
5
Q
=
P [kpPa] 0.01 4 I
Low 0.00- l

1

-03 ~0.2 ~0.1 0.0 01 02 03 04

SHAP Value (Impact on Model Output) E R

L[m]
Gl
Tin[°C]

D [m]
P [kPa]
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Verification of XAl Using Random Forest Metrics

Random Forests Neural Networks

Absolute Mean Importance
0.06

06 . = VDI
' Permutation | ; g

0.05 4
0.5 A
L os
0.04 -
0.4 -
- 0.6
0.3 o
- 0.4
0.02 -
0.2 - I
= - l
P G T

Mean Decrease in Impurity, []
o
o
w

Mean of |SHAP Values|

0.0 0.0

]

< Ky G s 'G

D L E 2t = £ g
~ = c Q pmct

© = a
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Symbolic Regression with KAN

exp(sin(mx) + ¥2) Step 1: train Step 2:

® with sparsification \ prune ?
7~ A - A J

) A

. : .

] [ ]
X
y Step 3a:
set sine
Step 5: output Step 4: train - Step 3c: ? Step 3b: !

symbolic formula

affine parameters j set exponential Q set squared ;
KN KN\ : N\ N\ -

1.0 0¥ +1.0sinG.14%) o oh machine . . ‘
Step 6: precision | ] ]
number Snap
2
oY Hsin(z) ° ° ® . J s

KAN Application to nuclear dataset to predict Critical Heat Flux

CHF (kW m-2) = 0.3846(-0.4085x_1+0.2273x_3-0.3656x_5-x_6+0.3582l0g(10.0x_2+0.2)-0.3002log(2.1762x_4+0.008)+0.0087)"2+0.0201
Where x_1-6 are:

D(m) - L(m) - P(kPa) - G(kg m-2s-1) - Xe(-) - h(kJ/kg) - Tin(C)
R? Score: 0.9400579224788146 » Traditional Feedforward Net score on same dataset: 0.999 ,.
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Real-time UQ with Variational Inference

Unnormalised distribution Samples Statistics or estimations
whose normalisation factor that can be obtained with MCMC and that can be computed based on
computation is intractable without proceeding to the normalisation the generated samples

A

- =

Sy
Family of Gaussian The distribution we want to approximate, Family of mixture of two
distributions (F1) and Gaussian distribution (F2)

with parameters: |, © with parameters: p, 6, 1, G, 47
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Y
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n

Solar Power
o
o
e

Promising results on renewable energy load forecasting

-- vGRU Mean

P \
{ M\ .
1 ,
] uf 1

. l.

_____

VGRU 95% Confidence Interval

—————

3000 4000 5000

Time (minutes)

1.0 1 — Actual  Hk- LSTM

0.8 -

0.6 -

0.4

0.2 A

" i
0.0 === o B B ey

-- VvLSTM Mean

———————————————

————————

VvLSTM 95% Confidence Int@,ﬁ\al
\

1
I
A
I

I

—0.2 A . .
2000

3000 5000

Time (minutes)

6000

Finish training
based on 4 days
of data in 10
minutes using a
modest GPU.

What about
nuclear? We have
an NEUP pending
to answer that.
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You can embed conservatism in variational UQ

Linear

2.5 -
! Large bounds, but good UQ.-~
1.5
1.0 1 .
I e e
0.0
= True function
037 - Observations
104 + Mean prediction
Uncertainty (£2 std)
71.50,5.'0 *0‘,25 0.60 0.‘25 0.:’:0 0.75 1.00 1.25
X
Step-up

1.50

—— True function

Observations
Mean prediction
Uncertainty (+2 std)

-0.50 -0.25 0.00 0.25 0.50 0.75

1.00 125

150

Sigmoid

=1 Large bounds, but good UQ

= True function
Observations
Mean prediction

I Uncertainty (+2 std)
Constant
..|KL divergence dominates loss

= True function
Observations
Mean prediction
Uncertainty (+2 std)

-0.5 7

-1.0 1

-1.5 - T T T T r T T
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 125 1.50

-15 4 . . . .
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Sigmoid Decay

I Tightest uncertainty bounds
|best predictions '

= True function
Observations
Mean prediction
Uncertainty (+2 std)

X

Too much KL divergence at the
end can force the model to
unlearn data in order to move
towards prior

Balancing act between
regulating posterior and learning
data



Path forward

* Technical: Exploring KAN capabilities on a larger scale as an approach for
interpretable Al

* Imitation learning from black-box neural networks learning.

* Research gap analysis: To draft a paper where we look at the intersection
between literature review in other fields, targeted surveys (interviews with
government, industry, labs, and academia), and our proposed framework.

* Do we have a good plan?

 PYMAISE development: Migrate to Pytorch backend, adding microscopic
explainability, and document the results on nuclear applications.

e Data: Getting real data from plants!
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Group Discussion

What does Al mean for the NRC? Is it neural networks, simple regression models, everything?

2. How aligged?is our approach with the NRC's vision for trusting Al models? If it's not aligned, what changes would you suggest
we consider

3. How do you define Verification, Validation, and Uncertainty Quantification (VVUQ) for Al/ML? Does it include predicting
confidence intervals and identifying when the model is unreliable? Does it involve validating the model on scenarios (e.g., test
scenarios) unknown to the model?

4. Is cross-validation sufficient for Al/ML? For example, training and testing the model with various settings, including different
hyperparameters and train/test splits.

5. Given that machine learning performs poorly in extrapolation, how much tolerance do you have for ML extrapolation? For
example, training a model on PWR data and expecting it to work well for BWR is unrealistic. This is akin to using TRACE/RELAP5
for HTGR safety analysis, even though we know they are not designed for such reactors..

Would automating the process of model selection, VVUQ, and XAl analysis benefit the NRC (e.g., through tools like pyMAISE)?

Are there any other applications or datasets (e.g., similar to the CHF or MIT reactor) where the NRC would like to see this
framework applied?

* Can we have access to other sources of data from the NRC if you have those for public use?

8. As a regulator, do you prefer more of a visual GUI interface for this framework, or do you prefer working with coding and input
file preparation similar to nuclear codes?

9. WouldI you?be interested in having students do summer internships to learn the intricacies of the day-to-day responsibilities of
a regulator?

10. What kind of regulation changes will need to be made to implement explainable Al into the nuclear licensing process?

11.  After this project is completed or through other relevant projects, how does the NRC hope to be able to modify their licensing
process/workflow?
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About Blue Wave

Machine Learning, Al Experts, Real-World Nuclear

Extensive, real-world nuclear experience
* More than half of US BWRs use our software and
services.
» Have solved several long-standing reactor issues
» Have intimate knowledge of modern nuclear core
design across utilities, fuel brands, and product lines

People
» Engineers and physicists with broad, nuclear, Al and
simulation experience

Collaboration
» |ocated near Purdue University
» Close relationships with Purdue Nuclear Engineering
Department
» Sponsored PhD student working to integrate Al into
modern core simulators

» Sponsored Purdue Data Mine project on Generative Al

= NRC/DOE and National Lab joint projects.

-
-

]}_

BLUE WAVE
Al LABS

Founded in 2016, and already trusted by over half
the boiling water reactors in the U.S. domestic
fleet. We are an Al-centric, industry-focused
innovation company serving the nuclear energy
industry. We combine the insight of exceptional
scientific technical talent with the latest
advancements in Al and Machine Learning to
transform data into solutions for the world’s most
difficult problems.

B BW Locations

o z

Ao \/7\ —_—
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Proven Al/ML Capabilities

Product Portfolio and Pipeline

Nuclear News, February 2022

MCO.ai Deployed Predicts MCO using BW-proprietary ML for reload core design and Cycle
Management applications. < . : 3 :
2 Plpite , L m: Powering our nuclear fleet with artificial
Supports more efficient nuclear fuel core design through minimizing MCO z& o o
. . o . - m: intelligence
Eigenvalue.ai Deployed Predicts eigenvalue to generate a more accurate cycle eigenvalue resulting in a x: EREL L -
more accurate reload batch size and coastdown length Q:
< L]
ThermalLimits.ai Deployed Generates a more accurate indicator for online thermal limits from offline E 2
methods to support more efficient nuclear fuel core design 03
ro
LPRM.ai Beta LPRM Predictive Algorithms to generate E -
= Virtual Sensors :
= Virtual Calibrations z
= Advances remaining useful life (RUL) models p
0]
TIP.ai Beta Advanced TIP alignment methods resulting in enhanced online power adaption <
from offline power distributions
CoreDesigner.ai Under Automates BWR Core Design functions.
Development Machine-augmented decision making for core design and cycle management lad
applications. c
w
Z
CoreOptimizer.ai Under Optimizes BWR Core Designs for fuel economics. = NRC
Development @ Artificial Machine
Intelligence =——p Learning
. . . Strategic
Al Assisted Document Reviewer. Examines complex A Plan
Reviewer.ai Deployed documents for errors and omissions. Deployed for reviewing Data
Commercial Grade Dedication packages and Test Reports. Sclence Swaraiog
Dat
Analy:lcs
. Data
5059.ai Under Automated creation of a first draft of 10 CFR 50.59 Infrastructure
Development Screening Document based on Unit Licensing Basis. ST

© 2024 Blue Wave Al Labs. All Rights Reserved.

Figure 1 from “Artificial Intelligence Strategic Plan, Fiscal Years

2023-2027", U.S. NRC. NUREG-2261
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Al Implementation Lessons Learned Al LS

" Ensure implementation supports the mission

= Solution fits need
= Don’t implement Al just to say you are using Al

* Provide real value add to the company
= Cost savings
= Minimize the mundane
= Opportunity costs
= Employee retention
= Knowledge transfer

= Cybersecurity

Set proper expectations

* Human factors
= Safety culture responsibility

]
OGO O
3
S BB G

T Yy >
OOeee ® oo
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Nuclear Al Insights Buue wave

“ . ” y
= Au g me ntEd I nte | I |ge nce l Insight/Collaboration Operation/Full Autonomy
* Human decision-making 3
: : : Al which functions for Al which functions for Qx
| - o =
DlscrEte SOlUt|OnS SyStem bOU nda res = Insight/Collaboration Operation/Full Autonomy § S
- : 5 and and 24
Defe nsein d € pth & failure could significantly failure could significantly % £
. . . . e = impact safety/security impact safety/security .
= Working within existing systems -
()
o
§ Al which functions for Al which functions for Q 5
£ Insight/Collaboration Operation/Full Autonomy § =
& and and < g
failure has minimal or no failure has minimal or no g <
impact on safety/security 8°

impact on safety/security

Amount of Al Autonomy

Figure 1. Categorizing Al failure significance and Al autonomy

Credit: Considerations For Developing Al Systems in Nuclear Applications, September 2024 — CNSC, ONR, NRC

© 2024 Blue Wave Al Labs. All Rights Reserved. - - ‘SY - 5
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Integrating into Design Process DLUE WAVE

Al LABS

Step1l: start with a viable

base reload pattern \ ) & MCO.ai
’ & eigenvalue.ai

- %? ThermalLimits.ai
G |Step2: check eigenvalue %ﬁ eigenvalue.ai ¥
c
@ | Step3: check MCO %@ MCO.ai when
@ | Step4: check TL — chaIIenges
2 happen
© Preliminary

..If 2-4 are good... _ Designs

(“base” reloag pattern)
Cycle

Step 5: remove fuel assemblies Management

REPEAT 2-5 until minimum

viable design is found

- : -%, =
© 2024 Blue Wave Al Labs. All Rights Reserved. - k i )\ 6
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Moisture Carry Over (MCO) . LUE WAVE

Finding a Solution Al LABS

= The current practice

=  Mitigate MCO on ad-hoc basis during reactor operation

= Poor to no ability to forecast MCO behavior prior to
reactor startup

= The ability to accurately predict is needed
= The ability to mange elevated levels of MCO (at the
operational stage)

= AND the capability of designing future fuel cycles to
prevent high MCO from occurring entirely

o

N

@
T
I

MCO = 0.10 %

0.1 ‘ Nn
= (Capitalizes on the power of Machine Learning VV ]
= Leverages a generating station’s historical data sets ] MCO < 0.10 9

MCO Values

o
@
T

= The new approach

Exposure Levels and Costs $$

0 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000

Cycle Exposure (MWd/ST)

© 2024 Blue Wave Al Labs. All Rights Reserved. - > <r \ W




Moisture Carry Over (MCO.ai)

A physics constrained approach using Al coupled with Machine
Learning to enable unforeseen visibility into MCO prediction

= Objective

= Reliably predict MCO prior to and during a fuel cycle
= Implementation

= Utilizes a neural representation of MCO dynamics

BLUE WAVE

Al LABS

= Predicted MCO within £0.011% for current cycle

= History of current cycle data included in training

= Predicted MCO within £0.018% for Future-Cycles

Leverages historical fuel cycle data, output from core b : ' ' BW !]i’redictioln of ;,”.‘
simulators, and past MCO measurements of :(')%;?;ﬂi”indude o : .
= Benefits oss - [ MCO measurements suppression blades ¢ If P
. L - MCO Predictions W)
= Reduce plant dose rates and collective radiation exposure \ neoe
to meet ALARA goals MCO Limit |7 ',E; i;;‘ it B
= Reduce fresh fuel purchases for cycles that would . NS '
otherwise be MCO limited g £ ‘,1,’ ,.‘ -| ,,’ I& ‘..
= Decrease erosion of main steam isolation valves and z IR S . ? ¢
turbine blades I K820 ,f,?:: i
= Prevent electrical output derates e 823?}}51&”)‘*]?}/3 0
= Results with MCO..ai “
= Ability to immediately evaluate deviations in operating SR

strategy for impact on MCO, preventing derates and
decreasing radiation exposure

Optimized reload core designs with unparalleled MCO

0.05

..lll,l___.zsn.‘).l.lll.IHL.D'.J”.Il.| |.|LE|0;J$II

8000 10000
Cycle Exposure (MWd/ST)

+
MCO Projections

12000 14000 16000

prediction capability

© 2024 Blue Wave Al Labs. All Rights Reserved.
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An operating scenario was determined with MCO.ai that prevented an extended

power de-rate or mid-cycle outage
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Predicting MCO through Machine Learning Al LABS

®» Procedure

= Determine features and targets from historical data o2 ' ' :
X . . —*—MCO Measurement
= Develop Neural Net regression architecture + train oaa| o Predictons
= Validate MCO model’s predictive capability on reserve data I Abs. Error (test set
= Determine new features + repeat N
3
o
@]
=
8, a,
©
)
Targets = ,
(MCO measurements) o - Iy
TU 0 2000 4000 6000 8000 10000 12000
8 X Y2 Y 0.45
8 0.4 | |[——MCO Measurement
Features _—7 2 el |4 Prcicions
. eas I Output Iayer -AbsA Error (test set)
(Derived from core conditions) 3 3
input layer 2
. =
hidden layer K}
. . . . O
=  Feature Engineering Objectives e
= Reduce the thousands of potential inputs to a canonical set = Number of features needed
of features that capture the dynamics governing MCO - Determined by fundamental dynamics governing MCO
. Integrate domain knowledge to construct features that can .. )
8 8 =  Number of features allowed for training o ol s ot
— a al. ul B ol all 1 | L " 1 O

be controlled by engineers and operators

- Determined by size of training set 0 1000 2000 3000 4000 5000 6000

(to avoid overfitting) -

) - 9
D S-S S

e.g. Core Flow, Thermal Power, Control Rod Patterns, ...

© 2024 Blue Wave Al Labs. All Rights Reserved.



MCO Data & Core Data Structure

EE‘LLJE‘VVV\\IE

Example Data Point Al LABS
Rod Pattern  #392 Exit Steam Quality #392 Top Slice 3 #392
355 Power and Flow 1 Axial Power Distribution # 392 )
i e The solid markers
TR A L.
asoo) T o L | indicate the value of the
f given reactor variable
| for
s = 7 1
3°§ 5.0 | exposure index =
32| ﬁ 392
Row 30 Column Row 30 Column 3 g '
220 © o ‘
Bundle Power #392 Bundle Void Fraction #392 Top Slice 2 #392 ’
3200 -
.o .
85 04
This constitutes a

31000 5000 10000 15000ao o2 Single data pOint

Cycle Exposure (MWd/ST)
240 Feed Water Temperature 02 MCO
* l 018} g
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400 - 1
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2
=
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| n
In-Cycle Management DLUE WAVE
. ‘ ‘ Constellation has worked with Blue Wave over the last ; Al LABS
MCO.a| SAVED S].OM IN THlS FUEL DEFECT EVENT four years to unlock powerful new capabilities with
Machine Learning which allows us to reach new levels in
nuclear fuel cycle planning and efficiency. This can lead to
Actual Event: fuel defect occurred partway through cycle :::::j;‘:':;fe;”fu!:ss'f:;'g':z core cesten and eyle
= Suppression rod(s) insertion can exacerbate MCO
= MCO exacerbated as core flOW IncreaseS, knew |t WOU|d be a Jason Murphy, Vice President for Nuclear Fuels at Constellation
significant challenge to maintain MCO below their limit ; ; ; ; : : -
0' ‘\
Fuel defect management options without MCO.ai S
= QOption A: Derate? ($6-12M for ~120 days derate) ?f; ’ ,.' ‘\
= Option B: Outage? ($10-12M for outage) ,',’5',”..7' , o
"y l,‘ 1 ’ “ \
TR AR
Fuel defect management with MCO.ai predictive visibility f ,,’3 ¢ Joo
H . e E R N ] 'l 1 'I \
= Option C: Remain at Full Power for Remaining Cycle g AN ;.\ ¢ AP
LAV N ,' ' !
= Continue operation with confidence in a strategy that keeps MCO :3“0-*”’\ S
below limit \ 9% .
. . o4 \
= As shown on the right, operator used MCO.ai and found a N
workable solution to prevent outage or derate (ran ~20 .. ¢
. P 8 . . ( . A MCO Projections
scenarios), would not have been possible without MCO.ai I | |
= : -; - ; ulll,,u.n.llxlllllll .|| 1||l|||]Ll..||l 1 I 1
. - 2000 4000 6000 CYCIe Expcsure (MWd/ST) 10000 12000 14000 16000
© 2024 Blue Wave Al Labs. All Rights Reserved. \



J)

K-effective (Eigenvalue) JLUE N

= The Significance

= K-effective is one of the most fundamental parameters in 1.009 -
nuclear engineering 1008

1.007 -

= |ts trend directly impacts the energy capability of the core

1.006

= |f not accurately predicted, the result is

1.005 -

* Not loading enough fresh fuel (Generation Impact)
» Or loading more fresh fuel than necessary (Direct Cost
Impact) :

1.004 -

(Eigenvalue)

1.003 -

ive

1.002 -

keffecl

1.001 -

* The Problem T TW

0999 - Rod Moygareffts Adesign
= |ts predictability from one cycle to another has been an Pline Figenvalue
0.998 / - -O - Design Targets

0.997 -

issue with BWRs
= |naccurate Eigenvalue projections result in lost generation
revenue or increased fuel costs.

0.996 I L L I I I I
0 2000 4000 6000 8000 10000 12000 14000

Cycle Exposure (MWd/ST)

This gap has an adverse

financial impact

© 2024 Blue Wave Al Labs. All Rights Reserved.



Eigenvalue.ai Buue wave

Al LABS
Machine learning based predictive analysis tool to meet
expected reload core energy capability

= Objective '

[I Iu | A

Rod Movements
Online Eigenvalue

= Accurately predict eigenvalue (blue line) to closely match
actual values (black line)

1.008

-~ Design Targets

1.007 ——— Model Predictions
= Overcome limitations of traditional eigenvalue prediction 1,006M R ool ST DR
methods (red line) g —_

T Target =5 x 10

Implementation
= Utilizes a convolutional neural network and machine

learning to process hundreds of thousands of pin-by- pin
fuel attributes with global reactor variables affecting

eigenvalue behavior
= Benefits
= Accurate eigenvalues translate into either reduced fuel
costs or preserved generation revenue by precisely B !
meeting energy commitments for the fuel cycle 17
103
= Results v[ﬂ | .3
= Typical accuracy of eigenvalue prediction is +50pcm . .W J WML 0
0 2000 4000 6000 8000 10000 12000 14000
= Reduces design uncertainty 4-fold on average in Cycle Exposure (MWd/ST)

eigenvalue design prediction across BWR plants

© 2024 Blue Wave Al Labs. All Rights Reserved.



1.015

Eigenvalue

0.995

1.01

1.007

Eigenvalue
o
o
N

0.997

1.005

BenChma I’k TEStIng Sample Procedure

Rod Movements
Online Eigenvalue
L we-@- Design Targets
—0—— Model Predictions

Abs. Error
== == Average Error =2.02¢-04

— Target=5 x 10

© 2024 Blue Wave Al Labs. All Ri‘ghts Reselrved.
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Thermal Limit Biases DLUE WAVE

Al LABS
»= Compliance with Technical Specification and Thermal Operating
Limits are essential to the safe operation of an NPP.

* |InaBWR, three major limits are tracked (MFLPD, MFLCPR, and
MAPRAT). Example of typical limits are

! CORE SIMULATOR
MODELING

=  Compliance with Tech Specs <1.00
»  Administrative Limit 0.980
- Design Limit (e.g. MFLPD) 0.909

N
RN

. . . . Offline

= Challenge: A large and inconsistent bias between offline and -
online limits makes it difficult to engineer in appropriate levels of 3 LPRM results + BW
margin_to these limits. 4 corrections

*  Excess margin = Over-fueling the core (excess direct fuel costs)

* Insufficient margin = Operation challenges resulting in power
derates and decreases energy capability of the core to avoid
exceeding a limit (power generation losses).

= Blue Wave Product: A method for consistent and accurate estimation of

online thermal limits from training data coming from earlier cycles.

© 2024 Blue Wave Al Labs. All Rights Reserved.




Thermal limit.ai

Thermal Limit bias reduction through an encoder-decoder

convolutional neural network

= Objective
= Compliance with Tech Specs and thermal operating limits,
i.e., maintaining safety
= Reduce the bias between offline (black line) and online
(blue line) by more consistently and accurately estimating
thermal limits (purple line)

= Implementation
= Al enabled tool supporting reload core design
= Ability to adjust design goals for scenario planning during
fuel cycle

= Benefits
= Reduces excess margin or over-fueling the core resulting in
direct fuel cost savings
= Restores margin and lessens operational challenges when
approaching administrative limits, thereby preventing
power generation losses

= Results
= Online to offline bias consistently reduced by a factor of 3
to 5, on average, across all generating stations.
= Accurate in-cycle thermal limit predictions along with

FelexGenius.ai have already prevented costly actions
© 2024 Blue Wave Al Labs. All Rights Reserved. - o

MFLPD

BLUE WAVE

1.05

1.00

0.954

0.90 &€

0.854

0.80

0.754

0.704

0.65

0.60

Issue with in-core

|—9— Online —®— Offine —#— Model Predictions

Offline
MSE,,, :11.74*10%
MSE e, pp : 23.28104
BIAS ooy :4.26*102
BIAS,,, :9.61*102

Blue Wave Model
MSE,,, :0.21*10%
MSE . pp : 0.45*10%
BIAS, .., :0.53*102
BIAS,,, :2.38*102

| A

Bias between
online and

2k 4k

2% 3_ L

T
6k 8k 10k

Cycle Exposure

offline limit

Parameter Typical Average Bias
Compared to Online Values
Keft 50 pcm
MFLCPR 0.30%
MAPRAT 0.75%
MFLPD 0.75%

Al LABS

16



Thermal limit monitoring architecture BLue wave

Al LABS
Blue Wave Provides Al systems for TIP Alignment, LPRM Analysis and Thermal Limit Predictions

Detector
Calibration

Feedback frqm Nuclear Core
Instrumentation Monitoring ,,,,,,,,,,,,,,,,,,,,,,, Operation

System

O Online Power Distribution O Gaps in modeling & simulation

O Online Thermal Limits O Error & uncertainty in physical

O Compliance with Tech Specs A measurement

O Real Plant Operation O Leads to overly conservative design

and/or operational challenges;
costs millions per reload

- Cocsn —
Simulator

Offline Power Distribution
Offline Thermal Limits

Gaps in key plant parameters
limit design and operation

000

Used for reload core design

Q Intended Plant Operation - - <>
© 2024 Blue Wave Al Labs. All Rights Reserved. y - .ir



° THERMAL LIMIT MODELING APPROACH DLUE WAVE

Al LABS
Input to BWnuclear.ai BWR Core Prediction Software Suite
* Direct-Bias Methodology (ThermalLimit.ai, MCO.ai, eigenvalue.ai)
» Error correction network that takes offline thermal limit as input List of Parameters Notes
and adjusts the power dlstrlbgthn to more accurately predict A R i
the expected online thermal limit * 3D MFLPD # MFLPD (30, 30, 25)
= Bundle MCPR # MFLCPR (30, 30)
= Convolutional Neural Network (CNN) encoder-decoder network s hucle ooR E mcaed E00)
. s 2D OLMCPR # bundle limit (30, 30)
Inputs: Offline MFLPD array and other cycle parameters * Bundle MCPR limit # MCPR limit with respect to Fuel ID
Output: Online MFLPD array (40,1)
s Nodal LHGR Limits # Limits (30,30,25)
Ny » Nodal APLGHR Limits # Limits (30, 30, 25)
= Fuel ID # Core map of Fuel IDs
| Convolutional Encoder-Decoder * Fuel Product Name # Fuel Type (40,1)
-+ |
a - = ® Axial Power Shape # Power distribution (25,1)
- Pooling Indices : ; .
) m Blade Segment Depletion # with respectto Limit (4,30, 30)
= Bundle Flow # inlbm/hr (30,30)
/ m Calibrated LPRM Readings # Arranged by string (4, 43)
[ s Control Blade Type # Categorical (30, 30)
® Core Average Exposure # in MWd/sT scalar
® Cycle Exposure # in MWd/sT scalar
® Total Core Power # in MWth scalar
I Conv + Batch Normalisation + RelU ®s Total Core Flow # inmlb/hr scalar
I Pooling M Upsampling Softmax ® Nodal Exposure # in MWd/sT (30,30,25)
4
#
4
4
[
&
[l
#

: s Nodal Iodine (30,30,25)
® Nodal Residual Gad Worth (30,30,25)
! Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional ®m Nodal Void Fraction (30,30, 25)
encoder-decoder architecture for image segmentation. IEEE transactions on pattern lati N 30,30, 25
analysis and machine intelligence, 39(12), 2481-2495. ® HNodal Relative Power (20,30, 25)

® Radial Peaking Factor Bundle Powers (30, 30)

® Rod Pattern (30, 30)

s Pu239 Mass g Total mass in bundle (30, 30)

m U-235 Mass g Total mass in bundle (30, 30)

Convolutional Neural Networks are Computationally Efficient in Dealing with Large Arrays
18
/ © 2024 Blue Wave Al Labs. All Rights Reserved.



Typical bias for mflpd

1.05
—o— Online —#— Offline % TIP A RodMovement
1.004
0.954
0.90
0.854
0.804
0.754
& Offline

MSEsray  : 4.18 i
0.70 MSEMFLPD :14.77

BIASpean :3.44
0.65- BIASmax 1 7.37
0-60 T |x ‘ ? x T x T T A ‘ T x A T x x|

0 2k 4k 6k 8k 10k 12k 14k 16k

* Scale of BIAS is 102 and scale of MSE is 10

* MFLPD is the maximum over a 30x30x25 array. MSE,,y is
across the whole array. MSEy.pp is the squared error of the
max values (= MFLPD values).

* BIAS is calculated for the MFLPD values.
© 2024 Blue Wave Al Labs. All Rights Reserved.

Cycle Exposure

J

-)LUE WAVE
Al LABS

* The Bias requires use of larger
thermal limit design margins,
which increases fuel costs.

* The Bias forces deeper than
planned use of control rods that
can lead to power derates and
generation revenue losses.

* Unplanned rod patterns lead to
MFLPD management challenges
for Operations and re-work for
Nuclear Analysis engineers.

* Online values depend upon
accurate LPRM and TIP operation.

e o



Blue Wave MFLPD model performance n

=
=?LUE WAVE
Al LABS
105 Performance Improvement:
—o— Online —®— Offline —#— BlueWaveModel % TIP A Rod Movement
1.00- = Mean bias is reduced by a factor of
3.62
0.95+4 .
= Max Bias reduced by a factor of 2.03
0.90
0.854
Offline o o
gl e Potential Savings
} = Revise the design to have fewer fuel
0.754 1
Offline Blue Wave Model b bundles
MSEsray :4.18 | MSEaray :1.65 i ] )
02871 MSEmrieo :14.77 | MSEwreo :1.34 | = Avoid generation losses due to derates.
BIASmean :3.44 | BlASmean :0.95
0.654 BIAS.x :7.37 BIASmax  :3.63 ‘ MEX MGdaT
Bias N
ocol MM x M x x sax  wa A aaxa  x 2 | Training Set:
0 2k 4k 6k 8k 10k 12k 14k 16k

Cycle Exposure = The eight previous Fuel Cycles

Note: Scale of BIAS is 102, Scale of MSE is 10
MFLPD is the maximum over a 30x30x25 array. MSE.,.., is across the whole array. MSEy.ep is the squared error of the max values (= MFLPD values)
BIAS is calculated for the MFLPD values

- > -
-

X
o 20

© 2024 Blue Wave Al Labs. All Rights Reserved. o W
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- MFLPD AXIAL ACCURACY BLUE wavE

Al LABS

The Blue Wave model prediction is significantly more accurate than the physics model prediction

14
ml?X |yijk - yijkl

12 3 & 5 6 12 3 4 s 6 1 8

' Online vs. Offline - "Online vs. BW Model
2 e il i 2

25% 28% 32% 24%
28% 28% 27% 26%

28% 27% 28% 25%

30% 27% 1% 23%

26%
28%
25%
26%

28% 34% 20% 27% 23%
25%

23% 30% 27% 27% 25%

26%

27% 29% 31%

¥

Y B R REEEEEEEEEEEEEGOEGE

°
S

<1%

%
&
%

Cycle 17

21
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U.S. DEPARTMENT OF ‘ offlce Of r .

F | exgen ius.ai ENERGY | NUCLEAR ENERGY =3 UE WAVE

Location | Deviation | Metric | Date | Category |Install @D
18A, 36A  |229.859 33.139 2023-07-27 |Drift Reload X
24A, 36A |225.433 60.800 2023-08-24 |Drift Reload X
. a c 3
Local Power Range Monitor (LPRM) Diagnostic Tool AR AR O e (N el DL Reload X
@3A, 204 |182.249 31.932 2023-07-27 |Drift Reload X
g 08A, 14A |177.914 35.227 2023-07-27 |Drift Reload X
D|Sp|ay o) 5 r'% eloa
) 11A, 35A  |145.999 1.520 2023-06-19 |Drift Reload X
LPRM readings 28A, 10A |142.078 1.269 2023-06-27 |Drift Reload X
3D view with anomalous LPRMs highlighted in red . -

List of anomalous LPRMs

Rod pattern and power distribution

Total power and core flow
Anomaly Detection Algorithms

57
53

Drift
Frozen LPRM
Outlier

o7 Jc Moo J ol 2

Change in noise
Remaining Useful Life (RUL) Algorithm

Neural network predicts calibration current based on cycle data
LPRM Reading Predictions based on ThermalLimit.ai model

02 03 04 05

01 -
08121626242832364044485256| M,

Real Time Data Feed
lPower
Flow
Benefits atn
A 675
Significant savings from avoiding unnecessary maintenance actions ] B
g o g 2 R D[] 28.32
resulting from incorrect power readings < 50
) . ) £ Pair
Secures reactor safety by helping keep LPRM instrumentation g sHes
operating and accurately calibrated 3 ‘He=z
s =0 2023-08-01
o
o Min: 2023-06-01
Future 24 L Sy
Support PWR ICI Diagnostics with similar tool 10
Ol . . . . . - . . . " . . .
Mav 28 Jun 04 Jun 11 Jun 18 Jun 25 Jul 02 Jul 09 Jul 16 Jul 23 Jul 30 Aua 06 Aua 13 Aua 20
© 2024 Blue Wave Al Labs. All Rights Reserved. - - 22



TIP.ai — TIP TRACE ALIGNMENT

= LPRM Calibration using TIP (Traversing In-Core Probe)
. The TIP is pushed into the TIP tube from the bottom.

. The exact vertical location of the TIP at the beginning of the TIP
run is unknown.

. The fuel has 8 spacers at standard distance from each other and
the neutron flux at the spacers is lower, which is visible as a dip in
the TIP trace. Trace alignment is based on these dips.

= The standard CMS alignment algorithm has proven to be inaccurate.
= Blue Wave has developed a more accurate algorithm

. A custom filtering kernel with peaks separated by the nominal
distance between the spacers in the fuel.

. The filtering kernel is shifted up and down by varying amounts
and convolved with the TIP measurements at each shift value.

. The location of the minimum of the convolution-vs-shift function
corresponds to the shift value that best aligns with the spacers
given the nominal separation values.

= Blue Wave TipTrace.ai enables more accurate TIP traces and therefore
more accurate LPRM calibration
= Benefits:

. Accurate LPRM readings are the basis of Thermal Limit Monitoring
and avoiding unnecessary generation losses, that can result from
incorrect measurements.

. Incorrect measurements are also a safety issue as Thermal Limits
may be underestimated.

© 2024 Blue Wave Al Labs. All Rights Reserved. -
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i

TIP Tube \T—m
p— R2

String

2

3

4

Instrument Tube
145

TIP et

Base Method

-2

0

-2

-2

0

-3

-2

pn R3

== R140
e R141

'

BLUE WAVE

Case: Peach Bottom Tip Calibration

BW Method ST_SYM_0

8.68

3.54

7.25

10.73

SYM_BM

10.39

7.48

9.36

2878

FUELROD
X
LorM
CHAMBER
/ INSTRUMENT TUBE
0010
?‘ GAP
2 =) COOLING REGION
A perecron é
(a-Lovel)
AnoDE 076
FISSILE LAYER Jo230
0126
=3
i
o TUBE
CHAMBER
LeRM
caBLe
A DETECTOR (A-Lovel)
B,C,D  CABLES LEADING TO THEIR RESPECTIVE DETECTORS
NoTE: Alunits are s, ]
DRE.RWRIE CONEIGHRATION
SYM_BW Uncertainty Coordinates |A] Value Date of Trace
7.86 12 (12, 26) 0 2021-03-16T10:57:64
3.54 0.9 (16, 26) 0 2021-03-16T10:57:54
3.62 21 (20, 26) 1 2021-03-16T10:67:54
34 23 (24, 26) 1 2021-03-16T10:57:54

23



Case Study

Actual Event: Approaching thermal limits limit within a matter of days

=  Runaway MFLPD at 0.96 on path to reach procedural limit of 0.98 within days,
Blue Wave model predicted .918

= Operators thought some LPRMs may need to be placed out of service due to

mis-calibration, but couldn't efficiently verify this claim.

Without Intervention, a short-term derate would be eventual course of
action, followed by insertion of shaper control blades

=  MLFPD getting worse, up to 0.975 (model predicted 0.92)
=  Operator requested Blue Wave to analyze ALL LPRMs...we did, rank ordering
them from most-to-least problematic

*  We identified 7 LPRMs with issues, recommending bypass = reducing MFLPD
from 0.975 to 0.955

Blue Wave predictions proven true and accurate

*  Blue Wave recommended performing recalibration with TIP, based on model
predictions (still 0.92) ... After TIP the MFLPD went to 0.92!

=  Blue Wave tools helped address and closeout three related IRs

=  Operator estimates that this support avoided generation losses of
approximately $1.23M

= The Blue Wave Method won NEI Top Innovative Practice award

© 2024 Blue Wave Al Labs. All Rights Reserved. =T
-

TIP run

J |
A

W

s il
Jl‘w‘,-‘»/[vﬁi 1y

LPRM

24-49 A-48-25A

Metric

229.859

=2LUE WAVE

Al LABS

Notes

Noisy

32-41A-40-33A 225.433 Significant Drift, smaller drift in Delta level
24-41 A-40-25A 192.666 Bypassed, large offset prior to bypass

08-33 A-32-09A 182.249 Large Drift

16-25A-24-17 A 177.914 Fixed offset, not particurlarly drifting apart
16-49 A-48-17 A 145.999 Large Drift, Present in B and C levels to lessor

extent

Modest Drift

24




F
Making a Material Impact on the Nuclear Fleet =LUE WAVE

. . . .. Al LABS
with bwnuclear.ai (mco+eigenvalue+thermal limit)
\ Cycles planned with BWnuclear.ai \
Batch Size  Savings  Batch Size  Savings  Batch Size  Savings
2 Cycles 2 Cycles Previous Previous Current Current $1 05 M Fresh Fuel Cost Savings
Ago Ago Cycle Cycle Cycle Cycle .
1 2 272 268 4 260 12 16 $8M $1.6M $21M Spent Fuel Cost Savings
2 3 272 272 0 260 12 264 8 20 $iom $2m $81 M Avoided Operational Costs
3 2 272 268 4 262 10 14 $7M $1.4M
4 3 276 272 4 260 16 268 8 28 $14aM $2.8M $ 2 o 7 M
5 2 272 268 4 256 16 20 $10M $2M )
6 3 200 196 4 192 8 188 12 24 $12M  $2.4M Total Cost Savings for
7 2 316 304 12 312 4 16 $8M $1.6M 13 Units
8 2 308 300 8 304 4 12 $6M $1.2M
9 2 144 140 4 140 4 8 $4m $0.8M Average savings per unit
10 1 308 292 16 16 $8M $1.6M ,
per cycle: $7.7M
11 2 208 204 4 200 8 12 $6M $1.2M
12 2 208 200 8 200 8 16 $8M $1.6M .
131 228 220 8 8 sam  sosm  Average fresh fuel savings
Total 27 210 $105M  $21m per unit per cycle: 3.8M
27 Cycles Planned with BWnuclear.ai 210 Fuel Bundles Saved

(Fresh Fuel = $500K/assembly, Spent Fuel = $100K/assembly)

© 2024 Blue Wave Al Labs. All Rights Reserved. Confidential én’d Proprietary Infor naiio
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Challenges of Documentation FILUE WAVE
in the Nuclear Industry

* Nuclear facilities must maintain comprehensive
documentation throughout their lifecycle, from design to
decommissioning.

* Nuclear power plants face an average of 173,459
paperwork hours per facility annually, equivalent to
about 86 full-time employees dedicated to regulatory
compliance documentation per plant [1].

* Coupled with the problem of an aging nuclear
engineering workforce, this is a problem that could really
benefit from Al technologies.

[1] https://www.americanactionforum.org/research/costs-benefits-nuclear-regulation/

© 2024 Blue Wave Al Labs. All Rights Reserved. 26



Blue Wave Nature Language Processing Strategy =L UE WAVE

Al LABS

Obiectives 50.59 Product Business Case

)

Minimize the Mundane The effort involved in collecting and

_ : reviewing the licensing basis and other

Mlapdimlze e Sialf Hour Seulngs documentation required for a 50.59

Strategy Screening can take on average 40 hours
per screen with hundreds of screenings per
Develop targeted applications year performed at each site.

relying on Blue Wave Nuclear All NRC Part 50 licensed reactors maintain

Corpus and Large Language Models a licensing basis and are required to

to streamline specific regulatory perform 50.59 Screenings against that

activities. licensing basis for making changes, and
therefore can benefit from an Al tool.

Fir r
st target Added benefits include knowledge

10 CFR 50.59 Screening transfer, training for inexperienced 50.59
preparers, and investigating the licensing
basis for other licensing actions.

© 2024 Blue Wave Al Labs. All Rights Reserved. - 27
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=)LUE WAVE

50.59 Current Workflow e

[ Evaluate Activity to Ensure it is Safe and Eftective |

* NEI 96-07, "Guidelines for 10 CFR 50.59 Evaluations,"
provides detailed guidance on implementing the
50.59 process.

* An engineer performs a keyword-based search over
the licensing basis including the Updated Final Safety
Analysis Report (UFSAR) and the plant's Technical
Specifications.

* Based on their search output and reading of the
sections, provide a description of why the section is -
pertinent.

Yes Request/Obtain a License Amendment
Under 10 CFR 50.90

© 2024 Blue Wave Al Labs. All Rights Reserved. 28
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=2LUE WAVE
Proposed Tool
Text o
\ ° N 7
. | . o= %2
* A 50.59 Screener tool would reduce time s o 4 Sty e
spent manually searching through the plant’s :,A@J - :
licensing basis S'
e Thisis accompIiShed USing d hyb”d search https://www.tylercrosse.com/ideas/semantic-search
solution which uses Al-based semantic search —
for enhanced context understanding, neery By | T tom 0m
all the while retaining traditional —_— T
search functionality p— o=
Ewmbedding — a3 1, "31% 5, .}
Moo(el
e Conditioned on the input provided
. . .o . . | — |
and retrieved chunks, a justification is C =
. . . | - ]
provided as to why the section is relevant. = !
| — 1

https://www.pinecone.io/learn/hybrid-search-intro/
© 2024 Blue Wave Al Labs. All Rights Reserved.
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Parsed
documents

Data Pipeline

™

=LUE WAVE
Al LABS

The hardest part of any machine learning workflow is the data cleaning and pre-
processing. Depending upon the nature of the documents, a rule-based conditional

strategy was created.

We performed several experiments to determine the most optimal chunking strategy
eventually settled on a version of the recursive text splitter.

With the chunks in place, we wrote custom algorithms to tag metadata onto them.
For the most part, the metadata is what the end user is interested in.

Finally, we use an encoder only transformer model to create the vector embeddings.

=

Chunking

© 2024 Blue Wave Al Labs. All Rights Reserved.

el =

"chunk": "Example chunk",
"page" : 25,
"source" :

"./Surry_unit2_pdfs/UFSAR.pdf",

Example
chunk

"chunk": "Example chunk",
"page" : 25,
"source" :
"section" :
"subsection"
"subsubsection"

"./Surry_unit2_pdfs/UFSAR.pdf",

: "1.1.1.2 Cooling the core", %

"1.1 Introduction",
: "1.1.1 Reactor Core",

Metadata
tagged chunks

Vector

database
30



BLUE WAVE

Hyb”d SearCh Al LABS

* Hybrid search combines traditional keyword search
with vector embeddings, capturing both exact
matches and the semantic meaning of queries.

* In our approach, we use a Okapi BM25 keyword
retriever and a Dense Passage Retriever (DPR)
based embedding model as our vector retriever.

» Search results from both retrievers are aggregated,
and reranked.

* The retrieved chunks and a few other surrounding
ones become the context for generation for the
LLM.

© 2024 Blue Wave Al Labs. All Rights Reserved.

Contextual Retrieval
contextual embeddings + contextual BM25

e NI

Swiihy. I

document | ——=>00OO0)
0a0a0

Doﬂoo

using LLM to add context

l’anking
to each chunk

&7 T

BV bm25 lay semantic
©vry | Dere
1, .

1
2. 2.
3 3.

final rank

v

2 1 " 1
final score = We\ﬂl"tsmzs * (—ra_nE 2F + We'Sll"teML, » (m i
https://levelup.gitconnected.com/the-best-rag-technique-yet-

anthropics-contextual-retrieval-and-hybrid-search-62320d99004e 3
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Summary Generation

* The retrieved chunks and a few other surrounding

ones become the context for generation for th What are sections relevant to Small Break
LM g Ion 10 € Loss of Coolant Accident (LOCA) analysis

and Large Break LOCA analysis?

Database

e
BRC

Vector store

Index
Embeddi — |
~(= )=

L —

© 2024 Blue Wave Al Labs. All Rights Reserved.

32



-
=2LUE WAVE
Al LABS

Results and Future Work

* Plenty of excitement regardin
the ﬁ?-lst de),(nlo of the cheenlerg 10 CFR 50.59 Screening Reference Search

tool

Activity Description Relevant Documents

Next iterations to fine-tune
LLMs to assist with screening
decisions

Lack of domain expertise
implies, the LLM cannot
“reason” with limited context

Thus, we plan on using historical
documents and convert the
problem into one of “statistical
learning”

© 2024 Blue Wave Al Labs. All Rights Reserved.

Describe the change, test, or experiment.

The Westinghouse Integral Fuel Burnable Absorber
and 2. The Peak Clad Temperature (PCT)
assessments to the Small Break Loss of Coolant
analysis have been conducted with the 1982 BASH
Evaluation Model.

Here's a list of the top recommendations based on your

proposed activity.

Rupture of a Control Rod Drive
1 Mechanism Housing (Control Rod
Assembly Ejection)

Loss of Reactor Coolant From Small
Ruptured Pipes or From Cracks in Large

2 Pipes, Which Actuates Emergency Core
Cooling System (Small Break Loss-of-
Coolant Accident Analysis)

Loss of Reactor Coolant From Small
Ruptured Pipes or From Cracks in Large

3 Pipes, Which Actuates Emergency Core
Cooling System (Small Break Loss-of-
Coolant Accident Analysis)
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