

Data Science and Al Regulatory Applications Public Workshop

Al Regulatory Gap Analysis Update September 17, 2024

Matt Dennis U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research

Dr. Osvaldo Pensado

Staff Scientist Southwest Research Institute

NRC AI Strategic Plan

- NUREG-2261 issued May 2023
- <u>Al Project Plan</u> (AIPP) issued September 2023
 - The AI Project Plan describes how the agency will execute the five strategic goals from the AI Strategic Plan
 - Provides estimated timelines for various task completions within each Strategic Goal
 - Communicates NRC priorities to internal and external stakeholders
- Al research activities
 - Al safety and security test, evaluation, verification and validation (AIPP, Task 1.3)
 - US-Canada-UK Trilateral Collaboration on AI (ML24241A252)
 - AI standards engagement (IEC, ANS, ASME)

ARTIFICIAL INTELLIGENCE STRATEGIC PLAN

NUREG-2261

Fiscal Years 2023-2027

AI Regulatory Framework Applicability Assessment

- Project objectives
 - Assess the applicability of the existing regulatory framework in considering the unique aspects of AI applications
 - Determine where regulatory gaps may exist which could require updating existing or developing new regulations, guidance, or procedures to evaluate and review AI uses in NRC-regulated activities

Project phases

- AI-specific technology considerations
- Literature review of regulatory requirements and guidance
- Regulatory applicability assessment
- Al-specific regulatory considerations
- Review of AI standards
- Project supports <u>AI Project Plan</u>, Task 1.1

Potential AI Technical Considerations for Regulatory Decision-Making

	Explainability	Trustworthiness	Bias
	Robustness	Ethics	Security
	Risk Analysis	Test, Evaluation, Verification and Validation	Assurance Processes
	Model Maintenance	Domain Adaptation	Data Drift
	Fielded Performance Degradation	Life Cycle Management	Data Quality, Quantity, Applicability, and Uncertainty

Regulatory Framework Applicability Assessment of Artificial Intelligence in Nuclear Applications (AIRGA: AI Regulatory Gap Analysis)

SOUTHWEST RESEARCH INSTITUTE®

O. Pensado, P. LaPlante, M. Hartnett, K. Holladay

Data Science and AI Regulatory Applications Workshop: AI Regulatory Framework Applicability Considerations September 17, 2024

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Acknowledgments

- This project benefitted from discussions with M. Dennis, L. Betancourt, A. Hathaway, N. Tehrani, A. Valiaveedu, and S. Haq of the NRC Office of **Nuclear Regulatory Research**
- This project was sponsored by the NRC Office of Nuclear Regulatory Research, Division of Systems Analysis
- The work is an independent product of SwRI and it does not necessarily reflect the views of the NRC

Disclaimer

This project was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party complies with applicable law.

Project Objective

- Support NRC's readiness to evaluate uses of AI technologies in NRC-regulated activities
- Main task: conduct an AI regulatory gap analysis (AIRGA)
 - Identify types of AI technologies to be potentially used in the nuclear industry
 - Identify potential AI uses in NRC-regulated activities
 - Examine whether the existing regulatory framework is appropriate for AI technologies

Project Scope

Regulatory framework considered

- NRC's regulations, Title 10, Chapter I, of the Code of Federal Regulations, Parts 1 – 171
- 517 regulatory guides (RGs)
- Out of scope guidance documents:
 - NUREGs, Interim Staff Guidance (ISG), Standard Review Plan (SRP), Inspection Procedures, and standards cited in regulations
 - Technical areas without specific RGs, such as human factors engineering (ISG 2023-03, NUREG-0711, NUREG-0700), may need to be examined in the future

Main Project Tasks

Task 1: Identify examples of AI uses

Task 2: Analyze RGs to identify potential gaps

Task 3: Analyze regulations applicable to the subset of RGs with potential gaps

- Considered examples of AI uses based on known applications and R&D activities
- Examples discussed in past Data Science and AI Regulatory Applications Workshops
- Examples in NUREG/CR-7294

Task 4: Examine Al standards by professional communities

Analysis Approach for Regulatory Guides

swri.org

Regulatory Guides: 372 active RGs

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

11

Regulatory Guides with Potential Gaps

- 71 RGs with potential gaps after applying the process from slide 7
 - Questions Q0, Q1, and Q2

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

12

Categories of Potential Gaps

- Gap 1: Implied Manual Actions
- Gap 2: Special Computations
- Gap 3: Preoperational and Initial Testing Programs May Omit Al
- Gap 4: Habitability Conditions under Autonomous Operations
- Gap 5: Periodic Testing, Monitoring, and Reporting
- Gap 6: Software for Safety Critical Applications
- Gap 7: Radiation Safety Support
- Gap 8: Miscellaneous: Training, Human Factors Engineering, and AI Introduced as Changes

13

Gap 1: Guides call for human manual actions; AI systems may offer different alternatives to execute those actions

Table 3-1.	Regulatory	guides related	to Gap 1: Im	plied Manual Actions

- 1.7 Control of Combustible Gas Concentrations in Containment Guidance to Operators at the Controls and to Senior Operators in the Control Room of a Nuclear 1.114 Power Unit
- **1.141** Containment Isolation Provisions for Fluid Systems
- **1.147** Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1
- Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and 1.149 **Applicant Experience Requirements**
- **1.189** Fire Protection for Nuclear Power Plants
- **1.205** Risk-Informed, Performance-Based Fire Protection for Existing Light-Water Nuclear Power Plants
 - 5.7 Entry/Exit Control for Protected Areas, Vital Areas, and Material Access Areas
- **5.44** Perimeter Intrusion Alarm Systems

<u>Gap 2</u>: Al techniques may be used in special computations; guidance may be needed on documentation and verification

- Table 3-2. **Regulatory guides related to Gap 2: Special Computations**
 - **1.59** Design Basis Floods for Nuclear Power Plants
 - **1.60** Design Response Spectra for Seismic Design of Nuclear Power Plants
- **1.76** Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants
- Best-Estimate Calculations of Emergency Core Cooling System Performance 1.157
- **1.198** Procedures and Criteria for Assessing Seismic Soil Liquefaction at Nuclear Power Plant Sites
- **1.200** Acceptability of Probabilistic Risk Assessment Results for Risk-Informed Activities
- **1.203** Transient and Accident Analysis Methods
- **1.245** Preparing Probabilistic Fracture Mechanics (PFM) Submittals
- **1.247** TRIAL Acceptability of Probabilistic Risk Assessment Results for Non-Light Water Reactor Risk-Informed Activities
- 3.27 Nondestructive Examination of Welds in the Liners of Concrete Barriers in Fuel Reprocessing Plants
- **3.76** Implementation of Aging Management Requirements for Spent Fuel Storage Renewals
- 5.11 Nondestructive Assay of Special Nuclear Material Contained in Scrap and Waste
- **5.21** Nondestructive Uranium-235 Enrichment Assay by Gamma Ray Spectrometry
- **5.23** In Situ Assay of Plutonium Residual Holdup
- **5.37** In Situ Assay of Enriched Uranium Residual Holdup
- 5.38 Nondestructive Assay of High-Enrichment Uranium Fuel Plates by Gamma Ray Spectrometry
- **10.4** Guide for the Preparation of Applications for Licenses to Process Source Material

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

15

Gap 3: Critical AI systems may need to be explicitly included in preoperational and initial testing programs

Table 3-3.Regulatory guides related to Gap 3: Preoperational and Initial Testing May Omit AI		
1.68	Initial Test Programs for Water-Cooled Nuclear Power Plants	
1.68.2	Initial Startup Test Program to Demonstrate Remote Shutdown Capabilit Cooled Nuclear Power Plants	
1.79	Preoperational Testing of Emergency Core Cooling Systems for Pressurize Reactors	
1.79.1	Initial Test Program of Emergency Core Cooling Systems for New Boiling- Reactors	

Programs

ty for Water-

ed Water

-Water

swri.org

<u>Gap 4</u>: Habitability conditions under autonomous operations; variable role of operators

Table 3-4. Regulatory guides related to Gap 4: Habitability Conditions Under Autonom				
1.78	Evaluating the Habitability of a Nuclear Power Plant Control Room During a Post Hazardous Chemical Release			
1.189	Fire Protection for Nuclear Power Plants			
1.196	Control Room Habitability at Light-Water Nuclear Power Reactors			

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

ous Operations

tulated

17

Gap 5: Periodic testing, monitoring, surveillance, and reporting; Al systems may offer different strategies for those activities

RGs related to testing and monitoring deemed with potential gaps:

1.7	1.205	5.11	5.71	8.22	8.38
1.9	1.246	5.21	8.8	8.25	10.2
1.21	3.27	5.23	8.1	8.26	10.3
1.9	3.76	5.27	8.11	8.31	10.4
1.118	4.1	5.37	8.15	8.32	
1.129	4.14	5.38	8.18	8.34	
1.141	4.16	5.41	8.19	8.36	
1.147	5.7	5.44	8.2	8.37	

RG 5.71 Cyber Security Programs for Nuclear Power Plants: AI may be used as monitoring tool to detect anomalies as indicators of cyber attacks

swri.org

<u>Gap 6</u>: Software guides may need to be updated to address special features and risks of AI systems

Table 3	-6. Regulatory guides related to Gap 6: Software for Critical Applications
1.168	Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Nuclear Power Plants
1.169	Configuration Management Plans for Digital Computer Software Used in Safety Sys Power Plants
1.171	Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuc
1.172	Software Requirement Specifications for Digital Computer Software and Complex E Safety Systems of Nuclear Power Plants
1.173	Developing Software Life Cycle Processes for Digital Computer Software Used in Sa Nuclear Power Plants
1.231	Acceptance of Commercial-Grade Design and Analysis Computer Programs Used in Applications for Nuclear Power Plants

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Safety Systems of

tems of Nuclear

lear Power Plants lectronics Used in

fety Systems of

Safety-Related

Gap 7: Radiation safety support; AI may be used for tasks and functions of radiation safety professionals

Table 3-7. Regulatory guides related to Gap 7: Radiation Safety Support

8.8	Information Relevant to Ensuring that Occupational Radiation Exposures at Nuclear Power Stations Will Be as Low as Achievable
8.10	Operating Philosophy for Maintaining Occupational Radiation Exposures as Low as Is Reasonably Achievable
8.11	Applications of Bioassay for Uranium
8.15	Acceptable Programs for Respiratory Protection
8.18	Information Relevant to Ensuring that Occupational Radiation Exposures at Medical Institutions Will Be as Low as Rea Achievable
8.20	Applications of Bioassay for Radioiodine
8.22	Bioassay at Uranium Mills
8.25	Air Sampling in the Workplace
8.26	Applications of Bioassay for Fission and Activation Products
8.31	Information Relevant to Ensuring that Occupational Radiation Exposures at Uranium Recovery Facilities Will Be as Low Reasonably Achievable
8.32	Criteria for Establishing a Tritium Bioassay Program
8.34	Monitoring Criteria and Methods to Calculate Occupational Radiation Doses
8.35	Planned Special Exposures
8.36	Radiation Dose to the Embryo/Fetus
8.38	Control of Access to High and Very High Radiation Areas of Nuclear Plants
10.4	Guide for the Preparation of Applications for Licenses to Process Source Material

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

20

<u>Gap 8</u>: Miscellaneous: Training, Human Factors **Engineering, and AI Introduced as Changes**

Table 3-8. Regulatory guides related to Gap 8: Miscellaneous: Training, Human Factors and AI Introduced as Changes		
1.149	Nuclear Power Plant Simulation Facilities for Use in Operator Trainin	
	Examinations, and Applicant Experience Requirements	
1.206	Applications for Nuclear Power Plants	
5.74	Managing the Safety/Security Interface	

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Engineering,

ng, License

21

The analysis identified only few gaps in applicable regulations Regulations applicable to the RGs deemed with potential gaps were examined

- Not all the regulations were examined in detail
- In general, the applicable regulations (10 CFR 1 to 171) were high level and adequate for AI technologies, with a few exceptions
- The exceptions are related to regulatory statements calling for actions by humans when those actions could also be executed by AI systems
 - Surveillance using computer vision
 - Searches of people and vehicles
 - Escorting people in facilities
- Some regulations should be examined in light of questions related to autonomous operation and control room habitability
 - Role of operators, protection of equipment in the control room, constraints on autonomous operation

Recommendations

- Develop few general guides addressing cross-cutting issues associated with potential gaps, such as software development with AI systems and use of AI in special computations
 - More efficient to develop few guides than inserting explicit AI considerations in many RGs
- Existing AI standards by professional societies do not readily address the identified potential gaps

swri.org

Potential cross-cutting guides

- 1. Data quality for machine learning (ML) purposes, including aspects of accuracy, context, data management, data variety, and data quantity.
- 2. Type of systematic testing and documentation needed to enhance confidence in responses by AI systems, with emphasis on rare and extreme inputs.
- 3. Systematic fail-safe design, including active detection of inputs different than in the ML database, active detection of anomalous responses by AI systems, and mitigation of errors by AI systems.
- 4. Types of testing and documentation needed to enhance confidence in computations and predictions that use AI techniques.

swri.org

Backup Slides

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

25

Abbreviations and acronyms

AI	Artificial intelligence
AIRGA	AI regulatory gap analysis
ASME	American Society of Mechanical Engineers
CFR	Code of Federal Regulations
FAA	U.S. Federal Aviation Administration
FDA	U.S. Food and Drug Administration
HFE	Human factors engineering
IEEE	Institute of Electical and Electronics Engineers
ISG	Interim Staff Guidance
LLM	Large language model
ML	machine learning
NRC	U.S. Nuclear Regulatory Commission
PFM	Probabilistic fracture mechanics
R&D	Research and development
RG	Regulatory Guide
SRP	Standard Review Plan
SwRI	Southwest Research Institute

26

Terminology

- Al includes a range of technologies
- Deep neural networks and machine learning methods are notable because of their broad range of applicability

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Potential future work

- Examine work by the FDA and FAA to regulate AI, to yield insights useful in developing the guidance described in recommendations 1 through 4.
- Deploy a pilot program aimed at evaluating computations by an existing licensee using AI technologies, to yield insights relevant to recommendation 4 (use of AI for special computations).

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

swri.org