Agenda

Time (EST)	Торіс	Speaker
11:00 - 11:02AM	Welcome/Housekeeping	Mr. Andrew Barto, NRC
11:02 – 11:05AM	Workshop Theme and Intro	Dr. William Wieselquist
11:05 - 11:15AM	HALEU Availability Program	Mr. William McCaughey, Director, Advanced Fuels Technologies, DOE- NE
11:15 - 11:25AM	Project Background	Mr. Don Algama, DOE-NE
11:25 - 11:35AM	Project Goals	Mr. Andrew Barto, NRC
11:35AM – 12:35PM	 Discussion of Considerations for HALEU-Based Fuel Cycle Validation Basis Assessment and Benchmark Prioritization, Including: Current HALEU-Based Reactor Landscape and Transportation Packages Current Nuclear Data Gaps (e.g. TSL Uncertainty) 	Dr. William B.J. Marshall Dr. Iyad Al-Qasir Dr. Mathieu Dupont Dr. Lisa Fassino
12:35 – 12:50PM	Open Discussion	Audience Questions
12:50 – 1:20PM	Background on Validation Methods and the need for Application Models	Dr. William B.J. Marshall Mr. Alex Shaw
1:20 – 1:50PM	Presentation of Recently Developed Criticality Safety Application Models	Dr. William B.J. Marshall Mr. Alex Shaw Dr. Veronica Karriem
1:50 – 2:15 PM	Open Discussion	Audience Questions
2:15 PM	Concluding Remarks	Dr. Will Wieselquist
	Adjourn	Ms. Lindsey Aloisi

1

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Workshop 1 Theme and Intro

- Demonstrate our strategy for prioritizing benchmarks
 - 1. Survey the field
 - 2. Prioritize a target application
 - 3. Develop an application model (today: fresh fuel pebble transport)
 - 4. Assess the validation basis
 - 5. Host a workshop
 - 6. Develop Experiment Support Opportunity (ESO) to address gaps in validation bases
 - 7. Rinse and repeat
- ESOs are the main vehicle for critical benchmark awards
- We are hungry for information
 - Long lead-time on nuclear data and experiments!
 - Existing measurements that could become benchmarks
 - From reactor designers: what are your

intended transportation packages, frontend/back-end storage systems

- Any ideas where you may need additional nuclear data or benchmarks for safe, commercial-scale operations
- Feedback methods
 - Use the chat 😊
 - Respond to feedback form (following the workshop)
 - Email DNCSH@ornl.gov
- When to ask questions?
 - Feel free to ask questions in the chat, we may answer in the chat or hold it for the discussion period
 - During the discussion period, we would like attendees to raise their virtual hands to ask questions and we'll give some preference to those versus chat-based questions

HALEU Availability Program (HAP)

02/29/24

Energy Act of 2020; Sec. 2001 "Advanced Nuclear Fuel Availability" (42 U.S.C. 16281; PL-116) Section (A) and (C)(ii)

William McCaughey NE-42 Office Director

Authorities

- The Energy Act of 2020 authorizes the DOE to "support the availability of HA–LEU for civilian domestic research, development, demonstration, and commercial use."
- Inflation Reduction Act in 2022 provided initial funding of \$700M divided into three areas.
 - \$500M to develop near-term and long-term sources of HALEU.
 - \$100M to develop criticality safety BM and support vendor transportation packages
 - \$100M for supporting activities.

2 U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

HALEU Availability Program (HAP) Elements

Eleven Elements that Compose the Program

- Reclamation from EBR-II
- Downblending SRS & Y-12
- HALEU enrichment follow on operations at Piketon
- · Enrichment in commercial quantities
- Post-enrichment deconversion
- The HALEU Consortium
- The HALEU Bank
- Physical storage
- Transportation
- NEPA
- DOE/NRC Criticality Safety for Commercial-Scale HALEU Fuel Cycle and Transportation (DNCSH) ← This workshop

HALEU Availability Program (HAP) Goal

• Overall goal is to kick start the industry on the road to be self sufficient.

DOE/NRC Criticality Safety for Commercial-Scale HALEU Fuel Cycle and Transportation (DNCSH)

02/29/24

Energy Act of 2020; Sec. 2001 "Advanced Nuclear Fuel Availability" (42 U.S.C. 16281; PL-116) Section (A) and (C)(ii)

Don Algama (DOE Fed. Manager)

Authorities

- The Energy Act of 2020 authorizes the DOE and NRC to collaborate to develop **criticality safety data**.
- Inflation Reduction Act in 2022 provided \$700M, of which \$60M is the cost estimate for this project.
- HALEU fuel cycle is the scope, except reactor operation step.
- NRC is primary customer.

Implementing Law: Energy Act of 2020, Section 2001 "Advanced Nuclear Fuel Availability" (42 U.S.C. 16281)

Authorities: LWR Fuel Cycle Mapping

Illustration of a LWR fuel cycle based on (<u>ML21088A047</u>) annotated with NRC regulations of interest for this effort

4

NUCLEAR ENERGY

Who and Approach

Customer: . NRC NRC (customer) Partners: ٠ DOE offices (NE, NNSA/NCSP, OS/NP, etc.). DOE labs and universities. • Funded experiment opportunities. Approach: ٠ NE-4 Develop *working* HALEU fuel cycle analysis and application models (HTGR, SFR, MSR, HPR, etc.) 1. 2. Conduct public workshops. 3. Issue experiment opportunities. Public/ 4. **Review and responses. DOE Labs** Industry Data collection, interpretation, processing and public reports. 5.

Office of
NUCLEAR ENERGY

U.S. DEPARTMENT OF

ENERG

DNCSH Organization Structure – Management Team

Name	Project Role	Responsibilities Include		
William McCaughey	DOE Office Director	Coordinate throughout DOE Complex		
Don Algama	DOE Fed Manager	Coordinate throughout DOE Complex		
Mark Angil DOE Advisor		Advisor and representative for DOE HALEU Consortium		
Bob Rova	DOE Experiment Support Opportunities	Implementation		
Andrew Barto NRC Program Manager		Coordinate throughout NRC Complex		
William Wieselquist	National Technical Director	Coordinate technical activities, approve and review tasks, assign top-level task leads.		
Lindsey Aloisi	Project Manager	Collect status, update PMP, allocate and track spending, update PICS-NE, and manage plans.		

DNCSH Organization Structure – Technical Team Leads

Responsibilities	Project Role	Name
Engagement Area 1	Management and Engagement	William Wieselquist
Engagement Area 2	Quality Assurance	Travis Greene
Engagement Area 3	Survey and Summaries	Walid Metwally
Engagement Area 4	Engagement Area 4Facility EnhancementsCatherine Perch	
Engagement Area 5	Reference Application Model Development	Nathanael Hudson
Engagement Area 6	Critical Benchmark Execution	Catherine Percher
Engagement Area 7	Nuclear Data Enhancement	Iyad Al-Qasir
Engagement Area 8	Simulation Methods Improvements	Rob Lefebvre
Engagement Area 9	Validation Basis Improvement	Ugur Mertyurek

U.S. DEPARTMENT OF Office of ENERGY NUCLEAR ENERGY

Success Metrics

- Tier 1 (easily quantifiable):
 - Publicly available experiments.
 - Publicly available application models (including enabling reports).
 - Publicly available methods and approaches.
- Tier 2 (difficult to quantify):
 - Number of applications using new data/methods.
 - Number of times NRC can use new data/methods in review.

Concluding Remarks

- NRC is primary customer and project will produce publicly available data.
- Unique opportunity that will have long lasting impact on the commercial industry.
- Project application area is 10CFR70 and 10CFR71.
- Coordinate high impact experiments via experiment support opportunities available to the public. More information to follow.
- Key success metric will be in the availability of public data and models

WORKSHOP ON COLLABORATION BETWEEN DOE AND NRC FOR DEVELOPMENT OF CRITICALITY SAFETY BENCHMARKING DATA FOR HALEU FUEL CYCLE AND TRANSPORTATION

February 29, 2024

Drew Barto Division of Fuel Management Office of Nuclear Material Safety and Safeguards

U.S. Nuclear Regulatory Commission

OVERVIEW

- Background
- Regulations
- Code Validation
- Existing Transportation Packages
- DNCSH Outcomes

BACKGROUND

- Office of Nuclear Material Safety and Safeguards Division of Fuel Management (NMSS/DFM) within NRC is responsible for regulation of:
 - Fuel cycle facilities under 10 CFR Part 70
 - Radioactive material (including fissile material, e.g., HALEU) transportation package designs under 10 CFR Part 71
- Regulations include requirements to maintain criticality safety under all conditions

REGULATIONS

- 10 CFR 70.61 Subcritical under normal and credible abnormal conditions
- 10 CFR 70.64 Double contingency principle
- 10 CFR 70.24 Criticality monitoring
- 10 CFR 71.55 Single packages.
 - 10 CFR 71.55(b): subcritical considering water in-leakage
 - 10 CFR 71.55(d): subcritical under normal conditions of transport (NCT)
 - 10 CFR 71.55(e): subcritical under hypothetical accident conditions (HAC)
- 10 CFR 71.59 Package arrays.
 - Subcritical under NCT and HAC
 - Limiting number of packages under NCT or HAC used to determine Criticality Safety Index (CSI) to control package accumulation on conveyance

CODE VALIDATION

ANS 8.1 - Nuclear Criticality Safety In Operations With Fissionable Materials Outside Reactors:

- Validation shall be performed by comparison to critical experiments, and the area of applicability for the validation should be established from this comparison
- Establish:
 - Applicability of experiments
 - Code bias and bias uncertainty
 - Trending analysis

CODE VALIDATION

- ANS 8.24 Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations
- NUREG/CR-6698 Guide for Validation of Nuclear Criticality Safety Calculational Methodology
- NUREG/CR-5661 Recommendations for Preparing the Criticality Safety Evaluation of Transportation Packages
- NUREG/CR-6361 Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages
- International Criticality Safety Benchmark Evaluation Project (ICSBEP):
 - Descriptions of over 5,000 laboratory critical experiments
 - Grouped by fissile media, physical form, and neutron energy where most fissions occur
 - Many experiments representative of <5% enriched UO₂ LWR fuel; less for enrichment range of 5-20%; much less for key systems of interest (e.g., TRISO, low moderation UF₆)

EXISTING HALEU PACKAGES

Traveller (71-9380)

GNF RAJ-II (71-9309)

package designs.

The critical benchmarks performed at

SNL with 7% enriched fuel were

instrumental in certifying these

- Certified to LEU+ range up to 8.0% enrichment
- No issues with code validation
 - Many applicable low enriched UO₂ experiments
 - Regulations require consideration of moderation by water thermal uranium systems generally fairly easy to validate

U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment

EXISTING HALEU PACKAGES

Drum Ring -				- Drum Ring Bolt, 5/8 Hex Head Bolt		
	Ŧ	* *	t	1/2" Hex Head Closure Boits & Waher		
Plug Insulator-Drum Lid	•		F	- Drum Lid Top Plug Wall		
Drum Lid Gasket Insert Holders with Inserts Drum Fiber Class Second	-		-10	Containment Lid 1/2" Hex Head Closure Bolts and Washers Containment Gasket		
er Stiffening Reinforcing Sheet Inner Liner Ceramic Blanket				Inner Flange Ring Insert Holders with Inserts		
Center Stiffener Ring Web	1					
	-			Containment Body Containment End Plate		
				Plug Insulator-Bottom Body Bottom Reinforcing Plate		
	-		-	Ceramic Paper		

Versa Pac (71-9342)

- Varied uranium contents enriched up to 100%
- TRISO allowed
- Low mass of ²³⁵U per package
- CSI 0.7 to 1.4

Optimus-L (71-9390)

- Up to 68 kg of 20% enriched TRISO compacts
- CSI = 0
- Gross weight ~9,200
 lbs.

DN30-X (71-9388)

- UF₆ cylinder with internal criticality control system in overpack
- Up to 10% enriched UF₆ in 30B-10 cylinder; 20% enriched in 30B-20
- Up to 1,460 kg UF₆ in 30B-10, 1,271 kg in 30B-20 (standard 30B is 2,277 kg)
- CSI = 0.0

DNCSH OUTCOMES

- High-quality publicly available benchmark experiments, nuclear data, and evaluations applicable to wide range of HALEU systems where current data is lacking
- Will allow applicants and licensees more options for optimizing HALEU fuel cycle and transportation systems, with potentially:
 - Higher throughput fuel cycle processes
 - Higher capacity transportation package designs
 - Fewer RAIs related to code validation and criticality

Discussion of Considerations for HALEU-Based Fuel Cycle Validation Basis Assessment and Benchmark Prioritization

Lisa Fassino Iyad Al-Qasir Mathieu Dupont

DNCSH Workshop #1 February 29th, 2024, Germantown, MD

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

Introduction

Current HALEU-Based Reactor and Transportation Lisa Fassino

Nuclear Data Gaps: Current Status of Thermal Scattering Laws for HALEU-Fueled Advanced Reactors

lyad Al-Qasir

Review of Available Critical Experiment Benchmarks and Critical Experiment Facilities for **^** HALEU Fuel Transport Validation

Mathieu Dupont

CAK RIDGE

DNCSH WORKSHOP - 1

Introduction

Advanced reactors are driving a change in the nuclear power landscape

New analyses must identify where the current validation basis is and is not suitable for changing fuel cycle needs

CAK RIDGE

DNCSH WORKSHOP - 1

HALEU ARDP Designs and Transportation Packages

Lisa Fassino

HALEU in Advanced Reactor Designs

- <u>Goal:</u> scope the unique features of HALEU reactor fuel to determine needs for validation basis
 - <u>As a launching point</u>: begin with designs in the Advanced Reactor Demonstration Program (ARDP) using HALEU
 - 10 Designs, 9 with HALEU
 - Only 1 not planning to use HALEU (Holtec International's SMR-160)
 - Far from an exhaustive list!

Leads	Designs
TerraPower	Natrium
X-energy	Xe-100
Kairos Power	KP-FHR
Westinghouse Nucle	eVinci
Southern Compan and TerraPower	y MCFR
BWXT	BANR
ARC	ARC-100
GA-EMS	FMR
MIT	HC-HTGR

HALEU

CAK RIDGE

DNCSH WORKSHOP - 1

Many more...

The MARVEL microreactor by DOE

Let us know about public references for any additional fuel forms, storage, transportation at this email: DNCSH@ornl.gov

The Aurora powerhouse reactor by Oklo

The Hermes test reactor and Hermes 2 by Kairos Power

The Ultra Safe Nuclear Corporation (USNC) micro modular reactor (MMR)

The Lightbridge helically twisted HALEU fuel for current commercial reactors

The Project Pele microreactor by the US Department of Defense (DoD) and BWXT

The Demonstration Rocket for Agile Cislunar Operations (DRACO) by the Defense Advanced Research Projects Agency (DARPA) in collaboration with the National Aeronautics and Space Administration (NASA)

The Molten Salt Research Reactor (MSRR) by the Nuclear Energy eXperimental Testing Laboratory (NEXT Lab) at Abilene Christian University (ACU)

This is not an exhaustive list, either!

CAK RIDGE

DNCSH WORKSHOP - 1

Summary of HALEU ARDP Characteristics

Lead	Reactor Name	Reactor Type	Neutron Spectrum	Fuel Type	Power	Enrichment (wt% ²³⁵ U)	Moderator	Reflector	Coolant
TerraPower	Natrium	SFR	Fast	Sodium-bonded Metallic Alloy U-10Zr Pins (Type 1)	345 MWe	19.75	N/A	—	Salt
X-energy	Xe-100	Pebble Bed HTGR	Thermal	UCO TRISO Spherical Compacts	80 MWe	15.5	Graphite	Graphite	Helium
Kairos Power	KP-FHR	Pebble Bed FHR	Thermal	UCO TRISO Annular Spherical Compacts with Low-Density Graphite Cores	140 Mwe	19.55	Pyrolytic Graphite, FLiBe	Graphite	FLiBe
Westinghouse Nuclear	eVinci	Heat-pipe Microreactor	Thermal	UCO TRISO Cylindrical Compacts	5 Mwe	19.75	Graphite	—	Sodium Heat Pipes
Southern Company and TerraPower	MCFR	MSR	Fast	Dissolved Uranium in Salt (NaCl-UCl ₃)	800 MWe	HALEU	N/A	—	Salt
BWXT	BANR	HTGR	Thermal	UN TRISO in SiC, Carbon Matrix Compact, Additively Manufactured	50 MWth	19.75 (Baseline Design)	Graphite	—	Helium
ARC	ARC-100	SFR	Fast	Sodium-bonded U-10Zr pins	100 MWe	20 Max.; 13.1 Avg.	N/A	Stainless Steel	Sodium
GA-EMS	FMR	GFR	Fast	UO ₂ Pellets	44 MWe	19.75	N/A	Zr ₃ Si ₂ and Graphite	Helium
MIT	HC-HTGR	HTGR	Thermal	TRISO Compact	~58 MWth	—	Graphite	—	Helium
OAK RIDGE								DNCSH V	Vorkshop - 1

Fuel Forms Across ARDP Designs

CAK RIDGE

DNCSH WORKSHOP - 1

Fuel Forms Across ARDP Designs

Transportation Packages

• NRC lists the following transportation packages as currently involved in increased enrichment licensing activities:

Summary of HALEU Transportation Package Details

Transportation Package	Owner	Fuel Type	Approved Enrichment, wt% ²³⁵ U	Content Limits	Approximate Dimensions, m
Traveller STD	Westinghouse	Fresh or Slightly	Up to 6% for	Up to 6% for One assembly or one container of	
Traveller XL	Weshinghouse	Assemblies or Fuel Rods	for fuel rods	loose rods	5.7 x 0.7 x 1.0 (L x W x H)
MAP-12		Fresh uranium fuel			5.3 x 1.1 x 0.8 (L x W x H)
MAP-13	Framatome	assemblies	Up to 8%	I wo assemblies	5.6 x 1.1 x 0.8 (L x W x H)
TN-B1	Framatome	Fresh UO ₂ PWR or BWR assemblies or UC fuel rods	Up to 5%, with request to extend to 8%	One assembly	1.8 x 0.2 x 0.1 (inner L x W x H) 2.0 x 0.3 x 0.3 (outer L x W x H)
RAJ-II	GNF-A	BWR fuel assemblies; BWR, CANDU, or PWR rods	Up to 5% in UC; Up to 8% in UO ₂ .	Two assemblies	1.8 x 0.2 x 0.1 (inner L x W x H) 2.0 x 0.3 x 0.3 (outer L x W x H)
OPTIMUS®-L	NAC	Certain waste materials; unirradiated TRISO cylindrical compacts	Up to 20% for cylindrical TRISO compacts	68 kgU	0.3 x 0.5 (inner D x H) 0.5 x 0.7 (outer D x H)
DN30-10	0		Up to 10%	98 kg fissile material, 1460 kg ${\rm UF_6}$	0.8 x 2.1 (cylinder D x H)
DN30-20	Orano	UF ₆	Up to 20%	170 kg fissile material, 1271 kg $\rm UF_6$	1.2 x 2.4 (package D x H)
Versa-Pac 55 (VP-55)	Uranium oxides, metal, and other compounds:			610 g ²³⁵ U up to 5% 505 g ²³⁵ U up to 10%	0.4 x 0.6 x 0.9 (ID x OD x H)
Versa-Pac 110 (VP-110)	Urano	Uranyl nitrate crystals; TRISO fuel	Up to 100%	445 g ²³⁵ U up to 20% 360 g ²³⁵ U up to 100%	0.5 x 0.8 x 1.1 (ID x OD x H)
ES-3100	Y-12	Uranium oxides, metals, alloys, compounds, and uranyl nitrate crystals	Up to 100%	Up to 9.682 kg ²³⁵ U in oxides with 921 g carbon and CSI of 0.0; Up to 35.2 kg ²³⁵ U in metals/alloys	1.1 x 0.5 (D x H)

CAK RIDGE

DNCSH WORKSHOP - 1

Conclusions

- Fresh HALEU fuel for LWRs (up to 8%) can be transported
- Fresh HALEU fuel for ARDP reactors does not have commercialscale packages, except maybe DN-30X and ES3100 in some cases
- Details still needed for ARDP designs to assess transportation package suitability, e.g.
 - Fuel salt characteristics for MCFR
 - Fabrication, transportation, and storage processes/plans
 - Materials/components transported in reactor (e.g. for SMRs or MMRs)
- We can only plan for what we know!

Nuclear Data Gaps: Current Status of Thermal Scattering Laws for HALEU-Fueled Advanced Reactors

lyad Al-Qasir

Outline

- Introduction
 - Importance of Nuclear Data
 - Thermal Neutrons
 - Neutron Moderation
- Status of Main Neutron Moderators
- Current Status Graphite TSL Sub-libraries
- Conclusions

Why Do We Need Nuclear Data?

- The effective design, operation, and eventual decommissioning of a nuclear power plant, along with licensing transportation packages for fresh or spent fuel, require extensive access to comprehensive nuclear data covering diverse radiation particles across a broad energy spectrum.
- The use of high-quality nuclear data in calculations is essential for accuracy, safety, reliability, optimization fuel performance, research, and <u>regulatory</u> <u>compliance</u> in various nuclear-related fields and applications.
- Nuclear data and uncertainty (aka covariance) plays a special role in similarity and validation basis assessment
- One specific category of relevant nuclear data is notably temperaturedependent and is referred to as the thermal neutron scattering law (TSL) or $S(\alpha, \beta)$.

Thermal Neutrons

- Thermal neutrons have wavelengths (~Å) comparable to the separation distances of atoms in solids.
- Hence, the thermal motion of atoms or molecules in the scattering medium can no longer be ignored
- Thermal neutron scattering law (TSL) describes the neutron scattering intensity as a function of energy and momentum transfer between the thermal neutron and the scattering medium

ENDF/B-VIII.1 TSL Sub-Libraries

		Moderators		
_				
_		H /Water/ICE		
-	1	$H in H_2 O (liquid)$		
-	50	Ω in H ₂ Ω (ice (Ib))		
	10	H in H ₂ O (ice (Ih))		
	51	O in D ₂ O (liquid)		
	11	D in D ₂ O (liquid)		
	2	para-Hydrogen		
	3	ortho-Hydrogen		
_	12	para-Deuterium		
	13	ortho-Deuterium		
_		Be compounds		
_	26	Be (metal)		
-	204	Be+sd		
-	46	O in BeO		
	28	Be in BeoC		
	1021	C in Be ₂ C		
Г	-	Graphite		
	30	crystalline graphite		
	301	Graphite +sd		
	31	reactor-grade graphite (10% porosity)		
-	320	reactor-grade graphite (20% porosity)		
L	32	reactor-grade graphite (30% porosity)		
		Metallic Hydrides		
	5	H in YH ₂		
	7	H in ZrH		
	3001	Zr in ZrH ₂		
	3002	H in ZrH ₂		
	3006	Zr in ZrHx		
	3007	H in ZrHx		
	3011	Ca in CaH ₂		
	3013	H1 in CaH2		
	3014	H2 in CaH ₂		
	3031	7Li in 7LiH-mixed		
3032		H in 7LiH-mixed		
	3034	7Li in 7LiD-mixed		
	3035	D in 7LiD-mixed		
	58	Zr in ZrH		
.Na	55	V in VH2		

17

	Fuel			
71	N in UN			
72	U in UN			
75	U in UO ₂			
45	O in UO ₂			
76	U in UC			
71	N in UN			
8000	U-metal			
8010	U-metal-10p			
8099	U-metal-HEU			
8105	U in UC-5p			
8147	U in UC 100P			
8148	U in UC-HALFU			
8149	U in UC-HEU			
8150	C in UC			
8155	C in UC-5p			
8160	C in UC-10p			
8197	C in UC-100P			
8198	C in UC-HALEU			
8199	C in UC-HEU			
8205	U in UO ₂ -5p			
8210	U in UO ₂ -10p			
8248	U in UO2-HALEU			
8249	U in UO ₂ -HEU			
8255	O in UO ₂ -5p			
8260	O in UO ₂ -10p			
8297	O in UO ₂ -100P			
8298	O in UO2-HALEU			
8299	O in UO ₂ -HEU			
8305	U in UN-5p			
8310	U in UN-10p			
8347	U in UN-100P			
8348	U in UN-HALEU			
8349	U in UN-HEU			
8355	N in UN-5p			
8360	N in UN-10p			
8397	N in UN-100P			
8398	N in UN-HALEU			
8399	N in UN-HEU			
8540	H in UH ₃			

	Filters/Structural
112	Mg (metal)
53	Al (metal)
56	Fe (metal)
59	Si
49	beta-phase SiO ₂
3016	Si in SiO ₂ -alpha
3017	O in SiO ₂ -alpha
43	Si in SiC
44	C in SiC
1051	C in CF ₂
1052	F in CF ₂
3048	H in HF
3047	F in HF
1001	Zr in ZrC
1002	C in ZrC
3052	Al in Al ₂ O ₃
3053	O in Al ₂ O ₃

	FLiBe
4001	F in FLiBe
4002	Be in FLiBe
4003	Li in FLiBe

Summary of HALEU ARDP Characteristics

Lead	Name	Reactor Type	Spectrum	Fuel Type	Power	(wt% ²³⁵ U)	Moderator	Reflector	Coolant
TerraPower	Natrium	SFR	Fast	Sodium-bonded Metallic Alloy U-10Zr Pins	345 MWe	19.75	N/A	—	Salt
X-energy	Xe-100	Pebble Bed HTGR	Thermal	UCO TRISO Spherical Compacts	80 MWe	15.5	Graphite	Graphite	Helium
Kairos Power	KP-FHR	Pebble Bed FHR	Thermal	UCO TRISO Annular Spherical Compacts with Low-Density Graphite Cores	140 Mwe	19.55	Pyrolytic Graphite, FLiBe	Graphiłe	FLiBe
Westinghouse Nuclear	eVinci	Heat-pipe Microreactor	Thermal	UCO TRISO Cylindrical Compacts	5 Mwe	19.75	Graphite	-	Sodium Heat Pipes
Southern Company and TerraPower	MCFR	MSR	Fast	Dissolved Uranium in Salt (NaCl-UCl ₃)	800 MWe	HALEU	N/A	—	Salt
BWXT	BANR	HTGR	Thermal	UN TRISO in SiC, Carbon Matrix Compact, Additively Manufactured	50 MWth	19.75 (Baseline Design)	Graphiłe	—	Helium
ARC	ARC-100	SFR	Fast	Sodium-bonded U-10Zr pins	100 MWe	20 Max.; 13.1 Avg.	N/A	Stainless Steel	Sodium
GA-EMS	FMR	GFR	Fast	UO ₂ Pellets	44 MWe	19.75	N/A	Zr ₃ Si ₂ and Graphite	Helium
MIT	HC-HTGR	HTGR	Thermal	TRISO Compact	~58 MWth	_	Graphite	—	Helium

CAK RIDGE

18

Neutron Moderation

- Typical core moderator and reflector materials consist of relatively simple compounds of a simple material type or simple composition (e.g, H₂O, D₂O, Be, BeO, Graphite, ZrH₂).
- Recently, compact thermal fission reactors are of increased interest due to their potential lower and controlled construction cost, enhanced safety, and portability to remote areas.
- They are also considered as a point-source for process industrial heat
- The compact nature of these cores requires good neutron economy

Example: Two Phase Composite Moderator

High	
i ngi i	Fair
Low	Low
Fair	High
Fair	Good
Fair	Good
Graphite, 6e, Be₄¹¹B , eO, Be₂C , H _{2-x} , ZrH _{2-x}	MgO, SiC
	Low Fair Fair Fair Graphite, Be, Be₄¹¹B , eO, Be₂C , H_{2-x}, ZrH_{2-x}

²⁰ Snead et al., *J. Asian Ceram. Soc.* **10**, 9 (2022).

Be₂C: reacts with moisture to form Be(OH)2. However, as an entrained phase it will not

YH_{2-x}, ZrH_{2-x}: High dense matrix forms barriers that prevents hydrogen leakage Matrix Matrix Composed Entrained Phase refers to a phase or component of a mixture that is carried along or transported by another medium or phase.

MgO-based composite moderators can exhibit considerably smaller critical volumes when compared to nuclear graphite

Neutron Moderators Status

Material	Available TSL ENDF Files	Differential Measurement	Integral Measurements	Benchmark* Experiments.
Graphite	Yes	Yes	Yes	Yes
ZrH _{1.6} & ZrH ₂	Yes	Yes	Yes	Yes
YH ₂	Yes	Yes	Yes	No
Be metal	Yes	Yes	Yes	Νο
BeO	Yes	No	Yes	No
MgO	No**	Νο	Yes	Νο
Be ₂ C	Yes	No	No	No
FLiBe	Yes	Νο	Νο	Νο
SiC	Yes	No	Νο	No
Zr ₃ Si ₂	No	No	Νο	No

 These experiments involve fuel compositions ranging from 5 to 19.75 wt% enrichment with ²³⁵U and exhibit a neutron flux of < 0.625 eV

** The MgO TSL sub-library has been submitted to the Cross Section Evaluation Working Group (CSEWG) for approval and inclusion in the ENDF database; at this writing, approval is pending.

CAK RIDGE

Current Status of Graphite TSL Sub-libraries

Graphite

- Crystalline Graphite
- Density ~2.26 g/cm³ (HOPG)
- Huge number of small nearly perfect micro-crystallites that have the same c-axis but with different orientations in x-y plane
- Very close to the Ideal, perfect or theoretical graphite.

- Graphite

 30
 crystalline graphite

 301
 Graphite +sd

 31
 reactor-grade graphite (10% porosity)

 320
 reactor-grade graphite (20% porosity)

 32
 reactor-grade graphite (30% porosity)
- Nuclear Graphite
- Density(1.5~1.90) g/cm³
- Complex Microstructure- contains crystallite (filler and binder) & pores
- The size and shape of grains and pores vary from one graphite grade to another.

Contescu & Paul, ORNL/TM-2022/1839

dncsh worksho<u>p</u> - 1

Small Angle Neutron Scattering (SANS)

- SANS is an elastic scattering phenomenon where neutrons **diverges** from their incident beam by a small scattering angle (generally, $2\theta < 10 \text{ deg}$), as it penetrates through a sample.
- In nuclear graphite, SANS occurs on cracks, voids, pores, etc., where the continuous distribution of carbon density is interrupted by defects.

Graphite: Inelastic + Elastic + SANS Others : Inelastic + Elastic

Liu et al., J. Nucl. Mater. 493, 246-54, (2017) DNCSH WORKSHOP -

24

Al-Qasir et al., Neutron thermalization in nuclear graphite: A modern story of a classic moderator, Annals of Nuclear Energy 161, 108437 (2021)

ORKSHOP - 1

Conclusions

- Thermal moderators are not adequately covered across all necessary types of experiments
- High-fidelity nuclear graphite neutronics calculations require inelastic+elastic+SANS and pore size distribution
- A standardized approach for generating or preserving TSL 2D covariance data related does not exist—currently investigating relevance for criticality safety

Material	Available TSL ENDF Files	Differential Measurement	Integral Measurements	Benchmark Experiments
Graphite	Yes	Yes	Yes	Yes
ZrH _{1.6} & ZrH ₂	Yes	Yes	Yes	Yes
YH ₂	Yes	Yes	Yes	Νο
Be metal	Yes	Yes	Yes	Νο
BeO	Yes	No	Yes	No
MgO	No	Νο	Yes	No
Be ₂ C	Yes	Νο	Νο	No
FLiBe	Yes	No	Νο	Νο
SiC	Yes	Νο	No	No
Zr ₃ Si ₂	No	No	No	No

Thank you

Review of Available Critical Experiment Benchmarks and Critical Experiment Facilities for HALEU Fuel Transport Validation

Mathieu Dupont

Introduction to HALEU fuel validation

- Computational validation [1]: determine the bias and bias uncertainty between calculations and observations
- Criticality safety: Compare keff values of critical experiment benchmarks and application models

CAK RIDGE

Introduction to HALEU fuel validation

- What we need: Critical experiment benchmark as similar as possible to the application to be validated
 - Fuel enrichment: HALEU 5-20 wt% $^{235}\text{U},$ most advanced reactors are close to 20 wt% ^{235}U
 - Moderator/reflector material: graphite, FLiBe
 - Neutron energy spectrum: thermal and fast
 - Structural materials: wide range
 - Fuel form: Uranium compacts, TRISO particle-like, fuel salt, metal
- What do we have?

- Two best sources from Nuclear Energy Agency (NEA):
 - International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2]: wide range of critical experiments, focus on the light water reactor validation
 - International Reactor Physics Benchmark Evaluation Project (IRPhEP) [3]: focus on reactor physics experiments, some critical configurations available
- The handbooks provide thousands of benchmark experiments from dozens of countries with an assessment of data integrity, quantification of experimental uncertainties, and thorough technical review with established deployment process

- Experiments potentially relevant for HALEU validation from the handbooks
- Experiments quality and correlation
- Upcoming experiments
- Conclusions and recommendations

- Experiments potentially relevant for HALEU validation from the handbooks
- Experiments quality and correlation
- Upcoming experiments
- Conclusions and recommendations

In ICSBEP handbook:

Characteristic of Interest for HALEU Fuel Validation	Number of Evaluations	Number of Experiments
²³⁵ U enrichment 5 to 21 wt%	74	431
²³⁵ U enrichment 5 to 9 wt%	26	247
²³⁵ U enrichment 9 to 21 wt%	48	184
²³⁵ U enrichment 18 to 21 wt%	13	36
²³⁵ U enrichment 9 to 21 wt% and uranium metal	13	29
235 U enrichment 9 to 21 wt% and UF $_4$	2	6
²³⁵ U enrichment 9 to 21 wt% and UO ₂ in TRISO particles	1	5
UF ₄ -UF ₆ any enrichment	10	110
Uranium metal of any enrichment	195	799
Uranium salts any enrichment	0	0

CAK RIDGE

In IRPhE handbook:

Characteristic of interest for HALEU Fuel Validation	Number of evaluations	Number of Experiments
Potentially relevant to HALEU fuel forms	15	54
Uranium salt any enrichment	1	1
UO ₂ in TRISO and BISO particles	7	27
²³⁵ U enrichment 18 to 21 wt% and uranium metal or graphite moderator	4	7

- Experiments potentially relevant for HALEU validation from the handbooks
- Experiments quality and correlation
- Upcoming experiments
- Conclusions and recommendations

- Good validation suite:
 - As high as possible number of applicable critical experiments
 - As low as possible experimental uncertainty
 - As high as possible variety of experimental facilities to reduce experimental correlations [4]
- What is the current status on quality and correlation of HALEU validation critical experiments?

- Experimental uncertainty:
 - ICSBEP: Mostly good, some outliers IEU-COMP-THERM-009-001 with an experimental uncertainty of 600 pcm and IEU-COMP-MIXED-002-008 with a Calculated/Expected ratio of 1.044
 - IRPhEP: Mostly high uncertainty, for example Molten Salt Reactor Experiment (MSRE) has an experimental uncertainty of 420 pcm on keff and a keff C/E ratio of 1.0215: known deficiencies exist

MSRE benchmark model core [5]

- Additional review of the quality of critical experiments may be needed, such efforts already exist:
 - ORNL Verified, Archived Library of Inputs and Data (VALID) [6]: peer-reviewed criticality benchmarks sensitivity data files
 - WPNCS subgroup 8 (SG-8) [7]; "Preservation of Expert Knowledge and Judgement Applied to Criticality Benchmarks"

VALID [8]

William Wieselquist,¹ John D. Bess,² Douglas Bowen,¹ Isabelle Duhamel,³ Ian Hill,⁴ Nicolas Leclaire,³ William B. J. Marshall,¹ Catherine Percher,⁵ Ellen Marie Saylor,¹ Shuichi Tsuda⁴

¹Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA, wieselquiswa@ornl.gov
 ²Idaho National Laboratory (INL), Idaho Falls, ID, USA
 ³Institut de Radioprotection et de Sûreté Nucléatre (IRSN), Fontenay-aux-Roses, France
 ⁴OECD Nuclear Energy Agency (NEA), Boulogne-Billancourt, France
 ⁵Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA
 https://dx.doi.org/10.13182/T123-32977

- Experimental correlations:
 - From both ICSBEP and IRPhEP handbooks, 616 experiments in 104 evaluations were identified
 - Many come from the same facilities: experimental correlations exist
 - Example: PROTEUS-GCR

- Experimental correlations:
 - 11 PROTEUS-GCR experiments from 4 evaluations come from the same PROTEUS facility operated at the Paul Scherrer Institute (PSI) in Switzerland
 - All have around 300–400 pcm experimental uncertainty, from the same ²³⁵U isotopic content, resulting in 250–300 pcm keff
 - Correlation within and between the evaluations, so the resulting computational bias for all the experiments and evaluations from the same facility will be similar
- Critical experiments from different facilities are recommended

- Experiments potentially relevant for HALEU validation from the handbooks
- Experiments quality and correlation
- Upcoming experiments
- Conclusions and recommendations

Upcoming experiments potentially relevant for HALEU validation [10]

Experiment	Characteristic of Interest for HALEU Fuel Validation	Facility/ Organization / country	Status	Potential issues
AGN-201M Reactor Benchmark [11]	19.5 wt% microspheres coated with graphite	University of New Mexico, USA	Expected benchmark completion in 2025	Lack of characterization of the fuel plates
IPEN/MB01 reactor conversion to 19.75 wt% metallic plates fuel [12]	19.75 wt% U ₃ Si ₂ -Al metal fuel	IPEN, Brazil	Experiments ongoing	Evaluation plans not officially announced
The Deimos Experiment [13]	19.9 wt% TRISO particles in cylindrical graphite compacts	Los Alamos National Laboratory/NCERC, USA	Experiments ongoing	Evaluation plans not officially announced
MARVEL Reactor [14]	19.75 wt% TRIGA uranium zirconium hydride metal fuel	Idaho National Laboratory, USA	Under construction	Goal is to demonstrate microreactor technologies, not critical benchmark
ROSE Critical Facility [15]	21 wt% UO ₂ rods	Joint Institute for Power and Nuclear Research, Belarus	Experiments performed and evaluated	Evaluation not in ICSBEP format

CAK RIDGE

- Experiments potentially relevant for HALEU validation from the handbooks
- Experiments quality and correlation
- Upcoming experiments
- Conclusions and recommendations

Conclusions and recommendations

- 1. High number of critical experiments are available in the HALEU fuel enrichment range
- 2. High number of critical experiments are available in the thermal, intermediate and fast neutron spectra
- 3. A low number of experiments with TRISO particle-based fuels or similar, with questionable uncertainty, and only one experiment in development (DEIMOS)
- 4. Only one Uranium salt critical experiment benchmark is available, with very high uncertainty and C/E ratio (MSRE), and the only one in development not planned to be a benchmark (MCRE [16])
- 5. No critical experiments with depleted HALEU fuel exist for the back-end validation
- 6. Experimental correlations could be reduced by performing experiments in new facilities
- 7. Quality of evaluations can be ensured (low uncertainty) by performing experiments in already trusted facilities with potential new equipment

- Where to perform new critical experiments?
 - Established critical experiment facilities
 - University research reactors
 - Other facilities

Lists are non-exhaustive, from analysis of the handbooks and recent NEA efforts [17] [18]

Most promising facilities:

Facility, Organization	Location, Status	Advantages	Disadvantages
NCERC, Los Alamos National Laboratory [19]	USA, Operational	TRISO experiment ongoing, broad staff experience designing critical experiments and ICSBEP/IRPhE evaluation	Hazard category 2 facility, no water allowed, time and money consuming, low availability
SPRF/CX, Sandia National Laboratories [20]	USA, Operational	Room to install new critical machines, broad staff experience designing critical experiments and ICSBEP/IRPhE evaluation, existing fuel rods enriched around 7%	Facility in air force base, no critical experiment machine for new HALEU fuel, low availability
ZED-2, Chalk River, Canadian Nuclear Laboratories [21]	Canada, Operational	HALEU fuel research ongoing, staff experience designing critical experiments and ICSBEP/IRPhE evaluation, announced facility availability for international collaborations	Procure HALEU fuel could be a challenge
New STACY, Japan Atomic Energy Agency [22]	Japan, Operational Mid 2024	Staff experience designing critical experiments and ICSBEP/IRPhE evaluation, announced facility availability for international collaborations	Not yet operational, so delays could occur
IPEN/MB01, Instituto de Pesquisas Energéticas e Nucleares [23]	Brazil, Operational	Broad staff experience designing critical experiments and ICSBEP/IRPhE evaluation, new core with metallic rods within HALEU enrichment range	No communicated plans for international collaboration

CAK RIDGE
Review of available critical experiments facilities for HALEU validation

University-led facilities:

Facility, Organization	Location, Status	Advantages	Disadvantages
Reactor Critical Facility, Rensselaer Polytechnic Institute [24]	USA, Operational	Flexible reactor, critical experiments experience	No experiments are in a ICSBEP or IRPhE evaluation
Illinois Microreactor Demonstration Project, University of Illinois Urbana [25]	USA, Licensing stage, not built	Use of TRISO-like fuel	Not built yet, no flexibility once built, potentially not suitable for benchmarking
Molten Salt Nuclear Reactor Research, Abilene Christian University [26]	USA, Licensing stage, not built	Use of Uranium salt fuel	Not built yet, no flexibility once built, potentially not suitable for benchmarking
Missouri S&T Reactor, Missouri University of Science and Technology [27]	USA, Operational	Use of 19.75 wt% Uranium silicide fuel	No critical benchmarking experience
Kyoto University Critical Assembly, Kyoto University [28]	Japan, Core upgrade in progress	Modern upgrade	Not built yet, potential loss of flexibility and capabilities once built

49

Review of available critical experiments facilities for HALEU validation

- Other notable facilities:
 - VENUS [29], operated by SCL CEN at Mol, Belgium
 - LR-0 [30], operated by the Nuclear Research Institute Řež plc at Husinec, Czech Republic
 - RSV Tapiro [31], operated by the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), located in Rome, Italy
 - CROCUS [32], operated by Polytechnique Federale (EPFL) in Lausanne, Switzerland
 - UTR [28], located at the Kindai University in Japan
 - DOME and LOTUS testbeds [33], located at Idaho National Laboratory (MCRE), USA
 - Nextgen MURR [34], operated by University of Missouri, USA
 - Other university research reactors such as TRIGA reactors

References

[1] J. Jarrell, "A Proposed Path Forward for Transportation of High-Assay Low-Enriched Uranium," INL/EXT-18-51518, Idaho National Laboratory, Idaho Falls, Idaho, 2018.

[2] J. B. Briggs, L. Scott and A. Nouri, "International Criticality Safety Benchmark Evaluation Project," Nuclear Science and Engineering, vol. 145, no. 1, pp. 1-10, 2003.

[3] J. D. Bess and e. al., "Intrinsic value of the international benchmark projects, ICSBEP and IRPhEP, for advanced reactor development," Frontiers in Energy Research, vol. 11, 2023.

[4] F. Fernex and e. al., "Impact of Correlations Between Experiments on the Evaluation of Bias due to Nuclear Data by Assimilation Methodologies," in Proceedings of the 12th International conference on Nuclear Criticality Safety 2023 (ICNC 2023), Sendai, Japan, October 2-5, 2023.

[5] D. Shen and e. al., "Molten-Salt Reactor Experiment (MSRE) Zero-Power First Critical Experiment with U-235 (MSRE-MSR-EXP-001)," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, OECD Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2019

[6] W. J. Marshall and R. B. T., "The SCALE Verified, Archived Library of Inputs and Data-VALID," in Proceedings of the American Nuclear Society Nuclear Criticality Safety Division Conference, 2013 (NCSD 2013), Wilmington, NC, USA, September 29 – October 03, 2013.

[7] W. Wieselquist et al., "Initial Efforts Organizing WPNCS SG-8: Preservation of Expert Knowledge and Judgement Applied to Criticality Benchmarks," Transactions of the American Nuclear Society, vol. 123, pp. 895-897, 2020.

[8] W. J. Marshall, "Only the best models are in VALID," SCALE Users' Group Forum, Oak Ridge National Laboratory, Oak Ridge, TN, September 26–28, 2017.

[9] Bess, J. D., et al., "HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-fuel Pebble Ratio (PROTEUS-GCR-EXP-001)," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, OECD Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2013

[10] M. D. DeHart, J. D. Bess and G. Ilas, "Review of Candidates for a Validation Data Set for High-Assay Low-Enrichment Uranium Fuels," Journal of Nuclear Engineering, vol. 4, pp. 602-624, 2023.

[11] Davis, R., et al., "Developing a High-Fidelity Benchmark of the University of New Mexico's AGN-201M Reactor," in Proceedings of the American Nuclear Society Nuclear Criticality Safety Division Conference 2022 (NCSD 2022), Anaheim, CA, USA, June 12 – 16, 2022.

[12] Dos Santos, A., et al., "New Plate-Type Core of the IPEN/MB-01 Research Reactor Facility for Validation of RMB Project," in Proceedings of the Research Reactors: Addressing Challenges and Opportunities to Ensure Effectiveness and Sustainability, Buenos Aires, Argentina, 25–29 November, 2019.

[13] Cutler, T., et al., "The Deimos experiment: Advanced Reactor Testbed," Transactions of the American Nuclear Society, vol. 128, pp. 498-501, 2023.

[14] Nuclear News, "INL's MARVEL could demonstrate remote operation on a micro scale," 13 January 2021. [Online]. Available: https://www.ans.org/news/article-2537/inls-marvel-could-demonstrate-remote-operation-on-a-micro-scale/. [Accessed 4 January 2024].

[15] Sikorin, S., et al., "Benchmark Evaluation of Water-Moderated Hexagonal Lattices 21% Enriched UO2 Fuel Rods at "ROSE" Critical Facility," in Proceedings of the 11th International conference on Nuclear Criticality Safety 2019 (ICNC 2019), Paris, France, September 15-20, 2019.

[16] Idaho National Laboratory, "Final Environmental Assessment for the Molten Chloride Reactor Experiment (MCRE) Project," August 2023. [Online]. Available: <u>https://www.energy.gov/sites/default/files/2023-08/final-ea-2209-molten-chloride-reactor-2023-08.pdf</u>.

[17] Catherine Percher, George McKenzie, "Experimental Needs for Criticality Safety Purposes," Nuclear Energy Agency, Nuclear Science Committee, Working Party on Nuclear Criticality Safety (WPNCS), NEA/NSC/R/M(2022)6, Paris, France, 2023.

[18] Oliver Buss, Elena Poplavskaia, "NSC/WPRS Workshop on Zero Power Reactors "The demise of zero power reactors: From concern to action", Summary Record," Nuclear Energy Agency, Nuclear Science Committee, Working Party on Scientific Issues and uncertainty analysis of Reactors Systems (WPRS), NEA/NSC/WPRS/M(2023)4, Fontenay-aux-Roses, France, 2023.

SAK RIDGE National Laboratory

51

References

[19] Thompson, N., et al., "A New Era of Nuclear Criticality Experiments: The First 10 Years of Comet Operations at NCERC," Nuclear Science and Engineering, vol. 195, pp. \$17-\$36, Supplement 1, 2021.

[20] Harms, G. A., "Water Moderated Square-Pitched U(6.90)O2 Fuel Rod Lattices with 0.52 Fuel-to-Water Volume Ratio (LEU-COMP-THERM-078)," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, OECD Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2013.

[21] J. E. Atfield, B. Sur and Y. L. R., "Canda's ZPR Experience: ZED-2," in Presented at the NEA/NSC/WPRS Workshop on Zero Power Reactors "The demise of zero power reactors: From concern to action,", Fontenay-aux-Roses, France, June 22-23 June, 2023.

[22] S. Gunji, "Status of New STACY," in Status of New STACY," Presented at the NEA/NSC/WPRS Workshop on Zero Power Reactors "The demise of zero power reactors: From concern to action", Fontenay-aux-Roses, France, June 22-23, 2023.

[23] Dos Santos, A., et al., "Reactor Physics Experiments in the IPEN/MB-01 Research Reactor Facility (IPEN(MB01)-LWR-RESR-001)," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, OECD Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2013.

[24] M. D. Eklund, P. J. Kowal, M. N. Dupont and W. Ji, "Evaluation of Temperature-Dependent Critical Experiments at the Walthousen Reactor Critical Facility for Benchmark Development," Annals of Nuclear Energy, vol. 180, 2023.

[25] Nuclear, Plasma & Radiological Engineering at the University of Illinois Urbana-Champaign, Ultra Safe Nuclear Corporation, "Illinois Microreactor Demonstration Project," [Online]. Available: https://npre.illinois.edu/about/illinois-microreactor-project. [Accessed 2024 4 January].

[26] R. Walton, "Abilene Christian University Taking Lead in Molten Salt Nuclear Reactor Research," Energy Tech, 22 September 2023. [Online]. Available: https://www.energytech.com/renewables/article/21274229/abilene-christian-university-taking-lead-in-molten-salt-nuclear-reactor-research. [Accessed 4 January 2024].

[27] S. M. Sipaun, "Thermal-fluid modeling of the Missouri S&T reactor," Doctoral dissertation, 2358, Missouri S&T, 2014.

[28] C. H. Pyeon, "Status of Critical Assembly (KUCA) and Training Reactor (UTR) in Japan," in NEA/NSC/WPRS Workshop on Zero Power Reactors "The demise of zero power reactors: From concern to action", Fontenay-aux-Roses, France, June 22-23, 2023.

[29] Ellis A. N., and Dean V., "VENUS-3 PWR UO2 Core 3-Dimensional Benchmark Experiment," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2009.

[30] Kostal, M. et al., "VVER-1000 Physics Experiments Hexagonal Lattices (1.275 Pitch) of Low Enriched U(3.3 WT.% U235)O2 Fuel Assemblies in Light Water with Graphite and Fluoride Salt Insertions in Central Assembly (LR(0)-VVER-RESR-003)," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2019.

[31] Valentina F. et al., "Neutrons propagation in Lead: a feasibility study for experiments in the RSV TAPIRO fast research reactor," EPJ Web of Conferences, vol. 284, 2023.

[32] Kasemeyer U. et al., "Benchmark on Kinetics Parameters in CROCUS," in International Handbook of Evaluated Reactor Physics Benchmark Experiments, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, France, NEA/NSC/DOC(2006)1, 2007.

[33] Powermag, "DOE Picks Nuclear Designs for First Microreactor Experiments at INL's New Test Bed," 23 October 2023. [Online]. Available: <u>https://www.powermag.com/doe-picks-nuclear-designs-for-first-microreactor-experiments-at-inls-new-test-bed/</u>.

[34] University of Missouri, "Design and development of the next generation University of Missouri Research Reactor," University of Missouri Request for Qualifications RFQ#23101, University of Missouri, Columbia, MO, 2023.

52

Questions ?

Review of available critical experiments for HALEU validation

- Comments on ICSBEP and IRPhE handbooks available critical experiments:
 - High number of critical experiments in the HALEU fuel enrichment range, neutron spectrum
 - Only one evaluation and 5 cases with TRISO fuel at 20.91 wt% ²³⁵U (IEU-COMP-THERM-008)
 - No Uranium salts experiments in ICSBEP handbook, only one in IRHPhE handbook
 - More critical experiments related to advanced reactors in IRPhE handbook, but potentially more uncertainty because criticality is not the main focus

Review of available critical experiments for HALEU validation

- ICSBEP Handbook 2021:
 - 26 contributing countries
 - Over 80,000 pages
 - More than 5000 approved benchmarks
- IRPhE Handbook 2021:
 - 25 contributing countries
 - 57 reactor facilities
 - 165 approved benchmarks

CAK RIDGE

Phonon Calculations at High Temperatures T = 300 K

Phonon Calculations at High Temperatures T = 600 K

Phonon Calculations at High Temperatures T = 900 K

Phonon Calculations at High Temperatures T = 1200 K

Phonon Calculations at High Temperatures T = 1500 K

60

- ✓ As the temperature increases, both the 10P & 20P ENDF/B-VIII.1cross sections overestimate the measured cross sections of Palevsky.
- ✓ The higher the temperature, the higher overestimation. This is due to the phono excess in the low energy part of the PDOSs

61

TSL Sub-Libraries Evolution

Neutron Moderation

- Slowing Down: Region 2
- Thermalization { Region 3 Region 4
- High Purity (low boron content)
- High Thermal Conductivity
- High Strength
- Good stability under irradiation
- High oxidation Resistivity
- Low anisotropy

Elastic Scattering

Inelastic Scattering

64

Neutron Moderation

- High scattering cross section
- Low Atomic Mass Number

65

TSL Sensitivity and Uncertainty

- Established formats and procedures exist for representing covariances in various types of ENDF reaction data.
- Transport codes, like SCALE, calculate sensitivity to 1D scattering, but they do not directly address TSL. Covariance data are accessible for all neutron files, but not for the 2D TSL.
- Presently, no published ENDF evaluations include covariance data for TSL or its corresponding scattering cross sections.
- Additionally, there is a lack of a standardized approach for generating or preserving covariance data related to TSLs.
- Ongoing initiatives such as the Global Nuclear Data System (GNDS) and the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), subgroup 42/44/48, actively explore thermal scattering covariances.
- Recent efforts have focused on evaluating covariances in thermal neutron scattering for moderators like H₂O, D₂O, and graphite^{1,2,3}.

^{1.} C. W. CHAPMAN et al., "Methodology for Generating Covariance Data of Thermal Neutron Scattering Cross Sections," Nucl. Sci. Eng. 195, 13 (2021).

^{2.} J. P. SCOTTA et al., "Generation of the ¹H in H₂O Neutron Thermal Scattering Law Covariance Matrix of the CAB Model," *EPJ Nucl. Sci. Technol.* 4, 32 (2018).

^{3.} J. C. HOLMES et al., "A Phonon-Based Covariance Methodology for ENDF $S(\alpha, \beta)$ and Thermal Neutron Inelastic Scattering Cross Sections," *Nucl. Sci. Eng.* **184**, 84 (2016).

MD Porosity modeling??

ORKSHOP - 1

68

Small Angle Neutron Scattering (SANS)

- Different nuclear graphite types show different cross section due to SANS
- SANS is much higher than inelastic scattering cross section

Gaps/ Nuclear Graphite

- The following **measurements** are need for different types of nuclear grade graphite
 - 1- Temperature-dependent inelastic neutron scattering cross section
 - 2- Small angle neutron scattering
 - 3-Temperature-dependent benchmarking
- The behavior of atomic vibrations at high temperatures (anharmonicity effects)need to be calculated.

Current Status of MgO TSL Sub-library

DNCSH WORKSHOP - 1

71

MgO Unit Cell

Al-Qasir et al., Thermal neutron scattering cross sections of beryllium and magnesium oxides, Annals of Nuclear Energy 87, 242 (2016)

MgO Inelastic and Elastic Scattering Cross Section**

** The MgO TSL sub-library has been submitted to the Cross Section Evaluation Working Group (CSEWG) for approval and inclusion in the ENDF database; approval is pending.

Al-Qasir et al., Thermal neutron scattering cross sections of beryllium and magnesium oxides, Annals of Nuclear Energy 87, 242 (2016)

Gaps/MgO

- Temperature-dependent inelastic neutron scattering cross measurements of high pure MgO are required
- The behavior of atomic vibrations at high temperatures (anharmonicity effects)need to be calculated.

Nuclear Materials in Reactor Core (High Temperature)

Nuclear Graphite in Reactor Core (High Doses of Radiation)

76

- ✓ As the temperature increases, both the 10P & 20P ENDF/B-VIII.1cross sections overestimate the measured cross sections of Palevsky.
- ✓ The higher the temperature, the higher overestimation. This is due to the phono excess in the low energy part of the PDOSs

Neutron Moderation

- Slowing Down: Region 2
- $Thermalization \begin{cases} Region \ 3 \\ Region \ 4 \end{cases}$
- High Purity (low boron content)
- High Thermal Conductivity
- High Strength
- Good stability under irradiation
- High oxidation Resistivity
- Low anisotropy

Elastic Scattering

Inelastic Scattering

Nuclear Criticality Safety Validation & Similarity Assessment

B.J. Marshall

DNCSH Workshop Germantown, MD February 29, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

- Verification and validation
- Validation overview
- Brief introduction to sensitivity coefficients
- Sensitivity/uncertainty basis for similarity assessment
- Uncertainty propagation and correlation coefficients
- Similarity assessment via integral index c_k
- Summary

NCS Validation and Similarity Assessment

Verification and validation

- "All models are wrong, some models are useful."
 - George E.P. Box, FRS
- There are two separate yet equally important processes to confirm the usefulness of a model:
 - Verification: Was the intended model implemented?
 - Validation: Does that model accurately predict real world measurements of the phenomena being modeled?
- This talk focuses on validation because in the United States each organization is responsible for its own validation

NCS Validation and Similarity Assessment

Validation overview

- Validation is necessary to understand how calculated model results apply to the real world
- Criticality safety validation is required to be performed by comparison to measured critical benchmark experiments
- Experiments must be neutronically similar to the safety application or applications being evaluated
- A large number of independent experiments should be used to determine the bias and bias uncertainty for the computational method being used

Introduction to sensitivity coefficients

- Sensitivity coefficients represent the expected change in $k_{\rm eff}$ due to a change in nuclear data
- The sensitivity coefficients are dimensionless ratios
- What would happen to the system k_{eff} if some piece of data were changed by some amount?

NCS Validation and Similarity Assessment

$k_{\rm eff}$ sensitivities for a critical experiment

Nuclide	Material	Sensitivity
H-1	Moderator	0.240
U-235	Fuel	0.242
U-238	Fuel	-0.140
B-10	Absorber	-0.010
Fe-56	Reflector	0.020

NCS Validation and Similarity Assessment

CAK RIDGE
S/U basis for similarity assessment

- Principle: bias is caused by errors in nuclear data, which are bounded by their uncertainties
- Systems will have similar computational biases if they have similar sensitivities to the same nuclear data errors
- System sensitivity combined with nuclear data uncertainties estimate potential for bias in each system
- Comparison examines nuclide-, reaction-, and energydependent data

Propagation of nuclear data uncertainties

- Nuclear data uncertainty (i.e., covariances) can be propagated to quantify the data-induced uncertainty in $k_{\rm eff}$

$$\sigma_k^2 = SC_{aa}S^T$$

- Where:
 - S is a matrix of all energy-dependent sensitivity data for all systems considered (S^T is transpose)
 - C_{aa} is a matrix containing energy-dependent covariance information evaluated for all nuclear data

Uncertainty propagation: single system uncertainty

• Uncertainty in k_{eff} of a single system

0.03

Uncertainties for critical benchmarks experiments

- Results from SCALE 6.2.2 Validation Report (ORNL/TM-2018/884)
- ~96.5% of C/E values within 1σ of unity
- Uncertainty bounds bias!

CAK RIDGE

NCS Validation and Similarity Assessment

Uncertainty propagation: multiple system uncertainties

• Suppose we have sensitivity information for multiple systems:

NCS Validation and Similarity Assessment

Uncertainty propagation: multiple systems covariances

• Suppose we have sensitivity information for multiple systems:

Correlation coefficient (c_k) for System 1 and System 4

 \bullet Integral index c_k based on definition of Pearson correlation coefficient

CAK RIDGE

NCS Validation and Similarity Assessment

Integral index c_k

- c_k is an integral index used to assess similarity
 - Uncertainty weighted comparison of sensitivity profiles between an application and a critical benchmark experiment
 - Measure of data-induced uncertainty shared by systems and thus a measure of the shared bias
 - Correlation coefficient, so normalized from -1.0 to +1.0
 - All caveats about use of linear correlation coefficients apply
- Current guidance:
 - c_k of 0.9 or higher indicates a highly similar system
 - c_k between 0.8 and 0.9 are "marginally" similar

Summary

- S/U-based parameters should be useful in identifying similar benchmark systems
 - Basis for similarity is both sensitivity information and nuclear data uncertainties
 - $-c_k$ can be used to filter benchmarks used in any validation approach
 - c_k values can be used in trending analyses to determine subcritical limits
- ORNL recommends $c_{\rm k}$ values greater than 0.8 for inclusion in validation

Recent ORNL-Developed Models

B.J. Marshall, Veronica Karriem, Alex Shaw

DNCSH Workshop Germantown, MD February 29, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

- TRISO pebbles in notional high-volume package
 - Model development
 - Similarity assessment
- SFR fuel in ES-3100
 - Container and fuel description
 - k_{eff} results
 - Similarity assessment
- Summary

PBMR-type and Kairos-type TRISO Pebbles in Notional High-Volume Package

"Pebble Tanker"

Goals for "Pebble Tanker" design

- Create notional, high-volume transportation package for TRISO pebbles: PBMR-type pebble and Kairos-type pebble
- Concept is an array of metal tubes filled with pebbles inside a "dry van" semi trailer
- Size and spacing of tubes meets a $k_{\rm eff}$ limit of 0.94 to generate a representative system
- No analysis outside of k_{eff} dry/flooded and sensitivity coefficients calculations for both conditions

The "pebble tanker" concept

- Kairos-type pebble (top): 4×4 array of 22 cm radius tubes
- PBMR-type pebble (bottom): 3×3 array of 28 cm radius tubes

CAK RIDGE

Pebble tanker model specifications

Parameter	PBMR-type pebble	Kairos-type pebble
Volume fraction (grain)	50.4 %	36.8 %
U mass/pebble	9.50 g	5.93 g
Total mass/pebble	204.1 g	54.37 g
Tube array size	3×3	4×4
Pebbles/tube	~12,000	~25,700
Enrichment	19.75 wt% ²³⁵ U	19.95 wt% ²³⁵ U
k _{eff} dry	0.44260 ± 0.00020	0.44993 ± 0.00020
$k_{\rm eff}$ flooded	0.94012 ± 0.00020	0.93144 ± 0.00020

Similarity assessment

- TSUNAMI-3D used to calculate sensitivity coefficients for flooded arrays
- c_k calculated for each tanker compared to 3936 experiments
- PBMR-type application has 285 experiments with $c_k > 0.9$
- Kairos-type application has 85 experiments with $c_k > 0.9$
- Sufficient experiments to perform validation
- Applicable experiments are largely solutions with enrichments ranging from 4.31 to 93 wt% ²³⁵U

Similarity assessment details

Uncertainty contributions for flooded PBMR-type tanker model (pcm)

Nuclide	Uncertainty	Running	Percentage
235U	678	678	88.2
۱H	263	727	94.6
⁵⁶ Fe	187	751	97.7
graphite	142	764	99.5
¹⁶ O	69	767	99.9
Total		768	100

c_k contribution for flooded PBMR-type tanker model and IEU-SOL-THERM-001-001

Nuclide	c _k contribution	Running Total
235U	0.8029	0.8029
¹ H	0.0855	0.8884
⁵⁶ Fe	0.0652	0.9536
graphite	0.0112	0.9648
¹⁶ O	0.0087	0.9735
Total		0.9774

CAK RIDGE

SFR Fuel in ES-3100

ES-3100

- 30 gal. drum with inner containment vessel (CV) for fissile material
 - Drum: Appx. 110 cm tall, 25 cm radius
 - CV: Appx. 80 cm tall, 6.5 cm radius
- Designed for transport of HEU metal and oxides, research reactor fuel
- Steel CV and casing
- Kaolite (concrete+vermiculite) fill

CAK RIDGE

Figure from CoC 9315 Rev. 19 (USA/9315/B(U)F-96)

SFR Fuel Summary

- SFR fuel is expected to consist of stacked metal slugs or fulllength rods
 - Example SFRs: EBR-I, EBR-II, FFTF, Fermi 1
- ORNL/TM-2022/2758 used ABTR (advanced burner test reactor) as a representative SFR design
 - Simplified composition to U/Zr alloy metallic fuel (20 wt% ²³⁵U)
- ABTR uses 60 fuel assemblies for 250 MWth
- Each fuel assembly has 217 fuel slugs/rods

 $k_{\rm eff}$ results

- 217 slugs modeled inside a single ES-3100
 Enough fuel for a single assembly
- Modeled an infinite array of packages
 - Water flooded
 - Dry with kaolite fill
 - Polyethylene bounding of water or kaolite

Case	k _{eff}	σ
Dry	0.62301	0.00010
Water flooded	0.69196	0.00010
Polyethylene	0.70079	0.00010

Similarity assessment

- TSUNAMI-3D used to calculate sensitivity coefficients for waterand polyethylene-filled ES-3100 package arrays
- c_k calculated for each package compared to a set of 4011 experiments

Model	0.8 < c _k < 0.9	0.9 < c _k
Water	41	1
Poly	85	2

- Sufficient experiments for validation
- Further analysis needed for gap assessment

Summary

Summary

- Notional high-volume package model developed
 - Similar experiments identified for flooded case
 - No glaring data gaps for this system
 - ⁵⁶Fe may be a useful target given its uncertainty contribution
- ES-3100 model with simplified SFR fuel developed
 - Similar experiments identified for flooded case
 - Additional work needed to determine if gaps exist
- Additional work needed for MSR fuel forms

Summary of Workshop 1

- Demonstrate our strategy for prioritizing benchmarks
 - 1. Survey the field
 - 2. Prioritize a target application
 - 3. Develop an application model (today: **fresh fuel pebble transport**)
 - 4. Assess the validation basis
 - 5. Host a workshop
 - 6. Develop Experiment Support Opportunity (ESO) to address gaps in validation bases
 - 7. Rinse and repeat
- ESOs are the main vehicle for critical benchmark awards
- We are hungry for information
 - Long lead-time on nuclear data and experiments!
 - Existing measurements that could become benchmarks

- From reactor designers: what are your intended transportation packages, front-end/back-end storage systems
- Any ideas where you may need additional nuclear data or benchmarks for safe, commercial-scale operations
- Feedback methods
 - − Use the chat ⊕
 - Respond to feedback form (following the workshop)
 - Email DNCSH@ornl.gov
 - What next?
 - Prepare short workshop summary document and send to participants
 - Prepare ESO #1
 - April 1 2024 Announce
 - June 7, 2024 Award

1

Final Notes:

- Thank you for coming!
- A feedback summary will be coming to your email box. Please fill it out to provide us the needed information to make the workshop's summary report and future workshops better.
- In addition, information about the upcoming ESO will be coming to your email on or about April 1.
- Questions? Have technical information to share?

Email us at DNCSH@ornl.gov