




#### SMRs, advanced reactors:

Novel technology and deployment models: need for new safeguards approaches, measures and equipment

#### Back-end management:

Novel processes, large volumes: preparation needed for safeguards measures and termination on waste

2

1



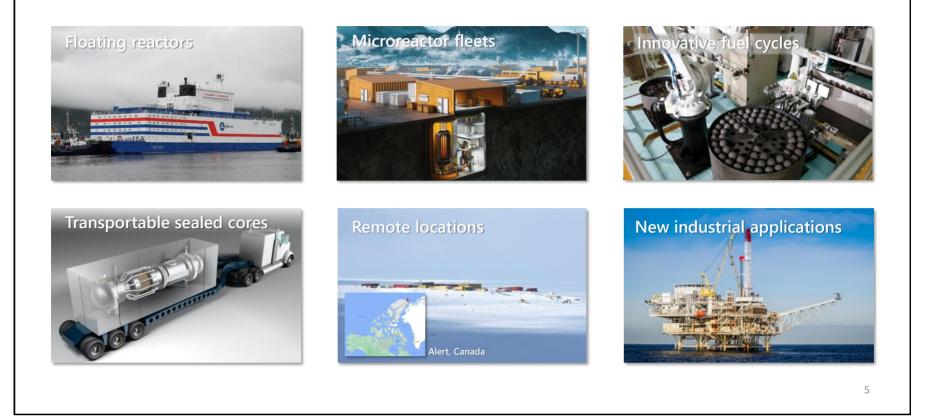
## The challenge:

Safeguards

2

 A new nuclear facility in a non-nuclear-weapon State (NNWS) will need to be safeguarded when deployed

> regardless of the size, complexity, accessibility, owner/operator or supplier of the technology


- Many vendors are not aware of the significance of this customer requirement
   > lack of awareness of international safeguards, or perception that it doesn't impact design
- Advanced reactors may require advanced safeguards (which requires R&D)
  - new core/fuel designs, plant layouts, SF management, fuel cycle facilities, IAEA equipment



- Enhanced security and 'inherent' PR do not necessarily mean simpler safeguards
  - > 'safeguardability': often overlooked external component of PR

#### We need to be ready to safeguard these:

Safeguards IAEA





#### 1/8/2024

## How can design make safeguards easier?

#### **Verification of Nuclear Material Accountancy**

- To verify State's declaration of nuclear material **inventory and flow** (e.g. item counting, weighing, non-destructive assay)
- Can involve inspections or remote monitoring of unattended equipment

#### **Containment and Surveillance**

- To maintain **continuity-of-knowledge** (e.g. cameras, seals, measurements) between inspections
- Can involve remote monitoring of unattended equipment

#### **Design Information Verification**

• To verify State's **declared facility design** (construction, operation, modification or decommissioning)

#### SAFEGUARDS-RELATED DESIGN CONSIDERATIONS:

IAEA

Safeguards

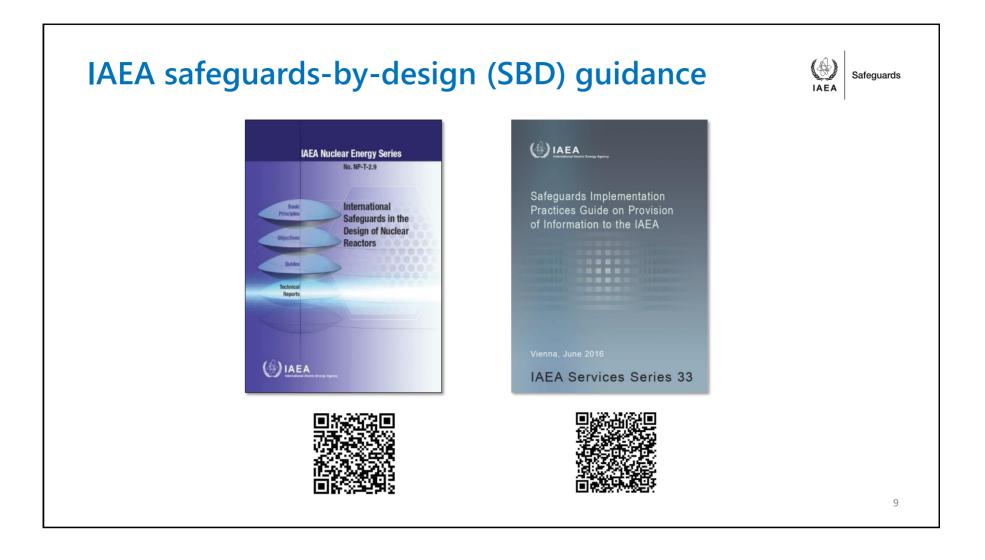
Safeguards

8

IAEA

Physical access around facility, fuel storage configuration complexity of fuel movement health & safety, accommodating IAEA (1) ipment, use of unattended equipment

Ease win fallation of IAEA seals, carrends, incluments (brackets, electricity, lighting, conduits, penetrations, IVAC), number of resize of hatches, environmental conditions


Physical access around facility, complexity of layout, health & safety

#### Suggestions to US industry and R&D community

- Raise awareness of international safeguards in design community, engage with IAEA
- Consider the value of having one design that is applicable to all customers
- Consider possibility of VOA acceptance of innovative facilities by the IAEA
- Consider **impact of IAEA safeguards needs** in near-term designs (e.g., conventional C/S equipment installation, accommodation for IAEA seals on containers)
- Consider **impact of evolutionary 'concepts of operations'** on safeguards

implementation (e.g., multiple modules, smaller footprints, remote monitoring)

 Support development of advanced NDA equipment and other measures for bulk and on-line fuelled designs (~10 year lead time)





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Safeguards                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <ul> <li>Dr. Jeremy Whitlock is a Senior Technical Advisor in the Department of Safeguards at the IAEA, with three deand manager in the Canadian and international nuclear community. Prior to moving to the IAEA in 2017 he spectaboratories as a reactor physicist and manager of non-proliferation R&amp;D.</li> <li>Dr. Whitlock received a B.Sc. in Physics from the University of Waterloo (1988), and an M.Eng. and PhD in Engineering Physics (reactor physics) from McMaster University (1995).</li> <li>Dr. Whitlock is a Past President, Fellow, and former Communications Director of the Canadian Nuclear Society. Since 1997 he has maintained <i>The Canadian Nuclear FAQ</i> (www.nuclearfaq.ca), a personal website of frequently-asked questions (FAQs) on Canadian nuclear technology.</li> <li>Dr. Whitlock lives in Vienna, Austria, and feels that canoes are the closest humans have come to inventing a perfect machine.</li> </ul> | nt 22 years at Canadian Nuclear |
| J.Whitlock@iaea.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                              |



12 12

### **SBD: IAEA activities**

- SMR Member State support program tasks:
  - > Russia, South Korea, US, Canada, Finland, France, China
  - > Technologies include FNPP, integral PWR, MSR, PB-HTR
  - ➤ Goal is to work with Member States to:
    - evaluate design aspects that impact safeguards
    - investigate safeguards implementation strategies
- Internal IAEA collaborations:
  - > IAEA SMR Platform (single point of contact for Member States)
  - > Dept. of SG SBD Working Group (Safeguards, Nuclear Energy, Nuclear Safety and Security)
  - > Other internal collaborations with NE and NS (e.g., 3S interfaces in Design Safety Reviews)
- External engagements:
  - > Raising awareness with stakeholders through third-party interactions and collaborations



7

Safeguards

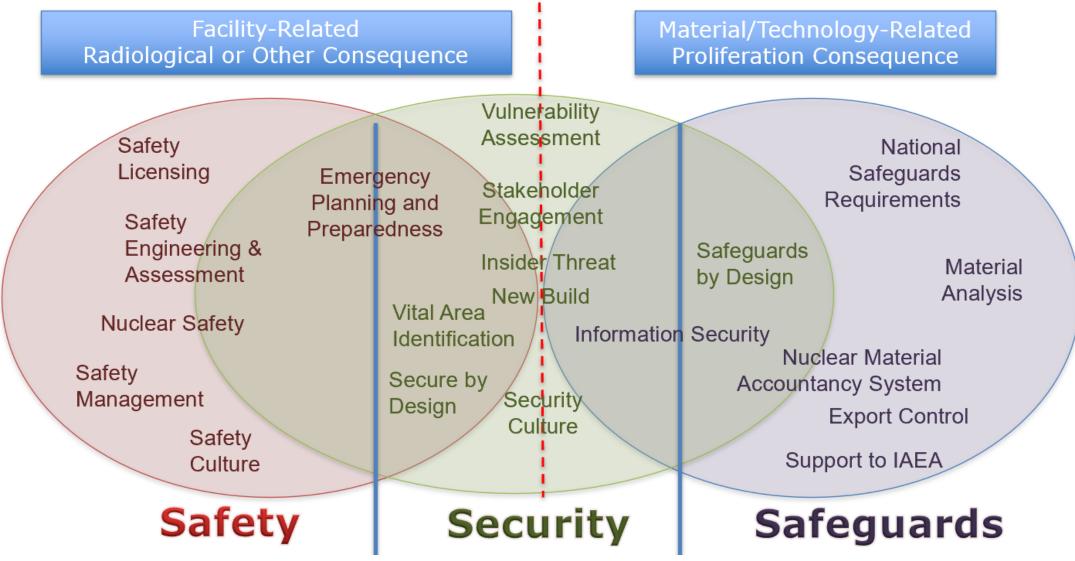
IAEA



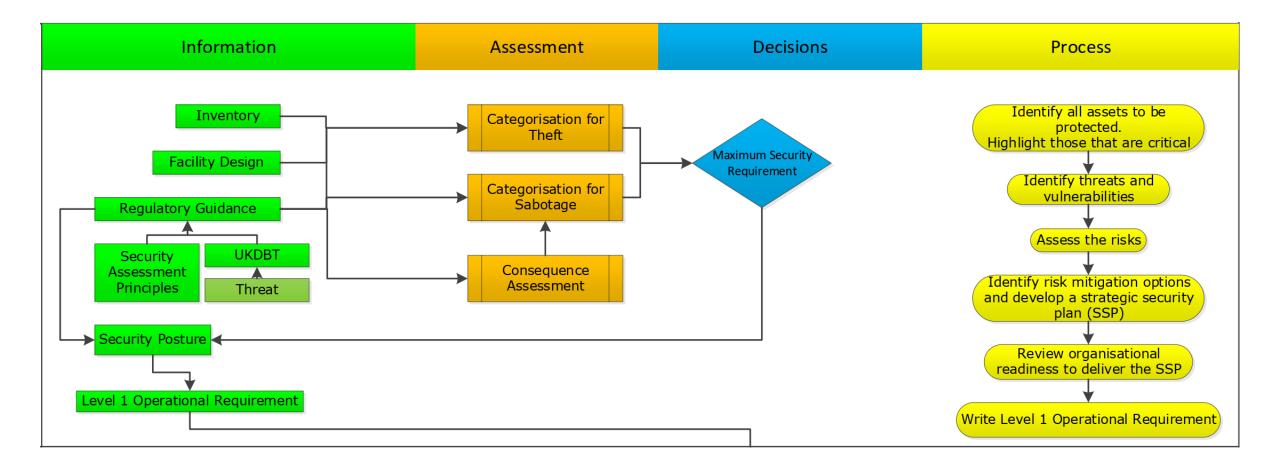
# Introductory Considerations in 3S for Operations and Design

5<sup>th</sup> Dec 2023

# Summary


To provide an overview of 3S considerations

Highlight strong dependency on safety-security interface


**Benefits and barriers** 

#### **3S interactions**





#### Safety - Security Critical Interfaces



#### Some key considerations – benefits and barriers



- Engineering design / operation
- Failure scenarios
- Passive and active features their importance, and failure-mode
- Opportunities for 3S efficiencies
- Understanding inventory throughout lifetime operation
- Fuel cycle / Process modelling
- Aggregation of materials (NSS 27-G Implementing Guide)
- Radiological consequence assessment identification of key / dominant nuclides
- Safety case provides operating envelope and formal change management
- Capability and information integration effective multi-disciplinary project delivery



# Thank you

#### **National Nuclear Laboratory**

5th Floor, Chadwick House Warrington Road, Birchwood Park Warrington WA3 6AE **T.** +44 (0) 1925 933 744 **E.** customers@uknnl.com

www.nnl.co.uk



# NRC 3S Workshop:

# CNSC expectations for 3S Dec. 5, 2023

Sanja Simic, Lead, Safety Analysis Directorate of Assessment and Analysis Canadian Nuclear Safety Commission



# **CNSC Regulatory Approach**

•The Canadian Nuclear Safety Commission regulates the use of nuclear energy and materials to protect health, safety, security and the environment; to implement Canada's international commitments on the peaceful use of nuclear energy; and to disseminate objective scientific, technical and regulatory information to the public

•Canada has extensive experience in operating and regulating CANDU reactors:

- •All reactors are regulated as Class 1A nuclear facilities; and,
- •"Small Modular Reactor (SMR)/ Advanced Nuclear Reactor (ANR)" has no legal meaning or regulatory distinction

•Over the last few years, CNSC staff have been developing their understanding of how SMRs/ANRs might be different from traditional reactors and what those differences will mean for safety, security and safeguards (the 3S's)

# **Concept By Design**

•Expectation that SMR/ANR technologies must be safe, secure and proliferation-resistant given their potential standalone nature, international deployment and deployment in remote locations

•Adoption of the 3S concept early in the design phase (3S-by-Design):

•Safety-by-design: passive systems and inherent safety characteristics

- •Security-by-design (SeBD): security is fully integrated into the design process of a nuclear facility from the very beginning
- •Safeguards-by-design (SBD): international safeguards requirements are fully integrated into the design process of a nuclear facility from an early stage and throughout its life cycle

•Risk-informed approach that requires multi-disciplinary teamwork

# Safeguards-by-design in Canada

•Requires engagement between the IAEA, the regulator and/or safeguards authority, and the vendor

•Canada has a decades long history of successfully considering safeguards aspects in new facilities and designs:

- •On-load reactors of CANDU type require installed IAEA safeguards equipment to monitor the continual flow of nuclear material
- •Dry storage containers for irradiated CANDU fuel and waste management, storage and packaging facilities

•Now new fuel, advanced reactor and novel fuel-cycle facility designs are being proposed by vendors

•At the CNSC, lessons learned from the past have been incorporated into the organization's SMR pre-licensing vendor design reviews

# Safeguards-by-design in Canada, cont.

- •CNSC recommends vendors integrate safeguards considerations into their early design phase:
  - •The safeguards-by-design dialogue builds awareness amongst all stakeholders around both the design and safeguards requirements
- •While the process is voluntary, it is an informative and beneficial step before the required ones
- •Early engagement can ensure that safeguards requirements are considered before design freezes, thereby reducing costs for retrofitting IAEA safeguards equipment
- •Promotes the integration of safeguards with safety and security within the design process

## Canadian Safeguards Support Program task

- •The CNSC accepted an IAEA Member State Support Programme task on "Safeguards by Design for Small Modular Reactors" in 2019
- •The task aims to identify the key technical challenges for safeguards implementation involving SMRs, and the steps that can be taken to support incorporating SBD principles into the designs
- •The IAEA's design information questionnaire is used as tool to consolidate the safeguards-relevant information from the design and provide it to the IAEA
- •The CNSC has shared preliminary design information from two vendors as part of the project and has started initial discussions with the IAEA on a potential safeguards approach for one of these designs

## Modernized Nuclear Security Regulations 1/3

•Canadian regulatory framework for nuclear security is currently being updated, including the *Nuclear Security Regulations* (NSR) and the associated Regulatory Documents for nuclear security (REGDOC-2.12 series)

•The proposed amendments to the NSR will ensure the continuity of Canada's robust nuclear security regime, while affording licensees and proponents greater flexibility in demonstrating how they can meet nuclear security regulatory requirements

•The performance objectives of Canada's nuclear security regulatory requirements are to prevent the theft of nuclear material and prevent the sabotage of nuclear material and nuclear facilities

•Must be achieved by defeating the adversary (effective intervention)

## Modernized Nuclear Security Regulations 2/3

•For high-security sites (facilities that use, produce, process and/or store Category I or II nuclear material) the requirement to defeat the adversary characterized by the DBT (for high-security sites) will remain

•Prescriptive requirements on how the performance objectives are to be achieved will be removed (e.g., requirement for an on-site armed response)

•Maximize the flexibility in range of interventions that can be used by an operator in terms of the use of various techniques, tactics and procedures and/or engineered systems and civil structures for deterrence, delay, detection, denial and/or response, or any combination thereof

•Expanded requirements for cyber security considerations for the protection of sensitive and prescribed information

## **Modernized Nuclear Security Regulations 3/3**

•Licensees/applicants will be able to propose methods that employ novel technologies and concepts of operations; safety and security-by-design; the use of on-site armed response forces; and/or arrangements with off-site armed response forces

•Proposed modifications maintain clear performance objectives while providing the operator maximum flexibility in how they are met

•Align with Canada's domestic laws and regulations, and its international commitments

•Afford existing operators and new operators (green field) the flexibility to modify their nuclear security programs

# Safety-by-Design, 1/3

•SMRs/ANRs rely on passive systems and inherent safety characteristics of the reactor

## •Examples of Safety-by-Design:

- •Reactors that use natural convection for cooling
  - •No pumps, claim no need for emergency generators
- •Seismically robust SMRs
  - •Modules submerged in a pool of water below ground in a robust building
  - •Reactor pool attenuates ground motion and dissipates energy

•Vendor's claims about the increased safety margins and potential for practical elimination of the severe damage to the reactor core •Consequently, reduced reliance on robust containment and emergency response

# Safety-by-Design, 2/3

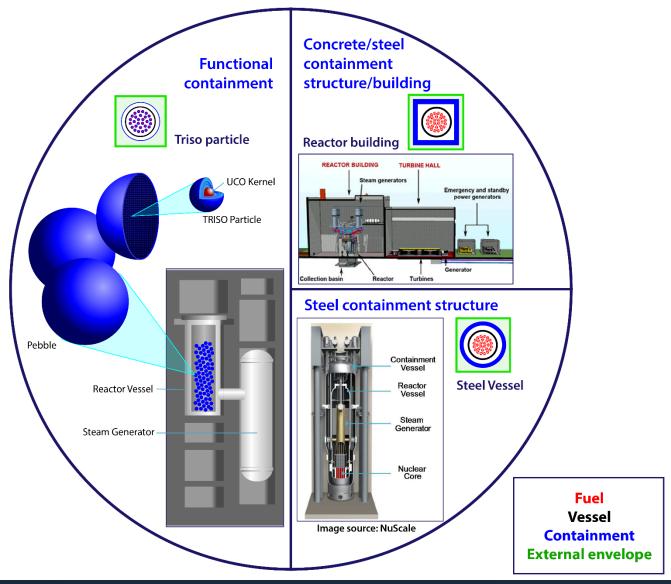
Novel designs, new reactor types/technologies and deployment of SMRs pose challenges to the existing regulatory framework:
Can existing requirements, for example for containment, be applied to

all SMR/ANR designs?

•Can traditional criteria for containment systems be complemented by design and performance criteria suitable for specific reactor designs (for example, HTGR reactor designs with the allegedly highly robust fuel)?

•This could result in a simplified containment design with a smaller plant footprint while meeting dose limits and safety goals, *functional containment* 

# Safety-by-Design, 3/3


•How can we deal with a vendor proposing a functional containment under our current regulatory regimes?

•Complex question, because the impact of such proposal is multi-fold, on:

- Safety (e.g. reduced capacity for radionuclide retention)
- Security (e.g. aircraft crash, possibly DBT)
- Safeguards (e.g.: TRISO fuel)

•Need for an integrated approach to assessing risk to Safety, Security, and Safeguards (3S)

#### **Different Types of Containment**



# Interfaces of safety with nuclear security and safeguards

•IAEA GSR Part 1, Requirement 12:

Interfaces of safety with nuclear security and with the State system of accounting for, and control of, nuclear material

The government shall ensure that, within the governmental and legal framework, adequate infrastructural arrangements are established for interfaces of safety with arrangements for nuclear security and with the State system of accounting for, and control of, nuclear material

# Integrated approach to assessing risk to Safety, Security, and Safeguards (3S)

•Various SMR designs encompassing advanced and innovative technology solutions are currently being developed

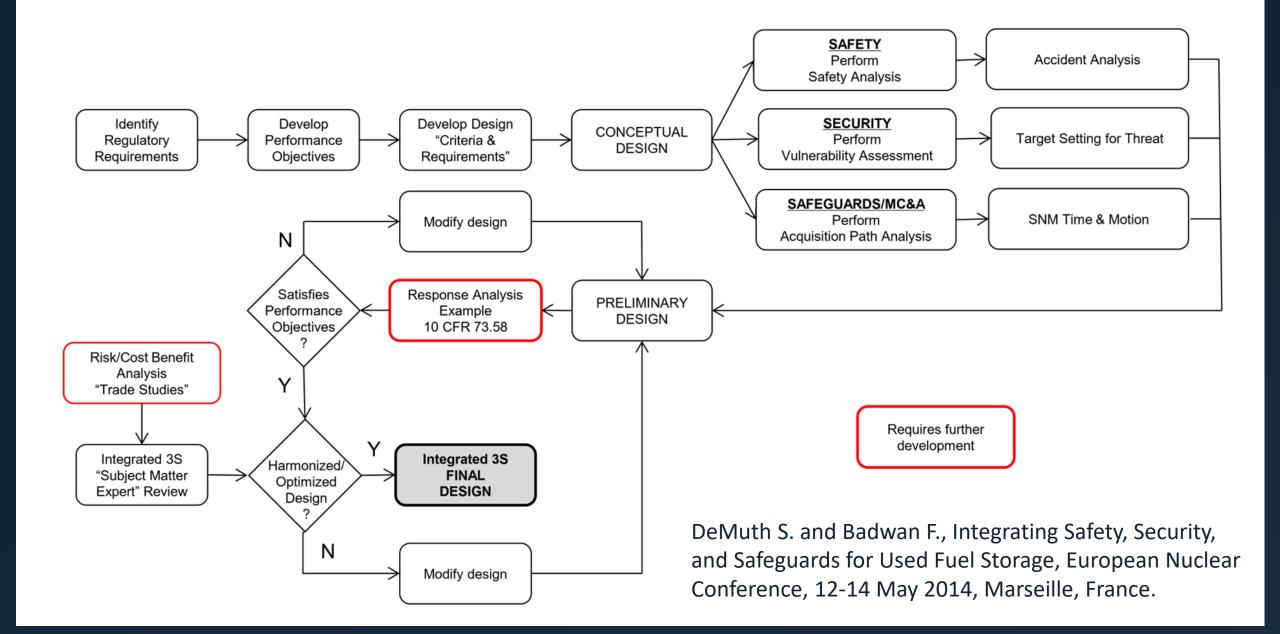
•Many are still in the design stage:

•Opportunity to pursue an integrated approach to assessing risk to 3S

•Different from the past, when for example, security was an afterthought for nuclear facilities

•Some degree of integration exists, but needs to be improved

•Opportunity to design out certain risks not only by designing for safety but also for security (security-by-design) and safeguards (safeguards-bydesign)


## **CNSC Regulatory perspective on 3S**

•REGDOC-2.5.2 "Design of Reactor Facilities: Nuclear Power Plants", Section 4.3.4 Interface of safety with security and safeguards:

•Safety measures, nuclear security measures and arrangements for the system of accounting for, and control of, nuclear material for an NPP shall be designed and implemented in an integrated manner so that they do not compromise one another

## •Use existing good regulatory practices for SMR reviews:

- Understand the design
- •Verify that the licensee can meet regulatory requirements/expectations
- •While reviewing the design, work jointly among disciplines
- •If modifications are needed, ask the licensee to implement them
  - •Iterative process from preliminary design to final design



## **CNSC** Regulatory perspective on 3S, cont.

- •Example of collaboration among disciplines Cyber Security:
  - •Vendors should satisfy the cyber security requirements of REGDOC-2.5.2 and CSA N290.7-14
  - •Implementation of cyber security features (e.g., intrusion detection software, virus protection software, access control software) shall not adversely impact the performance, effectiveness, reliability or operation of safety and safeguard functions

## •Recommendations to:

- •Vendors: incorporate "by design"
- •Other regulators:
  - •look at the culture and encourage collaboration organizational structure
  - •proactively think of 3 S' overlaps and integration
  - •engage early with the vendor

# Thank you Stay connected!

Sanja.Simic@cnsc-ccsc.gc.ca

in V f nuclearsafety.gc.ca

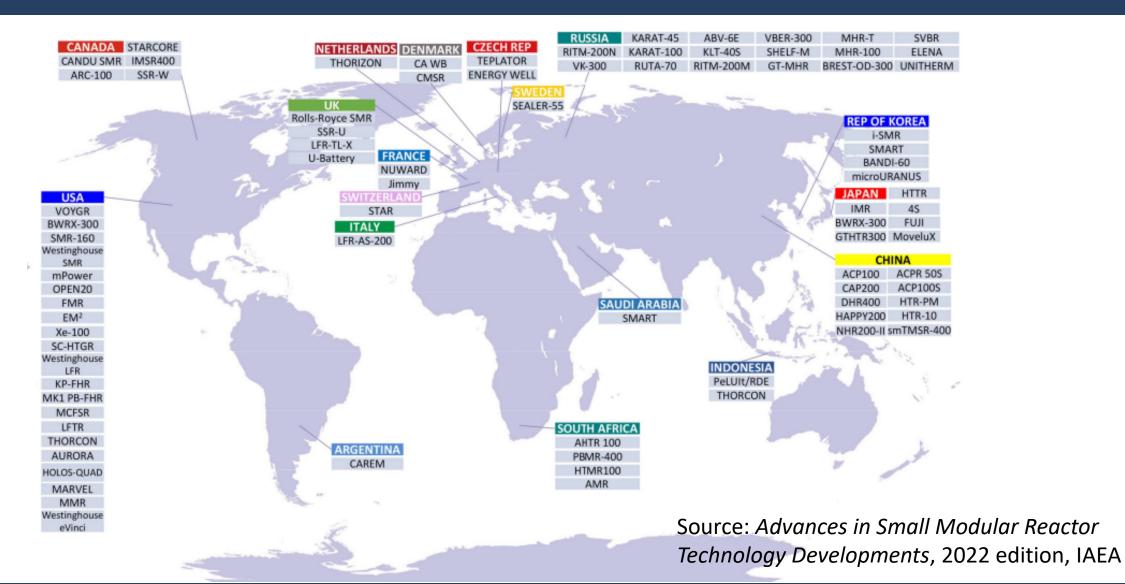




U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION OFFICE OF DEFENSE NUCLEAR NONPROLIFERATION

## Office of Defense Nuclear Nonproliferation Perspectives on 3S (Safety, Security, Safeguards) for New Nuclear

Dr. Anagha Iyengar, Office of International Nuclear Security


December 5, 2023

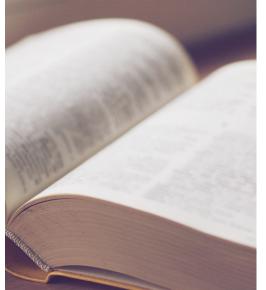


An organization that is innovative, adaptive, and anticipatory as it responds to current and evolving global nuclear risks.



#### ADVANCED REACTOR AND FUEL CYCLE LANDSCAPE








| Existing Fleet                                    | Advanced Reactors                                                                          |
|---------------------------------------------------|--------------------------------------------------------------------------------------------|
| Large / fixed footprint                           | Smaller and transportable                                                                  |
| Site specific design                              | Factory fabricated / mass produced                                                         |
| Large upfront investment;<br>high staffing levels | More easily accessible to developing countries –<br>less upfront capital; limited staffing |
| Standardized fuel design and supply chain         | Exotic fuel materials, forms, higher enrichment                                            |
| Power applications                                | Varied industrial applications and increased siting options                                |

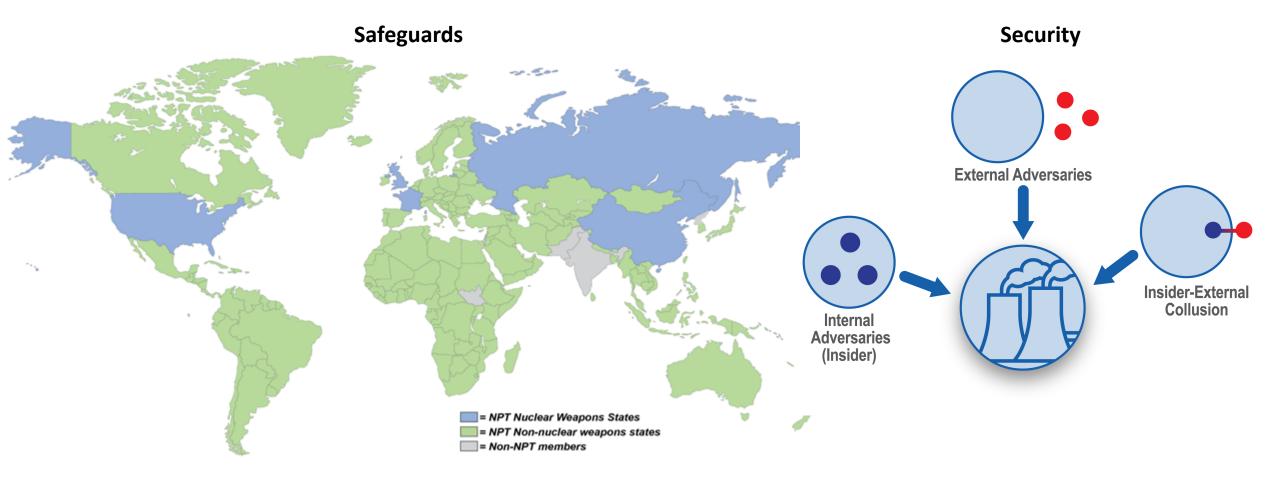
#### **DESIGN CONSIDERATIONS**



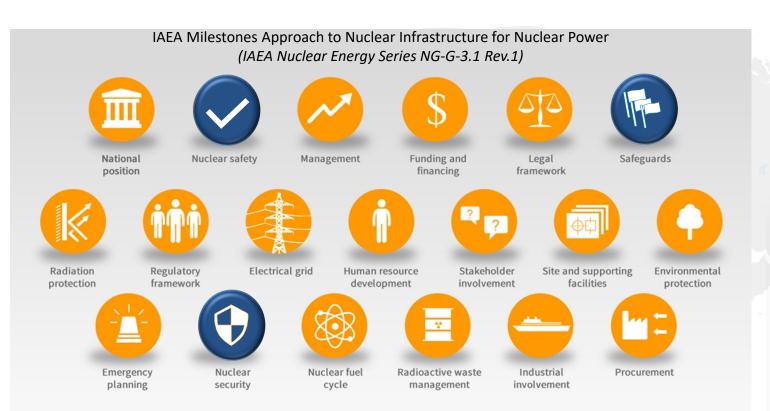


## National

- International Agreements
- National Frameworks / Regulations


## Site

- Facility
- Site
- Operational Models




#### WHAT ARE THE RELEVANT S'?





### Nuclear Infrastructure Issues Associated with Nuclear Security & Safeguards






For the purposes of this Convention:



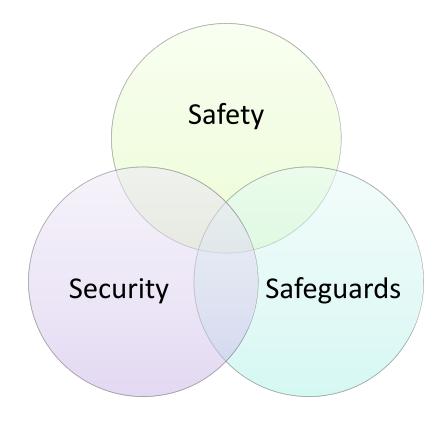


#### SAFEGUARDS AND SECURITY BY DESIGN




vulnerabilities to theft, sabotage, or other malicious acts by integrating security features <u>early in the design process and throughout the facility</u> <u>life cycle</u>.



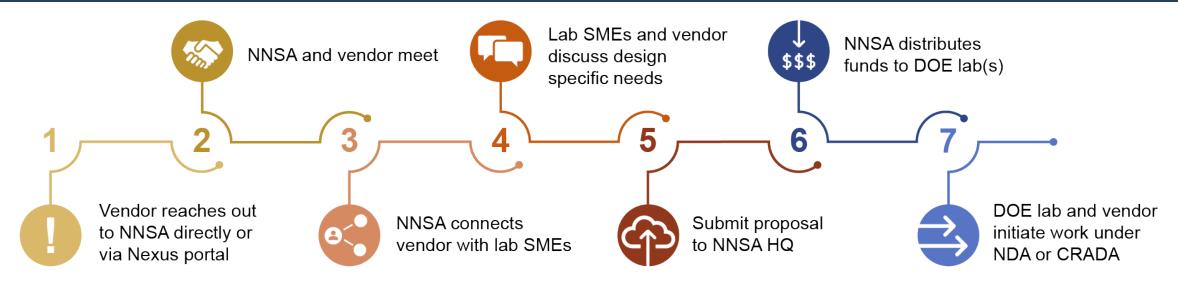



WHERE DO THE 3S' COME INTO PLAY VS. WHERE SHOULD THEY BE CONSIDERED?



### **NNSA PERSPECTIVES**






- "3S by Design" should focus on addressing as many requirements in "design" stages as possible
- Security systems can and should be designed before the facility is constructed with other 2 S' in mind
  - Passive safety ≠ Passive security
- Safeguards approaches should be developed in coordination with IAEA with other 2 S' in mind
- Early 3S effectiveness evaluation may lead to reduced costs
- Improve marketability of designs and may ease export licensing review process





#### HOW DOES NNSA ENGAGE WITH INDUSTRY?



#### To engage industry, the DOE National Labs can enter:

- Nondisclosure Agreements (NDAs) to have detailed discussions of technologies that can include proprietary information
- Cooperative Research and Development Agreements (CRADAs) to expand a company's proprietary capabilities or knowledge-set

Additional information regarding **NNSA** support for international deployment can be found at the Nuclear Nexus website:

https://nuclear-nexus.anl.gov/







### **CONTACT US**

# Learn More About Us:

https://nuclear-nexus.anl.gov/



# **International Safeguards**

Ms. Ruth Smith ruth.smith@nnsa.doe.gov

# **International Security**

Dr. Anagha Iyengar anagha.iyengar@nnsa.doe.gov



Liberté Égalité Fraternité

MTE/SG/SHFDS/DSN



### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE

Liberté Égalité Fraternité

# NRC 3S WORSHOP 5 – 6 DECEMBER 2023

# PERSPECTIVES FROM THE FRENCH NUCLEAR SECURITY AUTHORITY

#### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE Liberti Egatimité Fastemité

# Summary

- National framework regarding nuclear security, safety and safeguards in France
- □ SMR projects in France
- Lessons learnt and thoughts regarding new reactors and fuel facilities



### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE

Liberté Égalité Fraternité

# NATIONAL FRAMEWORK REGARDING NUCLEAR SECURITY, SAFETY AND SAFEGUARDS IN FRANCE

#### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE Libert Restité Factomité

# French regulatory framework overview

- □ 3 different sets of laws, regulations and regulatory bodies:
  - □ Security: code of defence Minister of energy
  - Safety: code of environment Minister of safety (regulations, site authorisation) and Autorité de sûreté nucléaire (independent regulatory body – licensing, control, enforcement)
  - Safeguards: Prime minister (Comité Technique Euratom) laws and decrees codified



|            | Laws                                                                  | Regulatory body     | Control body                                                 | Inspections                                             |
|------------|-----------------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------------------------------------------------------|
| Safety     | Environment Code                                                      | Ministry of Energy  | ASN                                                          | Safety inspections by ASN                               |
| Security   | Defence Code                                                          | Ministry of Energy  | Ministry of Energy /<br>Nuclear Security<br>Department (DSN) | Security inspections by DSN                             |
| Safeguards | Euratom Treaty +<br>IAEA commitments<br>+ international<br>agreements | Ministries involved | CTE                                                          | Safeguards<br>inspections by<br>Euratom and the<br>IAEA |



□ Close cooperation between the 3 competent authorities and importance of interface management between security, safety and safeguards is recognised by the State and by the French operators

□ Periodic meetings between 3 regulatory bodies



Cooperation not "limited" to 3S: Other regulations/competent authorities need also close interface management with nuclear security: intelligence services, law enforcement, critical infrastructures, protection of information, cybersecurity, ministry of defence...



Nevertheless, close cooperation between the 3 competent authorities and importance of interface management between security, safety and safeguards is recognised by the State and by the French operators

□ Periodic meetings between 3 regulatory bodies



### **Regulatory interfaces between 3S**

### $\Box$ Safety $\rightarrow$ Security:

- Art R1593-18 of the code of environment and ministerial order of 7<sup>th</sup>
   February 2012 require that accidents from a malicious origin must be
   described in the safety case, with justification that safety measures and
   emergency plans are adapted to address such accidents
- ministerial order of 7<sup>th</sup> February 2012 require that safety measures must be compatible with security regulation



## **Regulatory interfaces between 3S**

### $\Box$ Security $\rightarrow$ Safety:

- ministerial order of 13th April 2023 require that security measures must be compatible with safety regulation and that synergies must be sought with safety (and radiation protection, health and safety of employees, environment protection and regulations regarding security of critical infrastructures)
- ministerial order of 13th April 2023 require that security case must be consistent with the safety case



## **Regulatory interfaces between 3S**

 $\Box$  Security  $\rightarrow$  Safeguards:

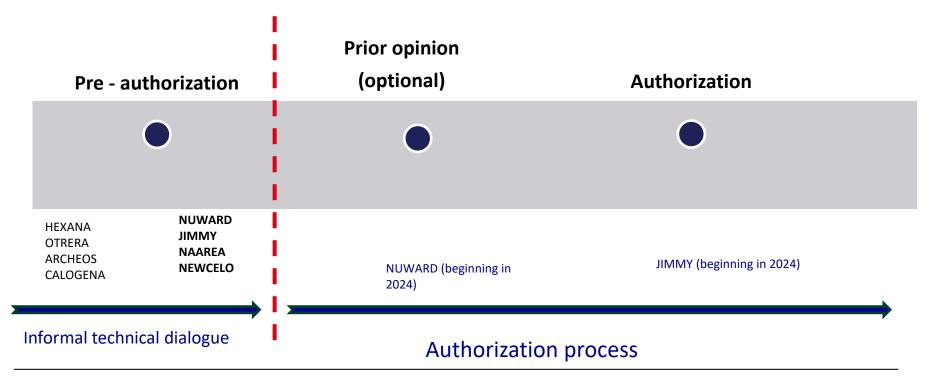
- □ NMAC regulations are part of security regulations (code of defense and ministerial order of 13th April 2023 when interface with security)
- Centralized accounting (IRSN), updated daily, used both for security and safeguards



### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE

Liberté Égalité Fraternité

# **SMR PROJECTS IN FRANCE**




# **SMR Projects**

- □ NUWARD (PWR): 1st reactor 2030 (2 x 170 MWe)
- □ NAAREA (MSR): 1st prototype 2028 (XAMR)
- □ NEWCLEO (LFR UK/Italy): 1st prototype 2028 (30 MWth)
- □ JIMMY (HTGR): 1st reactor 2028 (HALEU, triso 10 MWth)
- CALOGENA
- □ ARCHEOS: PWR 10 to 200 MWe
- □ OTRERA: RNR-Na, 110 MWe
- □ HEXANA : RNR-Na, 400 MWth
- □ Blue Capsule : HTR/RNR-Na 150 MWth, triso
- □ Thorizon (NRG Netherlands national research laboratory): Thorium



## **Authorization process**





### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE

Liberté Égalité Fraternité

# LESSONS LEARNT AND THOUGHTS REGARDING NEW REACTORS AND FUEL FACILITIES

#### MINISTÈRE DE LA TRANSITION ÉNERGÉTIQUE Libri Igniti Faurnit

# 3S by design

□ The 3 competent authorities push designers to take into consideration security, safety and safeguards from the beginning of the project

They have periodic meetings to exchange information on the projects

□ The DSN (security authority) issued guidance to raise the awareness and the understanding of nuclear security issues



- □ Variety of technologies: low knowledge regarding security concerns:
  - **Effective proliferation risks for new fuel**: triso HALEU, PuCl...
  - $\rightarrow$  "practicably irrecoverable" notion
  - $\rightarrow$  assessment of the risk to have together with safeguards experts

#### □ How to assess radiological consequences in case of malicious act?

- → Differing from existing reactors, nuclear security measures could be more costly than nuclear safety
  - Consequences of non-malicious accidents lowered thanks to intrinsic safety
  - Consequences of malicious accidents lowered by limited radioactive source term / but reactors could be installed closer to dense populated areas
  - $\rightarrow$  unacceptable radiological consequences?
  - → nuclear security measures could be similar to those necessary for "normal" nuclear facilities

RANSITION



□ Lower potential for synergy with safety measures? (in a smaller reactor, the malicious act could more easily destroy both the target and safety measures)

→ Hope of progress regarding nuclear safety (passive and inherent safety...) could be very disappointing from the point of view of nuclear security (no significative added value for nuclear security, or new opportunities for malicious actors to create accidental situations that are not considered in the safety case)



- □ Possible divergence of regulatory approaches between security and safety?
  - □ For safety, with 100 or 1000 more reactors, risk for a given reactor could be required to be reduced by 100 or 1000 to maintain similar overall nuclear risk



- □ Possible divergence of regulatory approaches between security and safety?
  - For security, the number of reactors don't increase the risk, that is mainly driven by the number of potential terrorist cells that could access the national territory.
  - Securing so many reactors at the same time could be very challenging for the State / increase vulnerability against terrorist attacks.



- □ Waste management
- Reactors without permanent on-site staff: management of nuclear accidents and of terrorist attacks?
- □ Synergies security / safety:
  - **Cybersecurity**
  - Insider threat

# eVinci<sup>™</sup> Microreactor

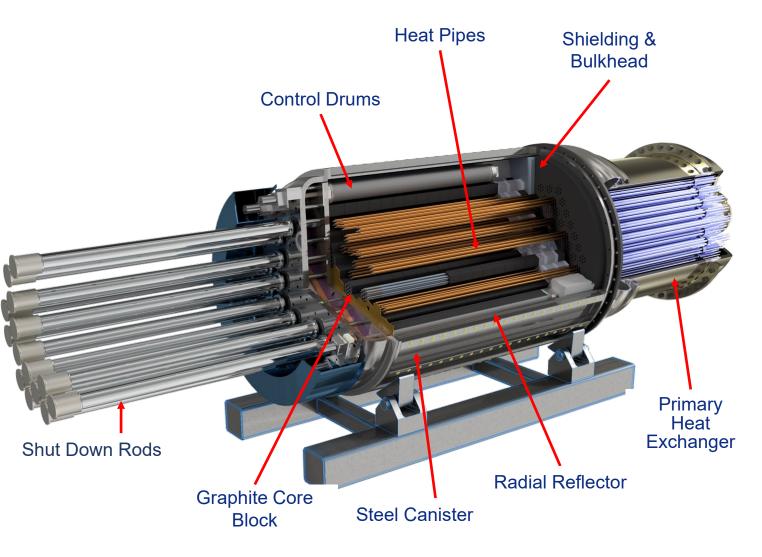
# **3S Considerations for Microreactor Deployment** December 5, 2023



eVinci is a trademark or registered trademarks of Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners.

Westinghouse Non-Proprietary Class 3 | © 2023 Westinghouse Electric Company LLC. All Rights Reserved.

# Agenda


- eVinci Microreactor Design Overview
- eVinci Microreactor Deployment Model Overview
- 3S Considerations for eVinci Microreactor Deployment
- eVinci Microreactor NRC Pre-application Engagement
- Questions



# **The eVinci Microreactor**

Safety through passive heat pipe technology, enabling a very low-pressure reactor

| Parameter          | eVinci            |  |  |  |
|--------------------|-------------------|--|--|--|
| Power              | 15 MWt            |  |  |  |
| Fuel Cycle         | 8 years           |  |  |  |
| Fuel (Enrichment)  | TRISO (19.75%)    |  |  |  |
| Coolant            | Heat Pipes        |  |  |  |
| Reactor Pressure   | ~1 atm            |  |  |  |
| Moderator          | Graphite          |  |  |  |
| Power Conversion   | Open-Air Brayton  |  |  |  |
| Efficiency         | 34%               |  |  |  |
| Decay Heat Removal | Radial Conduction |  |  |  |



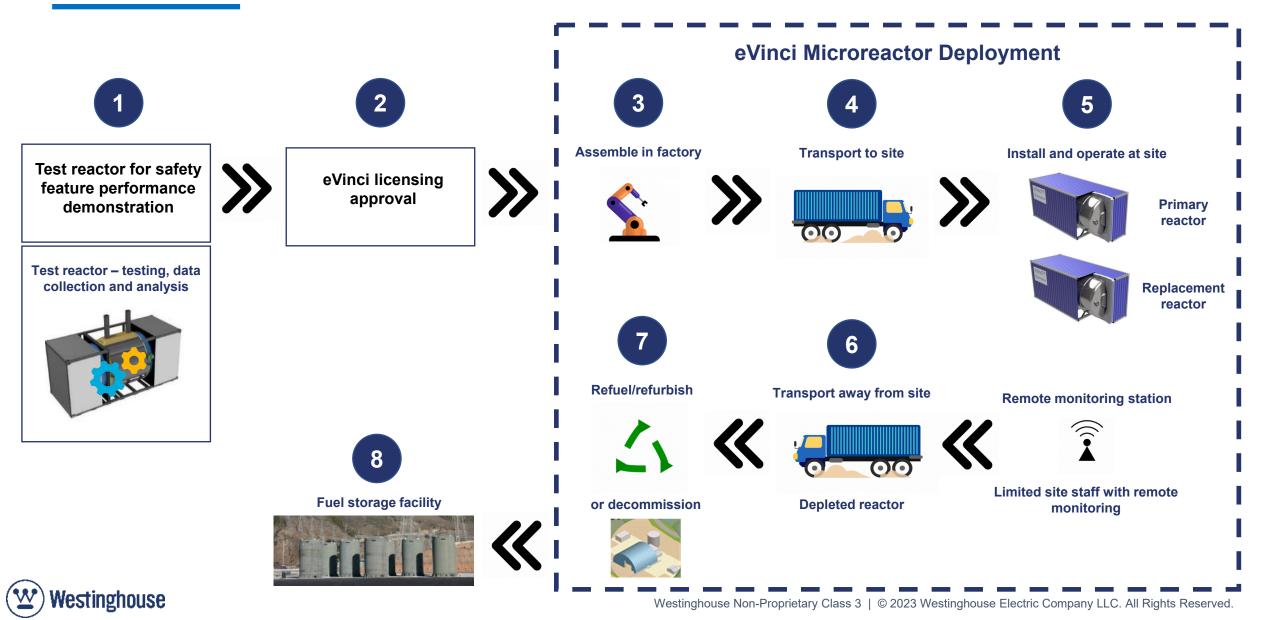


# eVinci Microreactor Site Layout

Site and Facility shown for single unit

- All buildings & systems above ground
- Reactor site footprint: ~2 acres
- Building footprint: <0.5 acres












# **A New Deployment Model Within Current Regulations**



# **3S Considerations for eVinci Microreactor Deployment**

- Consideration of U.S. and Canadian regulatory requirements in design
  - Submittal of reports for joint NRC-CNSC review
- Use of LMP methodology for safety case development and TICAP/ARCAP guidance for content of application places focus on items of highest safety significance
- Increased standardization due to less complex design
  - Standard approval of operational programs through Topical Reports, Standard Design Certification
  - Minimize needs for site-specific solutions/site-specific regulatory approvals
- Considerations of security in design from initial development
  - Ensuring regulations are met
  - Working with national labs on optimizing security for a small site
- Safeguards by Design strategy implemented throughout deployment (starting when fuel is first introduced)
  - Future engagement with IAEA



# **Pre-Application Engagement – White Papers**

#### **Current Status:**

https://www.nrc.gov/reactors/new-reactors/advanced/licensing-activities/pre-application-activities/evinci.html

| #  | Торіс                                                    | Submittal<br>Wave | #  | Торіс                                             | Submittal<br>Wave | #  | Торіс                                                               | Submittal Wave |
|----|----------------------------------------------------------|-------------------|----|---------------------------------------------------|-------------------|----|---------------------------------------------------------------------|----------------|
| 1  | Facility Level Design<br>Description                     | Submitted - 1     | 13 | Advanced Logic<br>System <sup>®</sup> (ALS) v2    | Submitted - 3     | 25 | Inservice Inspection<br>Program/Inservice Testing<br>Program        | Submitted – 5  |
| 2  | Principal Design Criteria                                | Submitted - 1     | 14 | Component Qualification                           | Submitted- 3      | 26 | Post-Accident Monitoring System                                     | Submitted – 5  |
| 3  | Safety and Accident<br>Analysis Methodologies            | Submitted - 1     | 15 | Emergency Plan Zone<br>Sizing Methodology         | Submitted - 3     | 27 | Equipment Qualification                                             | Submitted – 5  |
| 4  | Licensing Modernization<br>Project Implementation        | Submitted - 1     | 16 | Physical Security                                 | Submitted - 3     | 28 | Probabilistic Risk Assessment and<br>Transportation Risk Assessment | Submitted – 5  |
| 5  | Regulatory Analysis                                      | Submitted - 2     | 17 | Heat Pipe Design,<br>Qualification, and Testing   | Submitted - 3     | 29 | Fire Protection                                                     | Submitted – 5  |
| 6  | Deployment Model                                         | Submitted - 2     | 18 | Nuclear Design                                    | Submitted - 3     | 30 | Cyber Security                                                      | Submitted – 5  |
| 7  | Safeguards Information<br>Plan                           | Submitted - 2     | 19 | U.S Transportation Strategy                       | Submitted - 3     | 31 | Radiation Protection and<br>Contamination Methodology               | Submitted - 6  |
| 8  | Test and Analysis Process                                | Submitted - 2     | 20 | Phenomena Identification and Ranking Table (PIRT) | Submitted - 4     |    |                                                                     |                |
| 9  | Functional Containment<br>and Mechanistic Source<br>Term | Submitted - 2     | 21 | Integral Effects and<br>Transient Testing         | Submitted - 4     |    |                                                                     |                |
| 10 | Composite Material<br>Qualification and Testing          | Submitted - 2     | 22 | Refueling and Decommissioning                     | Submitted - 4     |    |                                                                     |                |
| 11 | Fuel Qualification and<br>Testing                        | Submitted - 3     | 23 | Seismic Methodology                               | Submitted - 4     |    |                                                                     |                |
| 12 | Code Qualification                                       | Submitted - 3     | 24 | Operations and Remote<br>Monitoring               | Submitted - 4     |    |                                                                     |                |

🖤) Westinghouse

### **Topical Reports**

| #  | Report Title                                                        | Submittal Date |
|----|---------------------------------------------------------------------|----------------|
| 1  | ALS v2 Platform                                                     | Submitted      |
| 2  | ALS v2 Development Process                                          | Submitted      |
| 3  | Principal Design Criteria                                           | Submitted      |
| 4  | ALS v2 Technical Specification Surveillance Requirement Elimination |                |
| 5  | Nuclear Design Methodology                                          |                |
| 6  | Fuel Design Methodology                                             |                |
| 7  | Composite Materials                                                 |                |
| 8  | Functional Containment and Mechanistic Source Term                  |                |
| 9  | Inservice Inspection                                                |                |
| 10 | Graphite Materials                                                  |                |
| 11 | Metallic Materials                                                  |                |
| 12 | Inservice Testing                                                   |                |
| 13 | Physical Security Design                                            |                |
| 14 | Heat Pipe Qualification Criteria                                    |                |
| 15 | Testing Program                                                     |                |
| 16 | Component Qualification Methodology                                 |                |
| 17 | Safety Analysis Methodology                                         |                |



### Questions?



Westinghouse Non-Proprietary Class 3 | ©2023 Westinghouse Electric Company LLC, All Rights Reserved.

## **Thank You!**

www.westinghousenuclear.com

See our Navigator for more information on the eVinci microreactor and all Westinghouse technology

https://navigator-voyantstudios.com/

## ) Westinghouse Westinghouse in Westinghouse Electric Company **Y %** @WF0 wecchinanuclear



#### Probabilistic Digital Twin and Distributed Ledger Technology Based Safeguards Solution for Aqueous Nuclear Reprocessing Facilities

Scott Evans on behalf of GE Led MAYER Team, (<u>evans@ge.com</u>)

GE Vernova Advanced Research Center, Niskayuna, NY, USA

#### Acknowledgement

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001688. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

General Electric Company (GE) recognizes the contribution of the following former GE employees: Bogdan Neculaes and Andrew Hoffman





### Converting UNF Radioisotopes Into Energy (CURIE)

#### **Program Description:**



### The U.S. has accumulated approximately 86,000 metric tons of used nuclear fuel (UNF) from light-water reactors (LWRs), a value that increases by approximately 2,000 tons per year. This UNF is destined for permanent disposal even though more than 90% of its energy remains. Reprocessing UNF to recover reusable actinides and recycling them into new fuel for advanced reactors (ARs) would improve fuel utilization and drastically reduce the volume of waste requiring permanent disposal. CURIE seeks to develop innovative separations technologies, material accountancy, and online monitoring technologies, as well as designs for a reprocessing facility that will enable group recovery of actinides for AR feedstocks, incorporate *in situ* process monitoring, minimize waste volumes, enable a 1¢/kilowatt-hour (kWh) fuel cost for AR fuels, and maintain disposal costs in the range of 0.1¢/kWh.

#### Innovation Need:



**Program Team** 

MAYER

Digital twin, distributed ledger, and non-destructive interrogation/imaging



Advanced compact laser Compton scattering light source & photonics simulations



Safeguards and security of nuclear facilities, SSPM model



Operator of reprocessing and fuel fabrication facilities, Tech to market



## Innovative technologies that enable the secure, economical reprocessing of the nation's LWR UNF could substantially reduce the volume, heat load, and radiotoxicity of waste requiring permanent disposal while providing a valuable and sustainable fuel feedstock for advanced fast reactors. Technical categories identified as the most likely to enable secure, economical reprocessing of UNF to meet these goals include:

Reprocessing technologies: improvements in preparing UNF assemblies for chemical separations; treatment of gaseous process streams; and separations technologies, such as aqueous separations, pyroprocessing, and fluoride volatility, that significantly reduce waste volumes, improve intrinsic proliferation resistance, and provide AR feedstocks; Integrated monitoring and materials accountancy: improvements in sensor and data fusion technologies that enable accurate and timely accounting of nuclear materials; Facility design and systems analysis: technoeconomic and systems analyses of novel approaches to designing, constructing, and operating reprocessing facilities (e.g., modularization, safeguards-by-design, process intensification), to improve safeguardability, reduce costs, and facilitate siting and licensing of reprocessing facilities.

https://arpa-e.energy.gov/technologies/programs/curie

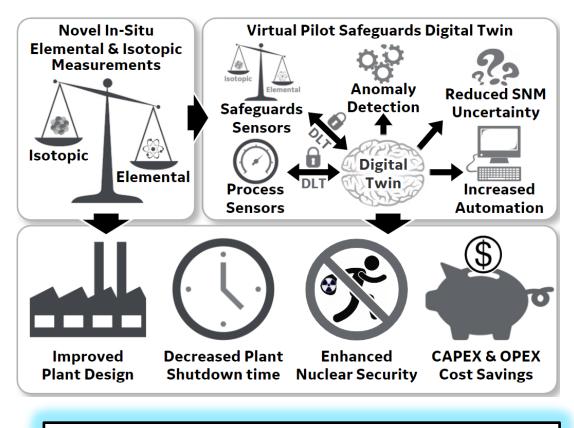
#### GE Vernova Research Program: MONOCHROMATIC ASSAY YIELDING ENHANCED RELIABILITY (MAYER)

Novel In-Situ Sensors

Digital Twin Safeguards

Distributed Digital Ledger

### MONOCHROMATIC ASSAY YIELDING ENHANCED RELIABILITY (MAYER)


#### **Technology Summary**

- Leverage first of its kind compact, high flux, low bandwidth laser Compton scattering (LCS) photon source for ultra-fast, high-precision IN SITU fissile elemental and isotopic measurements
- Development of the first ever aqueous reprocessing facility safeguards digital twin capable of data fusion, real-time probabilistic risk assessment, and anomaly detection
- Deliver a distributed ledger approach for ensuring safeguards sensor data security, transparency and integrity for regulatory auditing and feeding to the digital twin

#### **Technology Impact**

- Reduce required annual plant accountancy shutdown time, resulting in added revenue
- Ensure enhanced risk management, preventing unnecessary plant shutdowns due to potential materials diversion, criticality risks, or increases in standard error of fissile inventory
- Potentially reduce construction cost for new aqueous reprocessing facility

#### **MAYER Program Summary**



MAYER will deliver a revolutionary safeguards solution for aqueous reprocessing facilities

### **MAYER novel sensors for in situ measurements – LUMITRON Technologies**

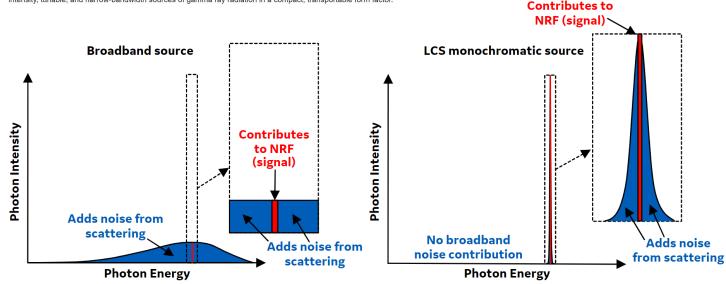
- MAYER proposes novel sensors for isotopic and elemental analysis using groundbreaking Laser Compton scattering (LCS) radiation sources
- An accelerated electron beam collides head on with a laser beam producing tunable, monochromatic, high flux X-rays and Gamma rays
- LCS source development partially funded by current DARPA program
- The monochromatic nature of the radiation output is key to interrogate nuclear resonance fluorescence (NRF) physics for isotopic analysis and k-edge physics for elemental analysis. State of the art bremsstrahlung radiation sources are broadband – measurements take much longer and signal to noise is far from optimum

#### LUMITRON TECHNOLOGIES

#### DARPA Selects Teams for Work on Tunable Gamma Ray Inspection Technology

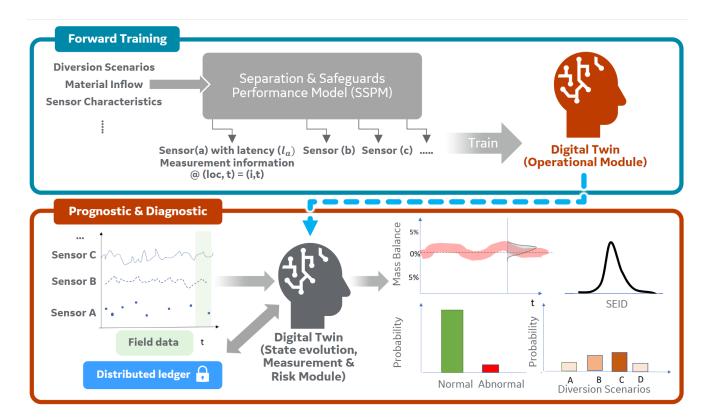
Program to develop revolutionary nondestructive inspection capability gets underway
OUTREACH@DARPA.MIL

OUTREACH@DARPA.M 5/29/2020



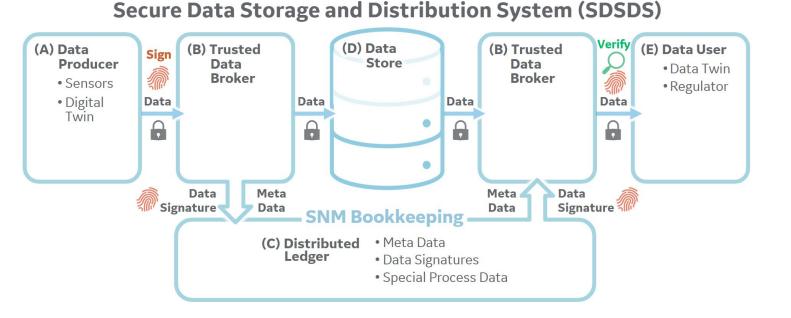

#### **Prior relevant work**

"With GRIT, you could probe and detect specific isotopes of interest by fine-tuning the photon energy to minimize background noise and take advantage of the nuclear resonance fluorescence phenomenon," Wrobel said. "Those isotopes could be found in rare-earth elements of interest or special nuclear materials. To be able to definitively say, 'Yes, there's highly enriched uranium in this object' and be able to characterize how much is present would be a significant leap forward over our current capabilities." (https://www.darpa.mil/news-events/2019-06-14)


Two California companies were selected for DARPA's Gamma Ray Inspection Technology (GRIT) program and have begun work to develop a transportable, tunable source of gamma rays for a host of national security, industrial, and medical applications.

Lumitron Technologies and RadiaBeam Technologies started work on the GRIT program in April and are exploring novel approaches to achieve highintensity, tunable, and narrow-bandwidth sources of gamma ray radiation in a compact, transportable form factor.




### **MAYER digital twin**

- Digital Twin (DT) lowers overall plant SEID through:
   1) real-time patten recognition to enhance measurement certainty based on historical (training) data, and 2) data fusion of multi-sensor data available within the plant
- DT provides real-time safeguards risk analysis, which includes instantaneous anomaly detection and identification, and provides real-time quantitative probabilistic risk analysis (i.e., real-time updated SEID)
- When combined with MAYER in situ sensors, it enables the plant to rely on dynamic materials sampling rather than high-frequency, costly, scheduled plant shutdowns
- DT enables high-efficiency plant design through robust sensor placement optimization to reduce SEID



### **MAYER distributed ledger technology**

- MAYER will pioneer real-time SNM accountancy bookkeeping through DLT (distributed ledger technology) using the latest Internet of Things Applications (IOTA) platform
- IOTA can process more transactions per second over traditional DLTs— including blockchain. This allows for secure, automated data storage and tracking of high throughput facility sensor data which will decrease labor costs
- DLT provides the digital twin with access to validated high-fidelity secure plant data (real-time and historical)



#### MONOCHROMATIC ASSAY YIELDING ENHANCED RELIABILITY (MAYER) - PUBLIC SUMMARY AND TEAM

#### **Program Team**



Digital twin, distributed ledger, and non-destructive interrogation/imaging



Advanced compact laser Compton scattering light source & photonics simulations



Safeguards and security of nuclear facilities, SSPM model



Operator of reprocessing and fuel fabrication facilities, Tech to market



Fuel Fabrication Expertise Industry advisor

GE Research (GE), in collaboration with Lumitron Technologies (Lumitron), Orano SA and Orano Federal Services (Orano), and Sandia National Laboratory (SNL), will deliver a revolutionary safeguards solution for aqueous reprocessing facilities. This solution, entitled Monochromatic Assays Yielding Enhanced Reliability (MAYER), includes monochromatic in situ active interrogation techniques that measure both elemental and isotopic concentrations of fissile isotopes with an uncertainty <1% and a latency <2 min in a high radiation background (~1,000R/hr gammas or  $\sim 10^5$  neutrons/sec). This is a disruptive approach, since no other technology currently exists which can take measurements with an uncertainty <1% in a high radiation background facility, to allow for on-line accountancy of special nuclear materials. A reprocessing facility safeguards management virtual pilot digital twin (DT) will be built based on the Separations and Safeguards Performance Model (SSPM) developed by SNL. This probabilistic DT will incorporate both process and safeguards sensors including the novel in situ sensors developed by MAYER. The DT will allow for continuous, on-demand artificial intelligence (AI) training to provide an active defense for lowering standard errors in materials inventory and predicting adverse events, allowing mitigation prior to a required facility shutdown. Data tracking, integrity, and transparency is ensured through distributed ledger technology (DLT); also DLT critically enables trusted data for DT usage. MAYER pays homage to Nobel laureate nuclear physicist Maria Goeppert Mayer.



## Regulator Considerations for Microreactor Security

Brian Kloiber - Oklo

## Agenda

Microreactor security considerations Defining consequences Threat motivators Regulatory gap identification Consequence precedent Consequence comparison Consequence use for threat goals Microreactor regulatory gap



## Defining consequences

Radiological sabotage – any deliberate act directed against a plant or transport in which an activity licensed pursuant to the regulations in this chapter is conducted, or against a component of such a plant or transport which could directly or indirectly endanger the public health and safety by exposure to radiation

For reactor operations, sabotage is generally tied to fission product release from:

- Core damage
- Spent fuel sabotage

But why do these things and how is reactor size related?

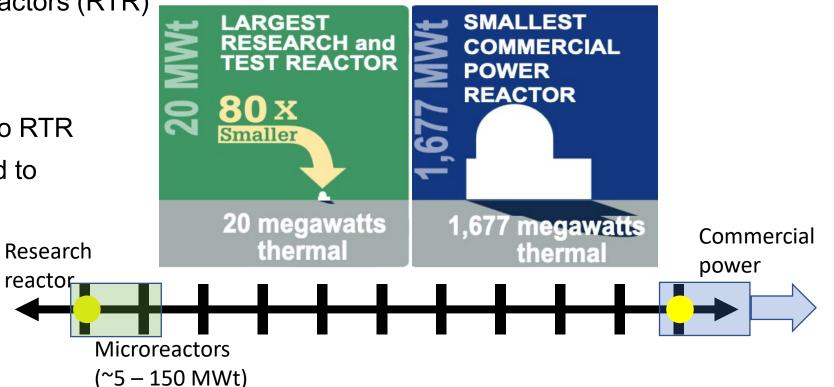


## Threat motivators

Threat goals – variable, but limited to less than threats against the State

- Cause loss of life
- Disrupt power grid
- Cause panic
- Distract
- Why would adversaries attempt these things
  - Financial gain
  - Personal grievance
  - Advance an ideology

Radiological sabotage is a potential action to achieve threat goals


- Core damage
- Spent fuel sabotage



## Regulatory gap identification

Reactor spectrum of licensed activities Commercial power reactors Research and test reactors (RTR) Microreactors? Vast gap in operational size Overlap or adjacent to RTR Power production tied to

consequences



## Consequence precedent

NUREG/CR-0843 Consequences of Sabotage of Nonpower Reactors

Dose comparison from fission product release

Analyzes dose consequences from various authorized nonpower reactors

Up to 50 MWth reactor size

Various operating schedules, some operating 20% of the year

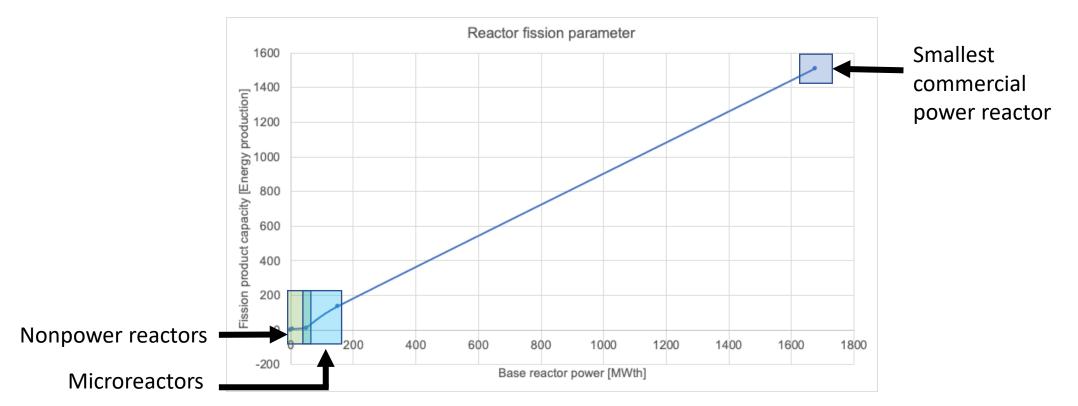
Method of release from sabotage

Fuel melt from heat sink loss

Compromise boundary, release of fission products

Similar method of release to commercial power reactors

Atomic Energy Act language mandates minimal regulation for nonpower reactors However, the danger must be low enough to warrant different threat




## Consequence comparison

Potential fission product release is largely driven by power production

Fission reactions and inventory approximated by rated power and time of operation Commercial power runs more frequently, but similarity in production is apparent

7



## Consequence use for threat goals

| Threat goal           | Microreactor and RTR considerations          | Large commercial reactor considerations | Higher utility to target  |
|-----------------------|----------------------------------------------|-----------------------------------------|---------------------------|
| Loss of life          | Small workforce population                   | Very large workforce                    | Large commercial reactors |
| Power grid disruption | Contribution to grid or microgrid            | Main power source for large areas       | Large commercial reactors |
| Cause panic           | Radiological category                        | Radiological category                   | Same effect               |
| Distraction           | High visibility, but lower resource response | Response resource intensive and complex | Large commercial reactors |

## Microreactor regulatory gap

In the existing range of threats of radiological sabotage, there are commercial power reactors and non-power reactors; both have different levels of design basis threats.

Microreactors are a unique target for radiological sabotage that combine the operating time of commercial power with the smaller size of nonpower reactors resulting in significantly smaller fission product inventories.

Given the orders of magnitude in size difference from large commercial reactors, microreactors share more in common with fission product inventory with the upper ranges of non-power reactors and are very far from comparison to larger reactors.

Microreactors need a specific design basis threat for their level of potential consequences and utility as a threat target.





## Questions

Brian Kloiber - Oklo

## ACU's NEXT Lab's 3S Perspective for a Molten Salt **Research Reactor**

by

Steven Biegalski, Ph.D., P.E.

Georgia Institute of Technology

December 6, 2023





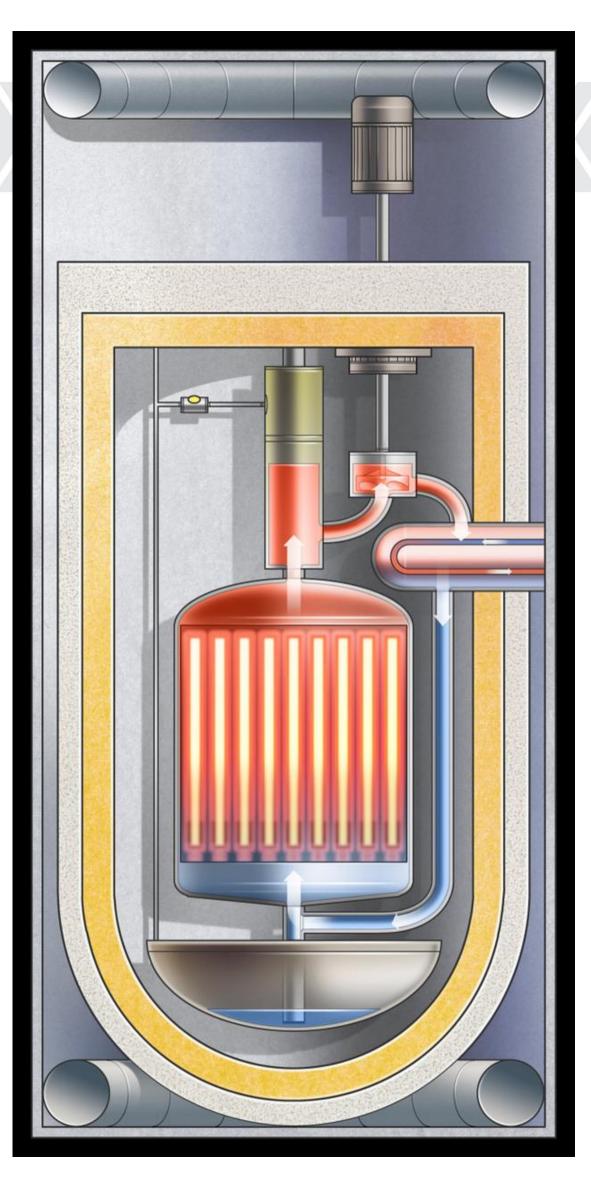






# Outline

- Molten Salt Research Reactor (MSRR)
- MSRR Timeline
- Material Control and Accounting



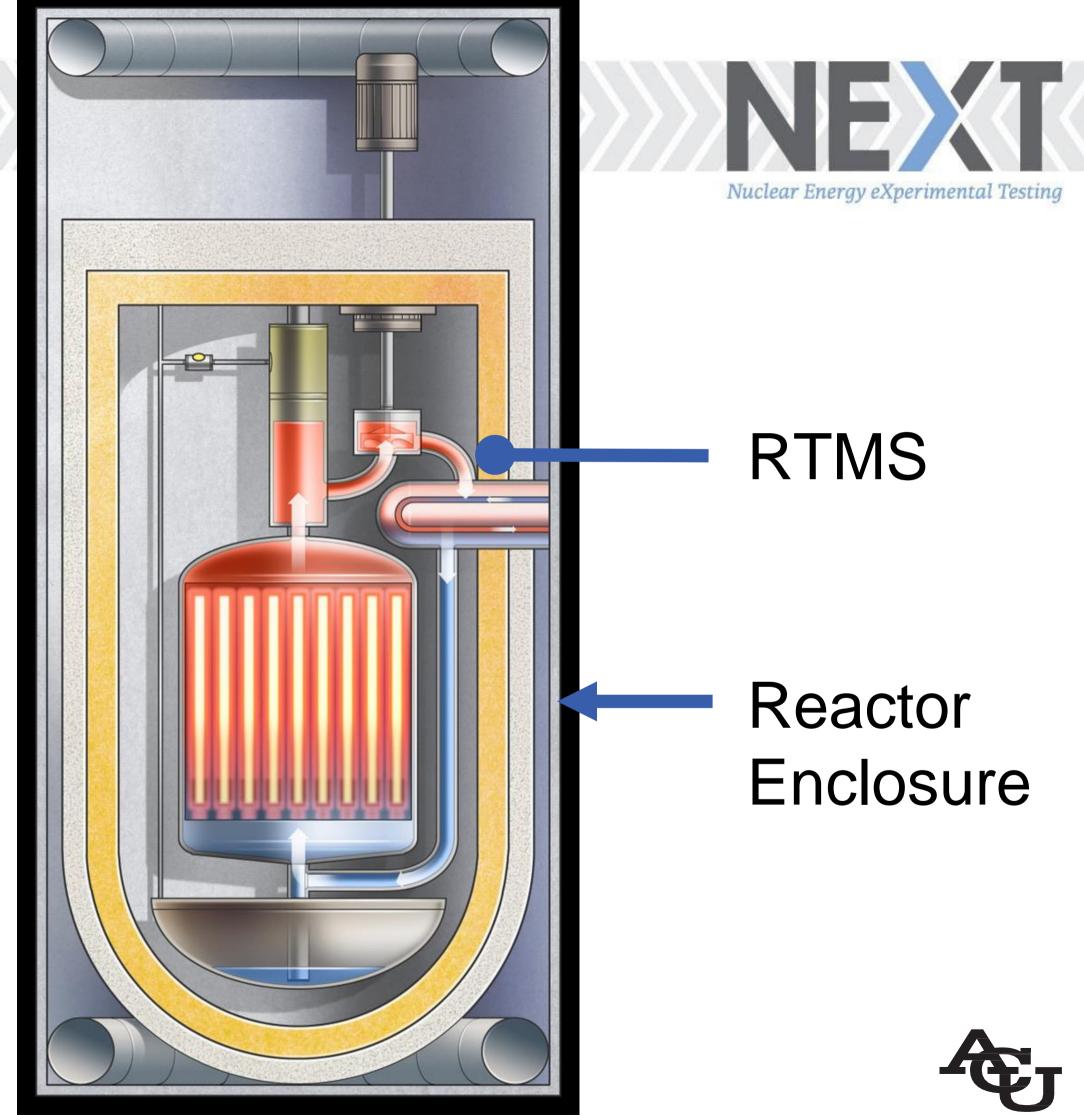



## Molten Salt Research Reactor (MSRR)

| Thermal Output:         | 1 MW <sub>th</sub>                                                               |
|-------------------------|----------------------------------------------------------------------------------|
| Electric Output:        | n/a                                                                              |
| Fuel:                   | 19.5% enriched HALEU                                                             |
| Moderator:              | Graphite                                                                         |
| Coolant Salt:           | LiF-BeF <sub>2</sub> -UF <sub>4</sub> (FLiBe)                                    |
| Const. Material:        | SS 316H                                                                          |
| Deployment:             | 2026                                                                             |
| Features:               | Passive shut down & cooling<br>Off-site, modular construction                    |
| Commercial<br>Benefits: | Demonstrates licensure with NRC<br>Produces experimental data, models &<br>codes |





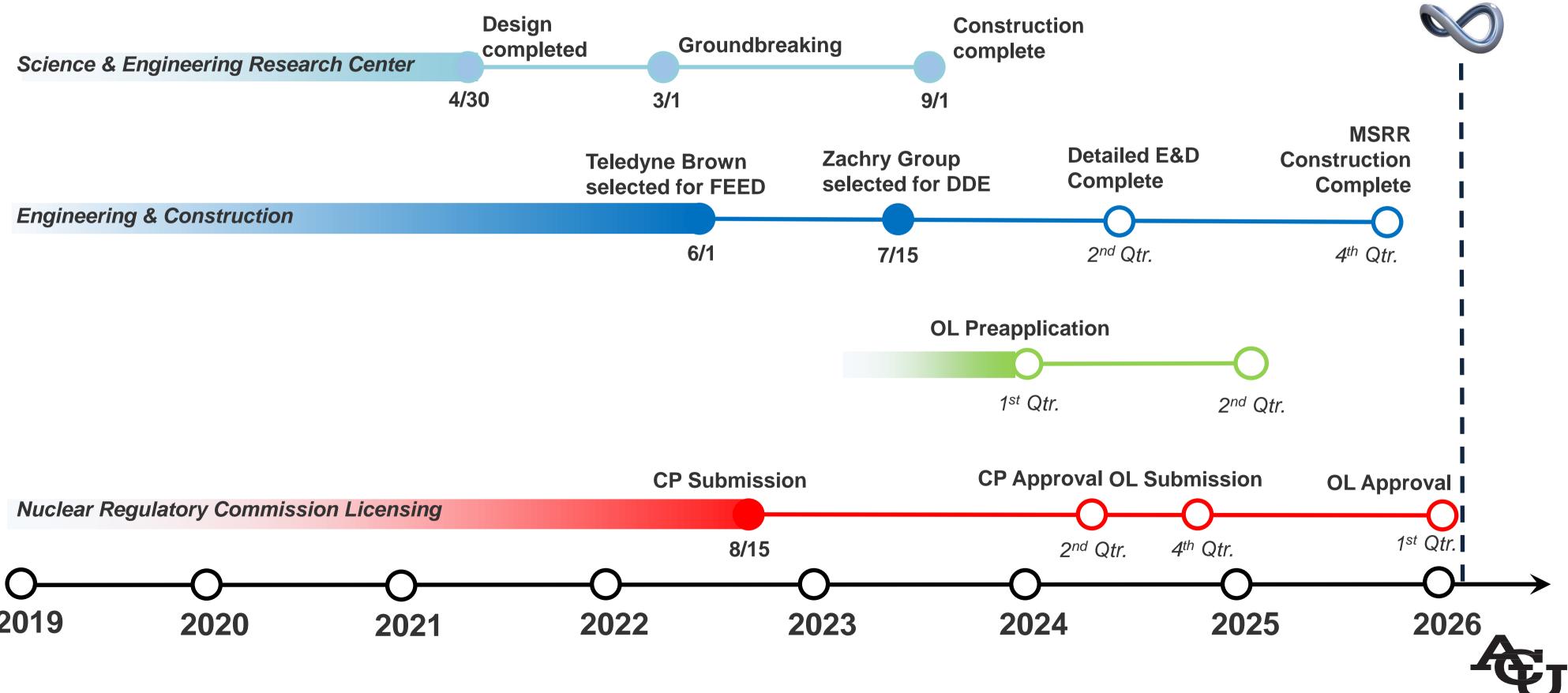

## **MSRR Layout**

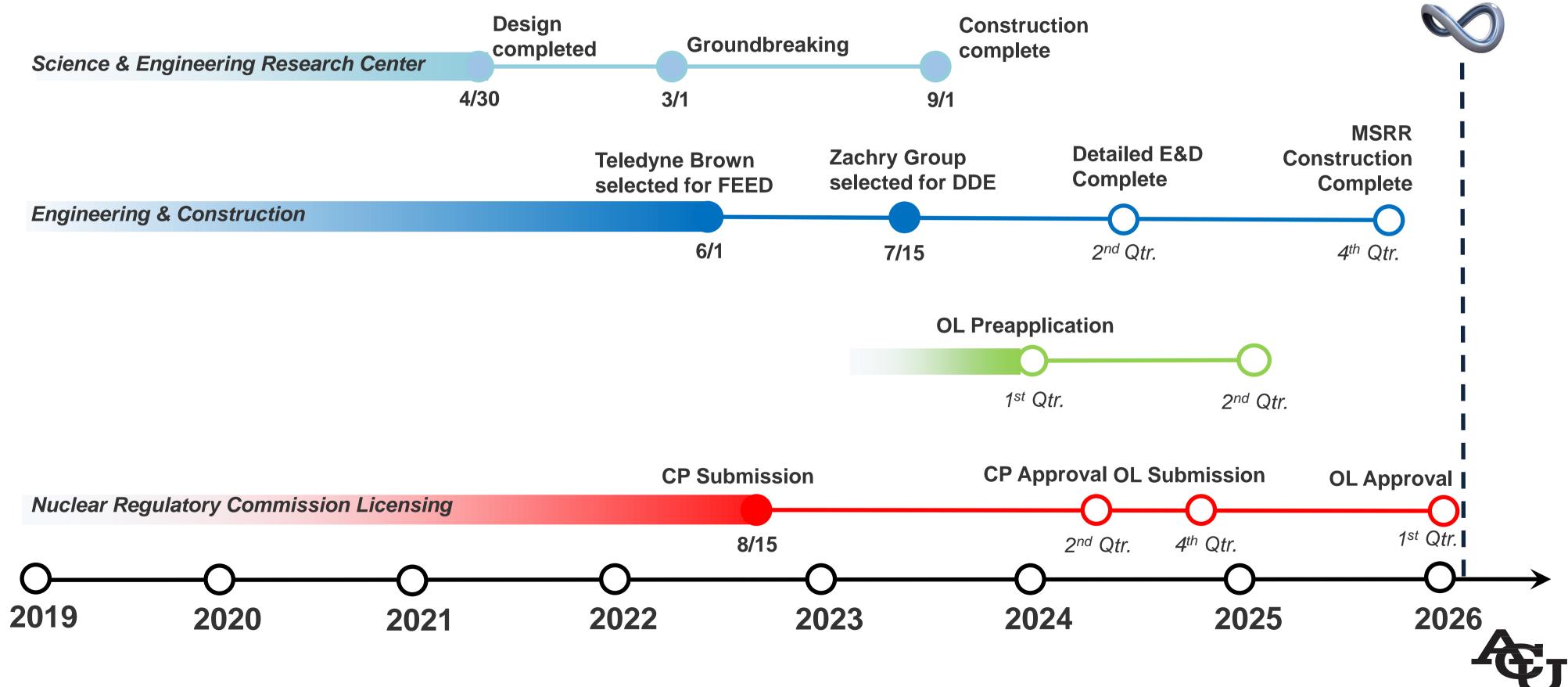




## **MSRR Safety Features**

- Multiple barriers: lacksquare
  - Salt
  - Primary fueled salt loop
  - Reactor Thermal Management System (RTMS)
  - Reactor Enclosure
  - Reactor Cell
- Low pressure system ullet
- Shutdown via core drain
- Passive heat removal during shutdown





## **Gayle and Max Dillard Science and Engineering Research Center Abilene Christian University – September 2023**





## **MSRR** Timeline









## **MSRR Project Status**

## The Natura Resources Research Alliance is leading the way in MSR development and deployment.

1. ACU is licensing the first advanced university research reactor with the NRC.

2. ACU has completed the SERC to house the Molten Salt Research Reactor (MSRR).

3. We are on a path to be the first operating molten salt reactor in the nation since the MSRE.



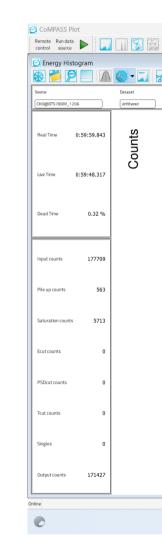




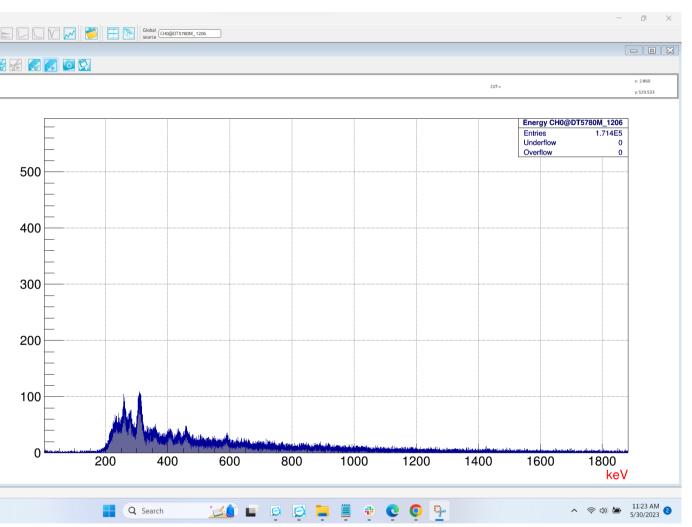




# **Material Control and Accounting**


- Material Control and Accounting program is currently under development.
- General plan is to take a material balance approach.
- Quantify material inputs and outputs.
  - Goal is to have redundant measurement methods.
  - Replicates
  - Need to be able to address uncertainty.
  - Refueling procedures under development.
  - Output measurements supported by computation.
- Robust control and surveillance within material control areas.






# **Process Monitoring**

- Process monitoring is not currently planned.
- Initial measurements show that this is not practical and reliable with current commercially available technology.
- Challenges with:
  - High temperatures
  - Radiation levels
  - Complexity of signal







CZT spectra of short-lived fission products



# **Burn-up Modeling**

- Burn-up modeling will predict <sup>235</sup>U depletion and the production of <sup>239</sup>Pu.
- These models will be periodically validated throughout the operation of the reactor.
- Material outputs may be compared to predicted compositions.
- Uncertainty from these models may be too high for adequate application to a Material Control and Accounting plan.
- Information gained may lead to a better understanding on how to implement computational models for future reactors.





# **MSRR Benefits from 3S Perspective**

- There are many aspects of a molten salt reactor that provide benefits from a 3S perspective:
- 1) Multitude of physical barriers.
- 2) Difficulty to remove material from reactor system.
- 3) Relative homogeneity of fuel-salt makes quantification of composition easier.
- 4) Any breach of reactor system is easily detected once the fuel salt has been irradiated.
- 5) Many safety benefits (e.g., strong negative temperature coefficients of reactivity, low operating pressure, low excess reactivity, etc.).
- 6) High burn of transuranic fuel elements within the fuel.





# **Testbed Opportunity**

- The MSRR may provide an opportunity to examine the utility of different Material Control and Accounting technologies.
- Temperatures and radiation levels may affect suitability of equipment and methods for implementation.
- Measurement method accuracy and detection limits may be assessed.
- Data may be utilized to support development of a digital twin.



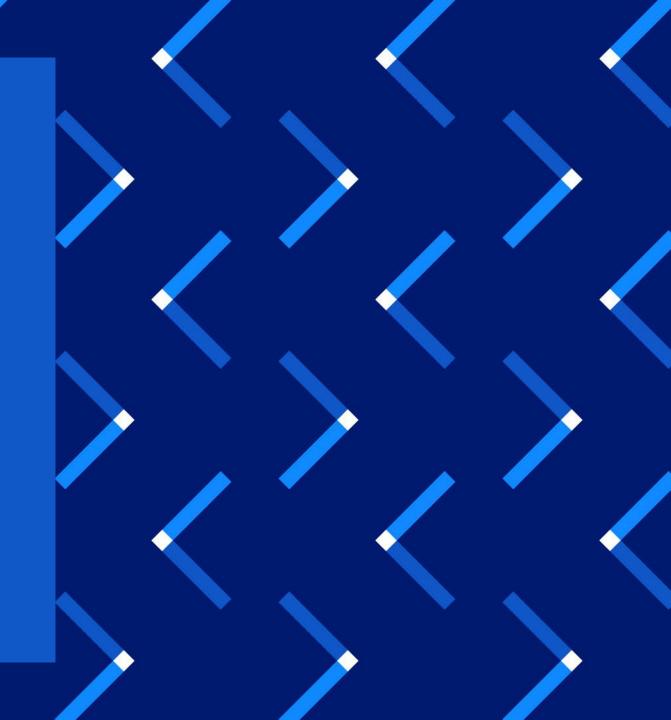


# THANK YOU acu.edu/next naturaresources.org



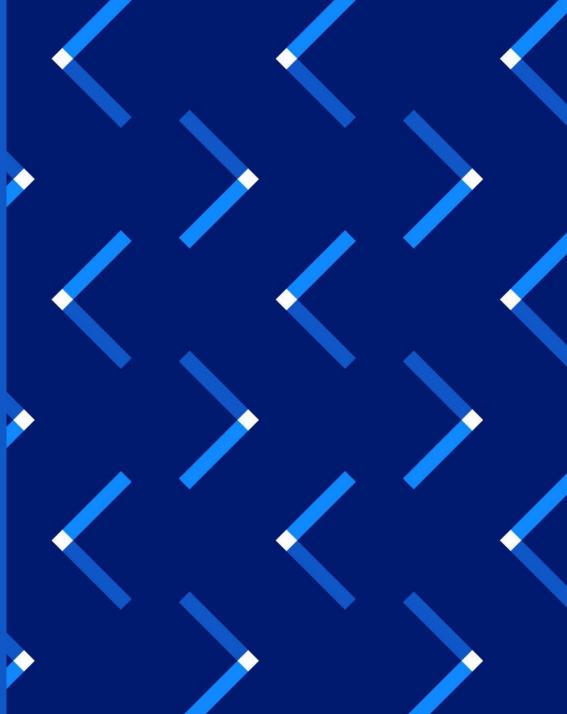


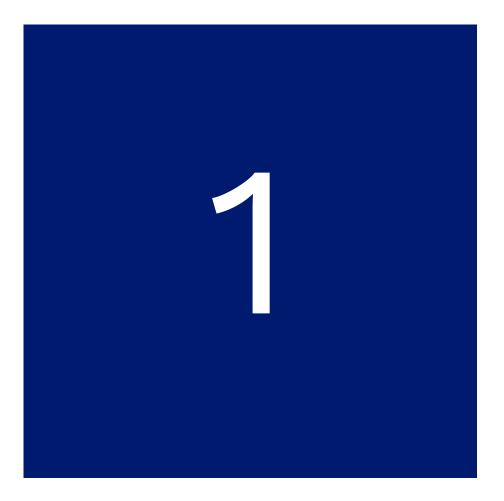



## framatome

Integrated Safety, Safeguards, and Security

#### Farshid Shahrokhi


Director of Advanced Reactor Technologies

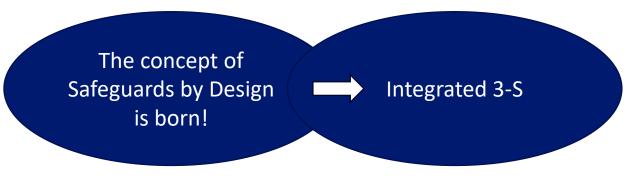

NRC 3S Workshop Dec 5 & 6 2023



# Content

- 1. National International Standards & Regulations
- 2. Challenges of Safety, Safeguards, and Security
- 3. Integration of Safety, Safeguards, and Security4. Concluding Remarks
- Safety, d Security marks






# National - International Standards & Regulations

#### framatome

### History of International Standards Development

- 1945 The first international expression of the concept of nuclear safeguards Agreed Declaration Relating to Atomic Energy issued by the leaders of the United States, United Kingdom, and Canada.
- 1946 The United Nations first met, the first issues it considered was how to ensure the effective control of nuclear energy.
- 1953 U.S. President Dwight Eisenhower's "Atoms for Peace" speech to the United Nations General Assembly calling for
  promotion of peaceful uses of atomic energy and the creation of an international atomic energy agency to oversee such
  uses.
- 1957 IAEA was established.
  - ✓ IAEA was given a dual mission: to promote and to control the atom.
- 1965 Adopting IAEA Safeguards as the NPT Verification Mechanism Negotiations began.
- 1968 The Non-Proliferation Treaty (NPT) negotiation was concluded and entered into force in 1970.
- Two GIF Working Groups have been formed with following scopes of work:
  - PR Proliferation Resistance scope of work:
    - Concealed diversion of declared materials
    - Concealed misuse of declared facilities
    - Overt misuse of facilities or diversion of declared materials
    - Clandestine dedicated facilities.
  - PP- Physical Protections scope of work:
    - Radiological sabotage
    - Material theft
    - Information theft.



#### framatome

### IAEA Safeguards By Design

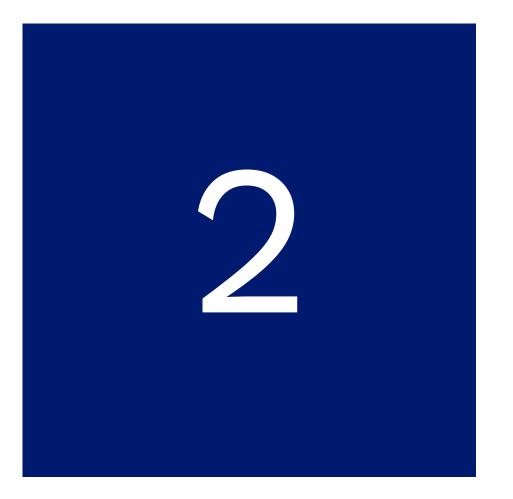
#### Objective and basic principals

- The objective of IAEA safeguards is the <u>timely detection of diversion of nuclear material</u> from peaceful activities, and the <u>deterrence of such diversion</u> by the risk of early detection.
- A basic SBD principle regarding the operation of facilities is the expectation that process operations can be designed to facilitate the effective and efficient application of safeguards with little or no impact on operational function or performance.
  - ✓ Simplifying path of nuclear material through the facility and the number of locations where it is stored;
  - ✓ Understanding the safeguards use of containment, authentication of data, and continuity of knowledge;
  - ✓ Installing robust and automated accounting system that provides all necessary reports electronically.
- IAEA Agreement with USA:

"Article 1 (a) The United States undertakes to permit the Agency to apply safeguards, in accordance with the terms of this Agreement, on all source or special fissionable material in all facilities within the United States, excluding only those facilities associated with activities with direct national security significance to the United States, with a view to enabling the Agency to verify that such material is not withdrawn, except as provided for in this Agreement, from activities in facilities while such material is being safeguarded under this Agreement."

### International Safeguards

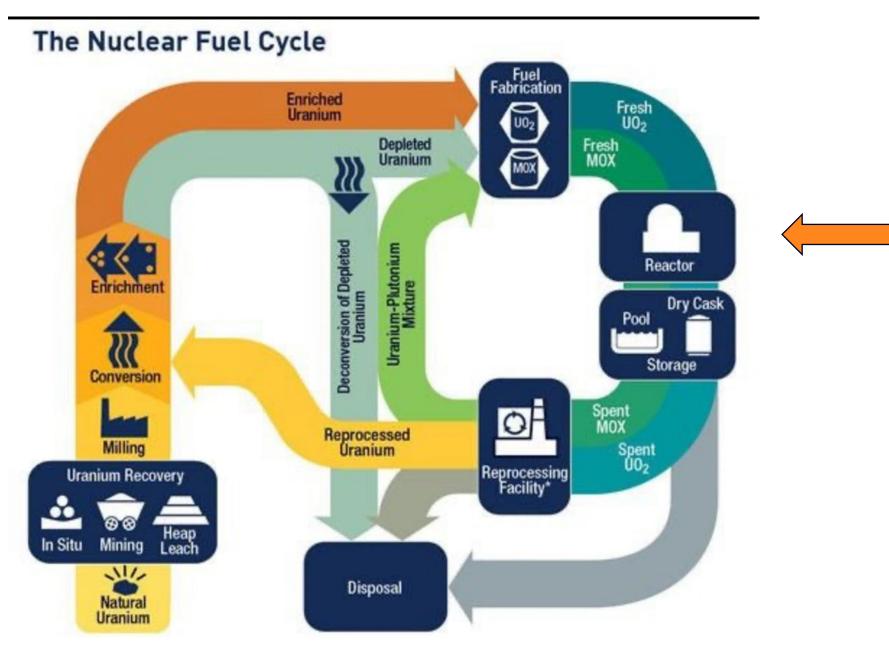
Nuclear Materials Management and Safeguards System (NMMSS)


- As the State System of Accounting for and Control of Nuclear Material, NMMSS fulfills the U.S. nuclear material reporting commitments to the international community including the International Atomic Energy Agency(IAEA) under voluntary safeguards agreements, the Treaty on the Non-Proliferation of Nuclear Weapons, Nuclear Cooperation Agreements, and other bilateral and multilateral agreements.
- NMMSS is co-sponsored by the U.S. Nuclear Regulatory Commission (NRC) and managed by the NNSA Office of Nuclear Materials Integration.

Physical Protection of Plants and Materials (10 CFR Part 73)

Material Control and Accountability (10 CFR Part 74)

International Safeguards (10 CFR Part 75)


Export and Import of Nuclear Equipment and Materials (Part 110)



Challenges of Safety, Safeguards, and Security

#### framatome

7



#### framatome

### Challenges of Safety, Safeguards, and Security

Theft – Diversion – Malicious Acts

#### <u>Challenges</u>

✓ Accountability

✓ Theft Prevention

✓ Physical Control

✓ Cyber Security

#### **Tools and Methods**

✓ Accidents Avoidance Design feature, operating procedures, Training

✓ **Diversion Resistance** Design feature, Vulnerability assessment, Instrumentation

Tagging, Assay, Alarms, Physical controls, Inspection

Tamper resistant locks and seals, Cameras, Access control

Limit access, Personnel - Fitness for Duty (Physical / Mental), Training

Control Access, Intruder prevention, Secure networks

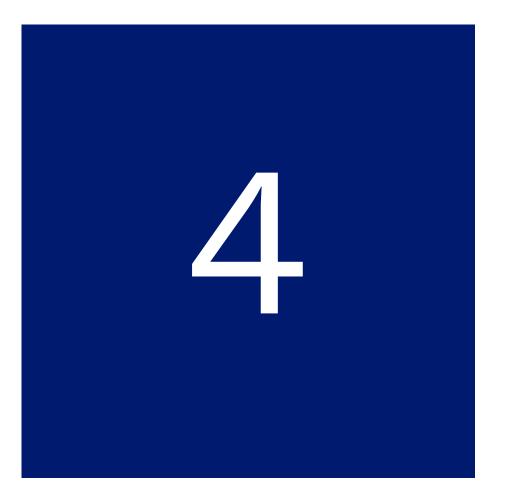
#### **Defense in Depth Strategies**

#### framatome



# Integration of Safety, Safeguards, and Security

# - In the design -


- In construction -
  - In operation -
- In decommissioning -

### Integration of Safety, Safeguards, & Security into the Design

#### Objectives and basic principals

- During initial design process
  - ✓ keep the principals of <u>Safety Safeguards and Security</u> in mind
  - ✓ Utilize & Implement 3-S tools within the design
  - ✓ Document and protect 3-S design features
- The best Safety, Safeguards and Security design features are those that are passive and tamper resistant
- Use active 3-S features as necessary
- During operations
  - ✓ Perform frequent vulnerability assessments and meticulous record keeping
  - ✓ Use of dedicated tamper resistant instrumentation
  - ✓ Physical and cyber security measure
  - ✓ Drill, training and human performance observation
- Finally Defense-in-Depth!

- Accident Avoidance
- Diversion Resistance
- Accountability
- Theft Prevention
- Physical Control
- Cyber Security



# **Concluding Remarks**



### Concluding Remarks

#### Objective and basic principals

- To own and operate a commercial nuclear facility in the United States or any Agreement State; the State must comply with the IAEA rules and regulations and the owner operator must comply with the reporting requirements associated with position, use, and control of nuclear material.
- IAEA and Agreement States have negotiated standards for use by entities intending to possess, use, transport, or handle special nuclear materials.
- Designers and developers of nuclear facilities "should" implement Safety, Safeguards, and Security features into their design to meet the IAEA, National, and State Regulations and Standards for owning and operating a nuclear facility or material.
- 3-S implementations
  - ✓ Most effectively implemented during the design phase of the facility.
  - $\checkmark$  Backfit is possible and <u>must be carefully</u> integrated into the original design.

#### framatome



# Thank

YOU

### Aspects of 3S Related to Advanced Reactors-Utility Perspective

Greg Boerschig Vice President, CRN Engineering & Quality Assurance TVA Clinch River Project



#### Disclaimer

TVA is currently developing content for a potential future license application(s) to the NRC for an advanced reactor design. TVA has not yet decided to deploy an SMR. Any decisions will be subject to support, risk sharing, required internal and external approvals, and completion of all necessary environmental and permitting reviews.



#### TVA & New Nuclear Technology February 2022 TVA BOARD DIRECTION

Approved funding up to \$200 million for a program to:

- 1. Perform design engineering, scoping, estimating, and planning associated with potential future deployment of an advanced reactor at Clinch River
- 2. Develop new nuclear license applications
- 3. Continue to study potential, future advanced reactor technologies
- 4. Study potential for advanced nuclear deployments at other sites

CLINCH RIVER NUCLEAR PROJECT INFORMS POTENTIAL FLEET DEPLOYMENTS

> NEW NUCLEAR PROGRAM PLANNING FOR POTENTIAL FLEET DEPLOYMENT



#### TVA's Early Preparation for a First Small Modular Reactor EARLY SITE PERMIT & PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT

- NRC Early Site Permit for small modular reactors received in 2019
- Programmatic Environmental Impact Statement for an advanced nuclear reactor technology park completed in Fall 2022







### Security-by-Design Approach

- Physical and Cyber security principles are considered during all phases of an advanced reactor design
- Security Subject Matter Experts are included as part of the design team
- Physical and Cyber security features are considered/evaluated and "built in" the design
- Tools and methods are identified and used to support the Physical and Cyber Security Programs based on the passive design and nuclear safety of advanced reactor designs



### **3S Tool Opportunities**

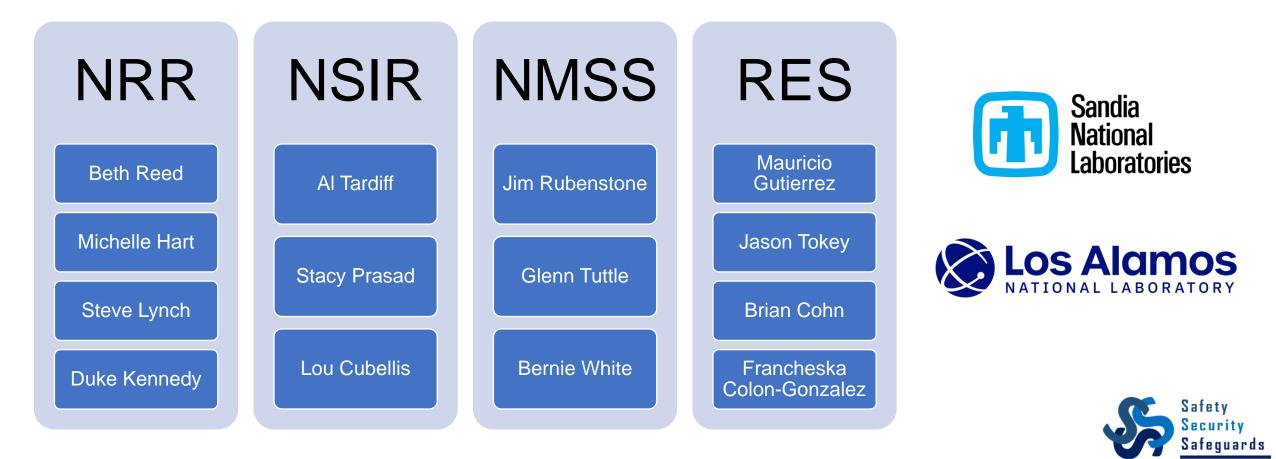
- Integration of Modeling and Simulation (M&S) tools with input from 3-D modeling tools
- Use of M&S tools to:
  - Maximize the passive design features of advanced reactors
  - Efficiently move from a "design-standard" security plan to develop a "site-specific" plan
  - Demonstrate and defend a site-specific security strategy such as minimum number of armed responders and defensive strategy







# Integrated Safety, Security, and Safeguards Future-Focused Research Project


John Matrachisia, Office of Nuclear Regulatory Research Jim Rubenstone, Office of Nuclear Material Safety & Safeguards Al Tardiff, Office of Nuclear Security & Incident Response Raj Iyengar, Office of Nuclear Regulatory Research



<sup>1</sup>The views expressed in this paper are those of the authors and do not reflect the views of the U.S. Nuclear Regulatory Commission. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.

<sup>2</sup> This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission.

# Acknowledgements





# Future-Focused Research Program

- Supports the NRC vision of becoming a modern, risk-informed regulator by funding research activities:
  - Intended to help the NRC prepare for upcoming challenges
  - Having longer-term (>3 years) horizons and greater risk opportunities than considered in typical activities addressing program office needs



# **Motivation/Drivers**

- Nuclear industry stakeholders have expressed an interest in 3S-by-design approaches
- Potential advantages of integrated 3S-by-design
  - Mitigating complexity risk
  - Sharing key inventory and operational data across subsystems
  - Reducing economic and regulatory costs







# Strategy

- Identify analysis and modeling & simulation methods for integration and assessment of 3S interdependencies
- Build NRC knowledge base
- Identification of regulatory considerations and tool identification-limitations-abilities
- Internal Coordination
- External coordination with the Department of Energy and international entities







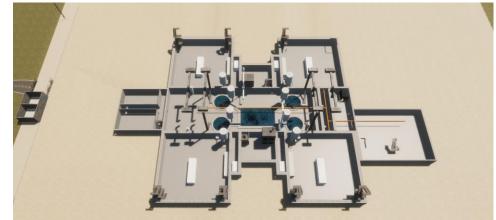
# Case Studies: Purpose

- Develop case studies to consider the integration of 3S (safety, security, and domestic safeguards [MC&A]). These case studies will be used in an NRC-RES report being developed for release in 2024 to provide a technical discussion on the current practices and gaps associated with 3S applications for advanced reactors.
- Case study scenarios being considered:
  - Molten salt reactor in a rural area
  - Microreactor in transit to site and operating in an urban area (two parts)
  - Fuel fabrication facility

6

- Scenarios to be developed using Scribe3D modeling and simulation visualization software.
- Goal is to publish releasable data.




### Molten Salt Reactor in a Rural Setting

### Facility/Terrain

- Four reactors using liquid fuel
- Small response team onsite

### Examples of 3S Considerations

- Upgrades to physical protection system, including perimeter fencing, vehicle/pedestrian checkpoint, and others
- Refueling; moving fuel, poisons build-up, storage vat, movement through secure areas, hot cannister movement release issue, unirradiated material theft concern
- ROWS, offsite response



Scribe3D mod/sim renderings





# Microreactor in Transit (Part 1 of 2-part scenario)

### Facility/Terrain

- Microreactor being moved to an urban area
- Arrival at port, transport on public roadways, sited close to small city

### Examples of 3S Considerations

- Multiple attack vectors (sea, land, air)
- Transport container
- Old reactor/new reactor onsite simultaneously
- Urban growth around site



Scribe3D mod/sim renderings





# Microreactor in an Urban Setting (Part 2 of 2-part scenario)

### Facility/Terrain

9

- Microreactor (LANL Snowflake) operating in an urban area
- Run autonomously; no main control room, no onsite staff
- PPS includes vehicle entry/exit, 2 fences, and an unfenced, grassy area surrounding the facility

### Example of 3S Considerations

- Cybersecurity
- Underground core location (containment/confinement)
- Offsite security
- Urban evacuation plans in case of release



Scribe3D mod/sim renderings





# **Expected Outcomes**

- Key interfaces identified
- Synergies/conflicts identified
- Regulatory challenges identified
- M&S tool capabilities and limitations
- Be ready for future reviews
- Broad applicability beyond fixed-site reactors (e.g., microreactors, FNPP)
- Areas requiring further research identified





Protecting People and the Environment

# Thank you

John Matrachisia, Office of Nuclear Regulatory Research, <u>John.Matrachisia@nrc.gov</u>

Jim Rubenstone, Office of Nuclear Material Safety & Safeguards, <u>James.Rubenstone@nrc.gov</u>

Al Tardiff, Office of Nuclear Security & Incident Response, <u>Al.Tardiff@nrc.gov</u>

Raj Iyengar, Office of Nuclear Regulatory Research, <u>Raj.lyengar@nrc.gov</u>





#### NRC 3S Workshop: Advanced Reactors and Fuel Fabrication December 5-6, 2023

#### **Cybersecurity Considerations**

#### Ismael L. Garcia

Senior Technical Advisor Cybersecurity and Digital Instrumentation and Control Office of Nuclear Security and Incident Response Email: Ismael.Garcia@nrc.gov

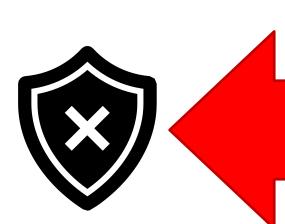
#### **Mauricio Gutierrez**

Instrumentation and Control Engineer Instrumentation, Controls, and Electrical Engineering Branch Office of Nuclear Regulatory Research Email: Mauricio.Gutierrez@nrc.gov

Note: The information and conclusions presented herein are those of the authors only and do not necessarily represent the views or positions of the US Nuclear Regulatory Commission. Neither the US Government nor any agency thereof, nor any employee, makes any warranty, expressed, or implied, or assumes any legal liability or responsibility for any third party's use of this information.



Cybersecurity Requirements for Nuclear Power Plants




0

# Nuclear Power Plants Cyber Requirements – 10 CFR 73.54

Digital Computer and Communication Systems

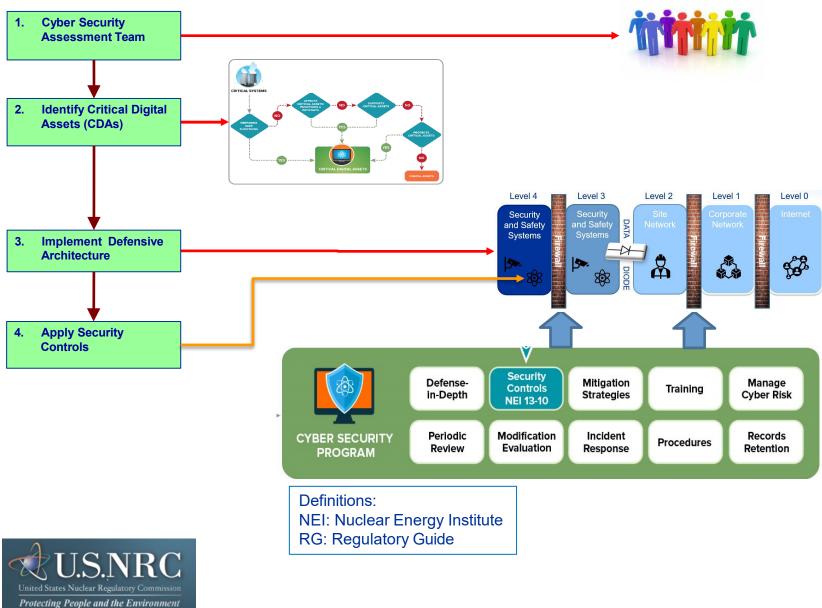




CYBER ATTACKS impacting:

 Integrity / Confidentiality of data and software

- Denial of access to systems, services or data

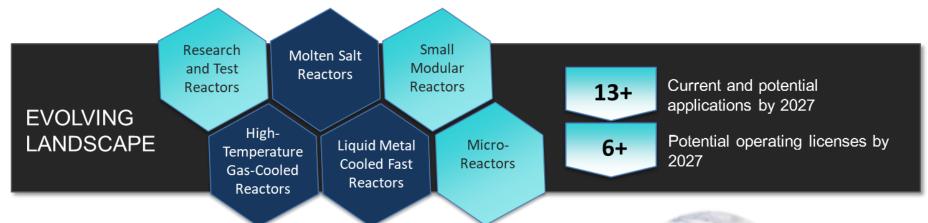

- Operation of systems, networks and associated equipment



Definitions: CFR: Code of Federal Regulations

Note: 10 CFR 73.54 rule text can be found at: https://www.nrc.gov/reading-rm/doc-collections/cfr/part073/part073-0054.htm

### Regulatory Guide 5.71










#### Preparing for a Wide Variety of Advanced Nuclear Technologies



- Many different reactor technologies
- Range of sizes from < 10 MWt to 600 MWt</li>
- Multiple reactors on a single site
- Hazards vary with power level and radionuclide inventory



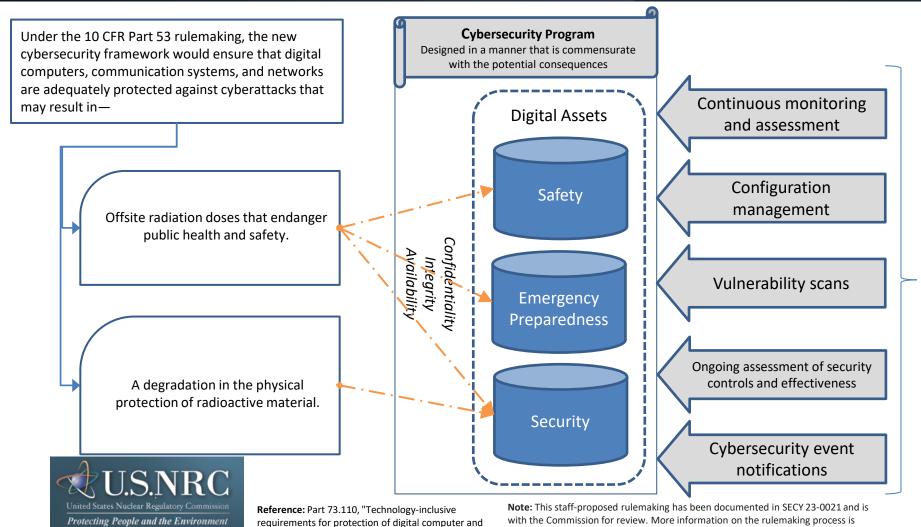


### **Proposed New Cyber Requirements**








10 CFR Part 53 development for Advanced Reactors Preliminary Proposed Rule Language Publicly Available

New Cyber Requirements in Proposed Rule



7

#### Preliminary Proposed Cyber Requirements



process.html

communication systems and networks," ADAMS

Accession Number ML21162A093

Defense in Depth

8

available at https://www.nrc.gov/about-nrc/regulatory/rulemaking/rulemaking-

#### Draft Regulatory Guide Development





An acceptable approach for meeting the 10 CFR 73.110 requirements



Effective guidance to support a performancebased regulatory framework Leverage IAEA and IEC security approaches

**Note:** This staff-proposed rulemaking has been documented in SECY 23-0021 and is with the Commission for review. More information on the rulemaking process is available at https://www.nrc.gov/about-nrc/regulatory/rulemaking/rulemaking-process.html.



#### Potential Integrated Cybersecurity-Safety Assessment Methods for Nuclear Power Plants

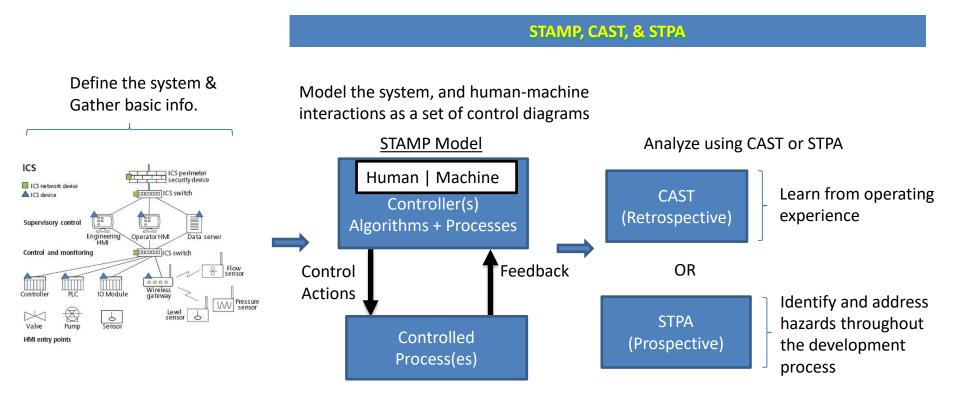




Integrated Cybersecurity-Safety Assessment Methods for Nuclear Power Plants- Potential Regulatory Applications



Augment Cyber Risk Assessments performed by licensees via an integrated safety-security assessment




Help licensees ensure security and safety systems proactively address design flaws that could be exploited by a cyber attack



Help licensees ensure that safety functions and cybersecurity features do not adversely affect one another

#### Integrated Cybersecurity-Safety Assessment Methods for Nuclear Power Plants - Investigate Potential Use of STAMP



#### Definitions:

CAST: Causal Analysis using Systems Theory STAMP: System-Theoretic Accident Model and Processes STPA: Systems-Theoretic Process Analysis



12



Protecting People and the Environment



#### ADVANCED REACTOR SAFEGUARDS & SECURITY

3S Integration in the DOE NE ARSS Program

NRC 3S Workshop

#### PRESENTED BY

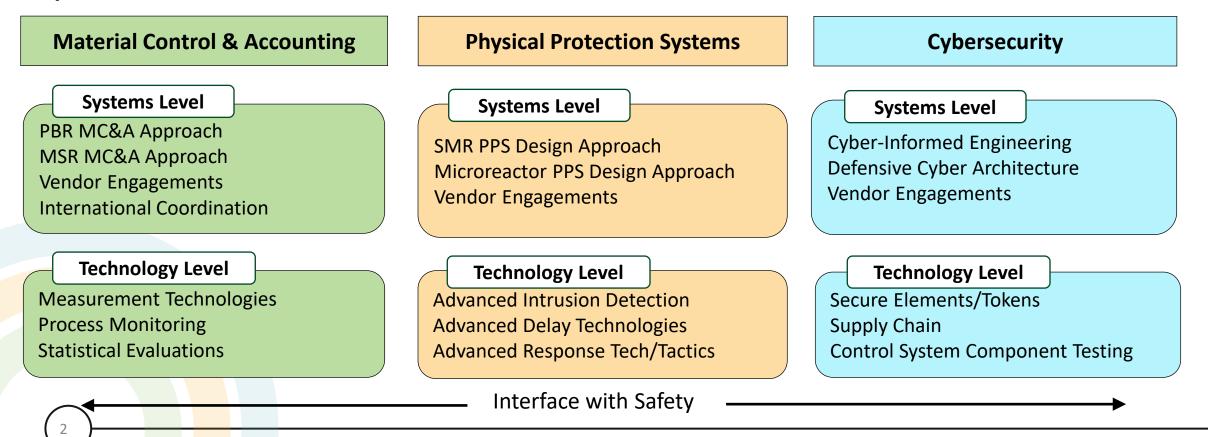
31

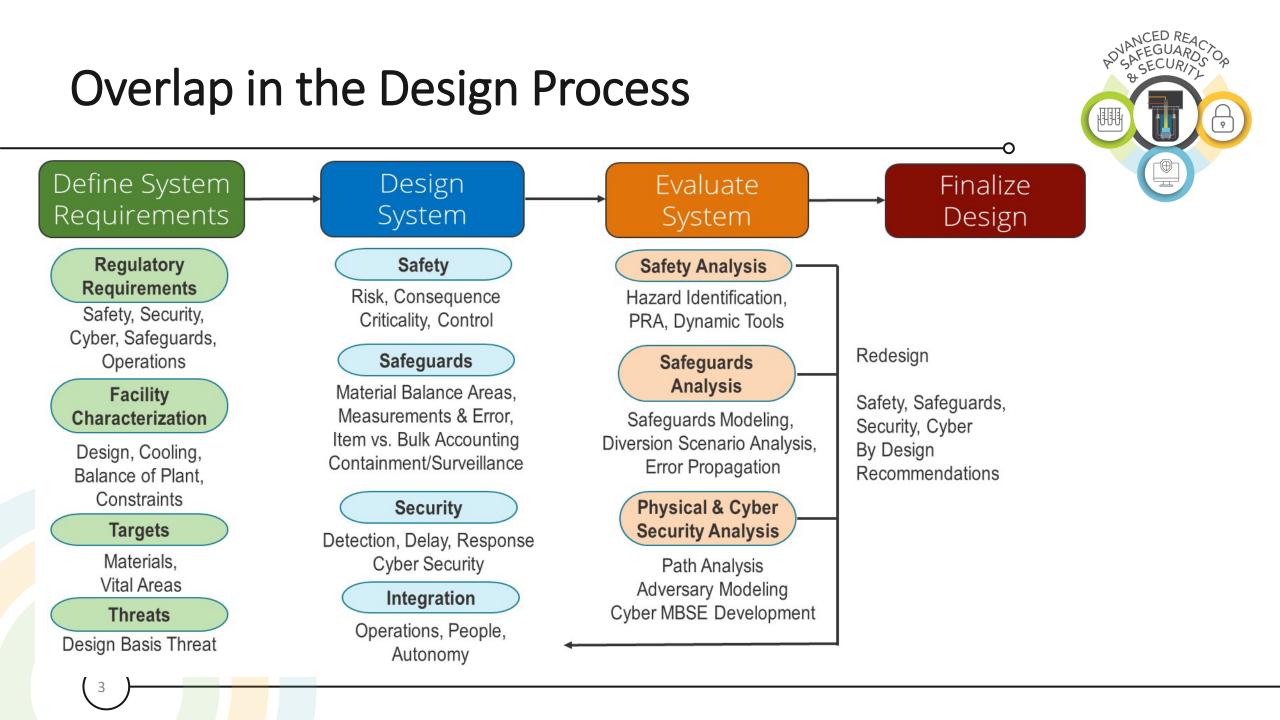
Ben Cipiti Sandia National Laboratories

December 6, 2023

#### SAND2023-13942PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

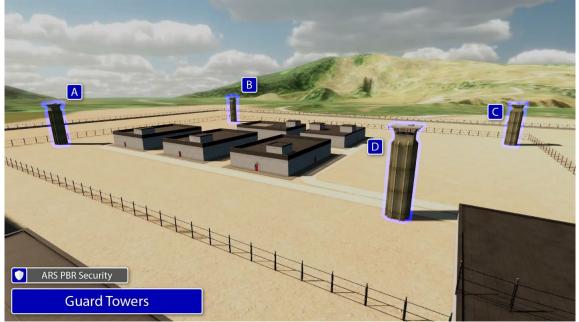



#### **ARSS Program Goal and Objectives**



The ARSS program is addressing near term challenges that advanced reactor vendors face in meeting material control and accounting (MC&A), physical protection system (PPS), and cybersecurity requirements for reactors built in the U.S.





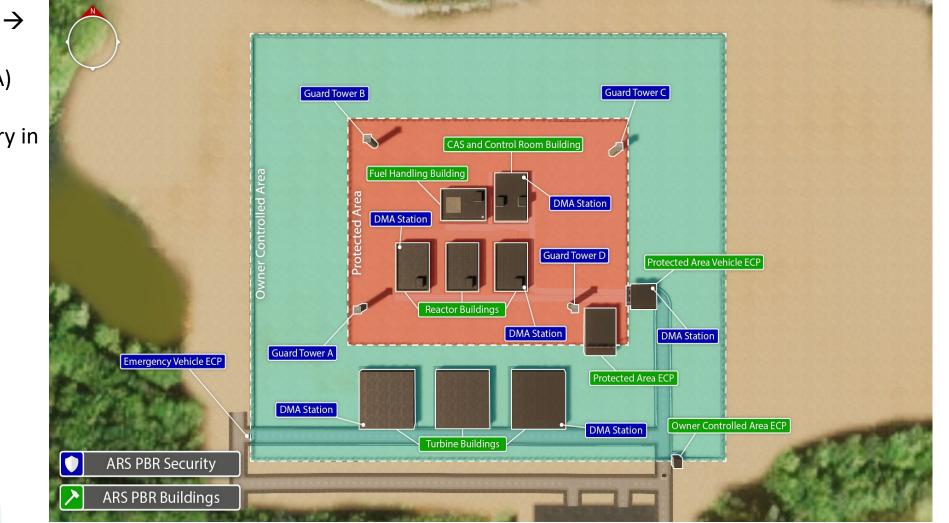

### **Physical Protection Systems**



- The AR vendors would like to reduce the PPS footprint and number of on-site security staff
  - Cost aspect to keep overall plant economics competitive.
  - Marketing aspect to show that these reactors are smaller and safer.
- Systems level work has focused on minimum numbers of staffing required for different reactor types and where those minimum numbers may be reduced through exemptions/alternatives.

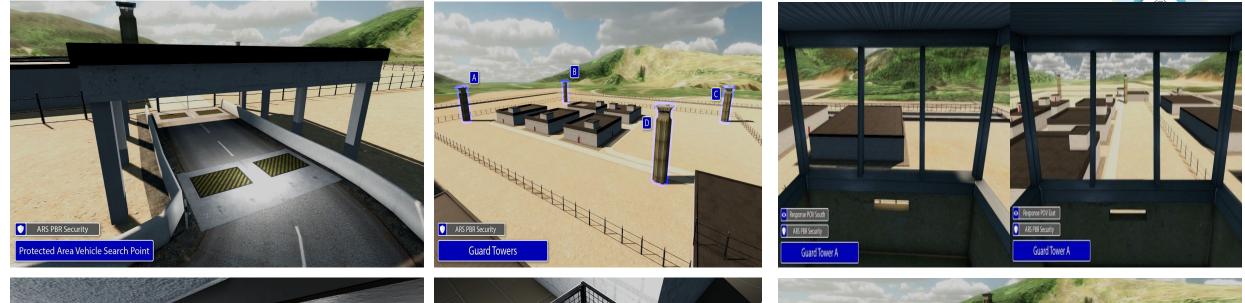


 Vendor engagements are being used to validate PPS design recommendations




- Initial work examined the use of off-site response but has since moved away from that approach for several reasons:
  - Costs for agreements and training would be the same as on-site responders.
  - Response times lead to the need for significant delay (adding cost)
  - Questions about reliability
- Initial work was also focused on providing R&D to support potential changes in the Part 73 limited scope rulemaking and Part 53.
  - Seeing potential large differences in first-of-a-kind versus n<sup>th</sup> of a kind.




### Generic Pebble Bed Reactor PPS Model

- Deliberate Motion Analytics → External Intrusion Detection
- Owner Controlled Area (OCA) Boundary in Blue
- Protected Area (PA) Boundary in Red
- 4 Response Towers
- 1 Roving Guard with Roof Access
- OCA entry control point for large vehicle searches
- PA entry control point for detailed vehicle inspections
- 6 Vital Areas



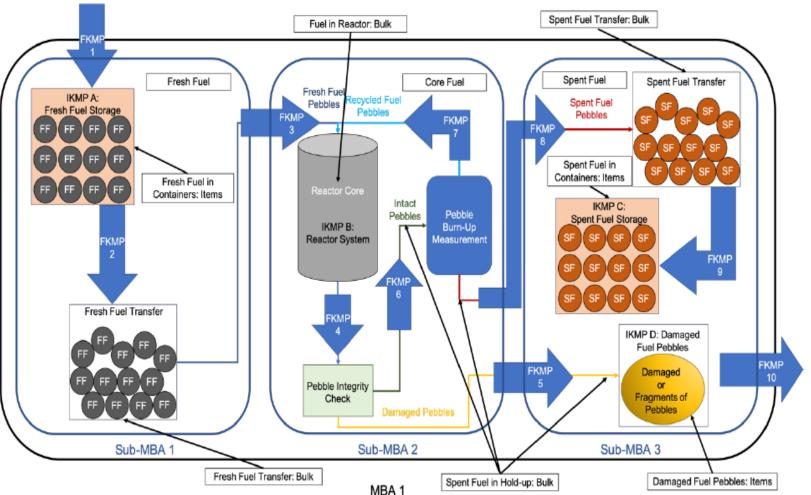
#### **PBR PPS Attributes**





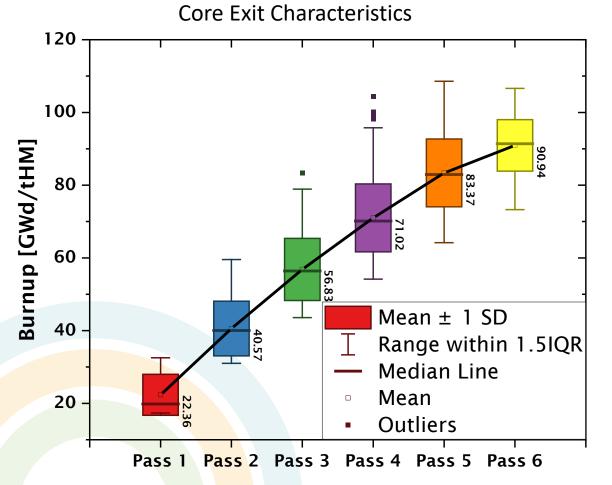







n

### MC&A for Pebble Bed Reactors



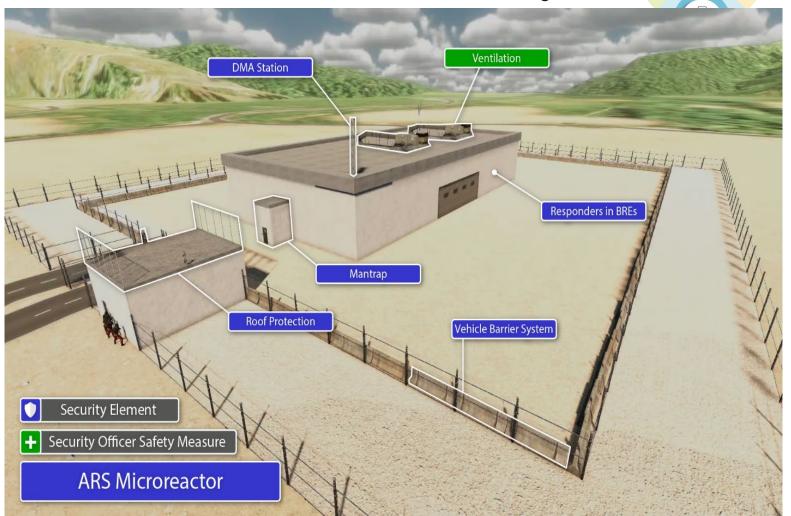

- Completed a milestone report on the MC&A approach for PBRs.
- Item accounting on fresh and spent fuel canisters.
- Fuel handling system consists of pebble counters, pebble integrity check, and burnup measurements.
- The burnup measurements can inform actinide content in spent fuel canisters.



### MC&A for Pebble Bed Reactors



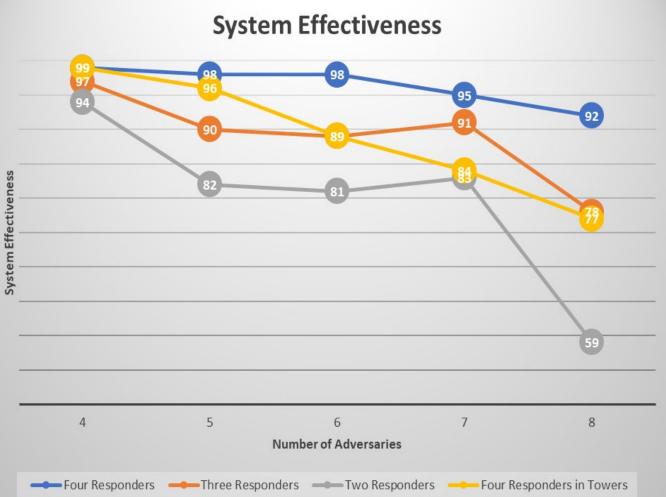



- The analysis on the left shows the range of burnup values achieved based on the pass.
- Based on a PBMR-400 model, the largest additional burnup achievable is 16.8 GWD/MT, so if the burnup limit is 100 GWD/MT, pebbles could need to be ejected once greater than 83.2 GWD/MT.
- ARSS is supporting an NDA measurement campaign on spent TRISO fuel and also looking into machine learning algorithms to improve the burnup measurement.

#### **Generic Microreactor PPS Model**

ANCED REACTOR POSAFEGUARDS OF SECURITY OF

- Deliberate Motion Analytics →
   External Intrusion Detection
- Owner Controlled Area Boundary
- Protected Area Boundary
- 4 different scenarios analyzed
  - 4 internal responders
  - 3 internal responders
  - 2 internal responders
  - 4 responders in towers
- One Entry Control Point
- Two Vital Areas


10

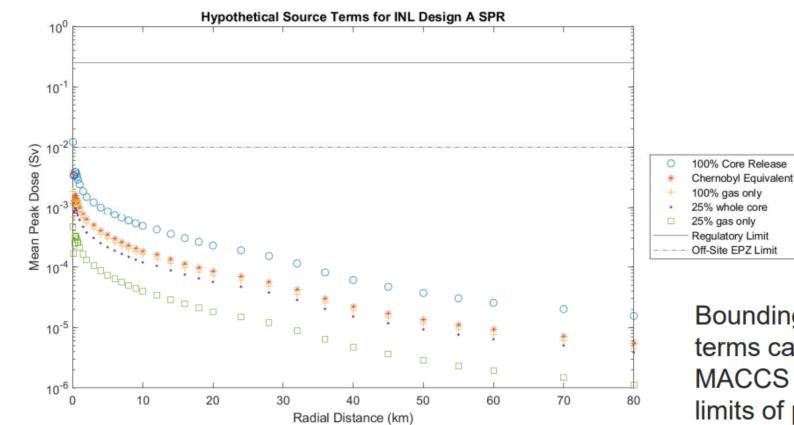


# Microreactor System Effectiveness and Staffing Plan



| Position                                                                          | 24/7<br>Rotating<br>Shift | FTE |
|-----------------------------------------------------------------------------------|---------------------------|-----|
| Security Shift<br>Supervisor                                                      | 1                         | 4   |
| Response Team Lead                                                                | 2                         | 8   |
| Alarm Station<br>Operators<br>(CAS/SAS)                                           | 3                         | 12  |
| Armed Responders                                                                  | 5                         | 20  |
| Armed Security<br>Officers<br>(Personnel, vehicle,<br>and material<br>processing) | 3                         | 12  |
| Total                                                                             | 14                        | 56  |




11

### Taking Source Term into Account



- An NEUP led by Karen Kirkland at TAMU and Shaheen Dewji at Georgia Tech examined source terms from a heatpipe microreactor.
- Full core release shown to be below the regulatory limit.
- Potential for significant impacts for both physical and cyber.

12




Bounding case sourceterms calculated from MACCS to show upper limits of potential off-site consequence (Wang 2023)

# MC&A for Liquid Fueled Molten Salt Reactors

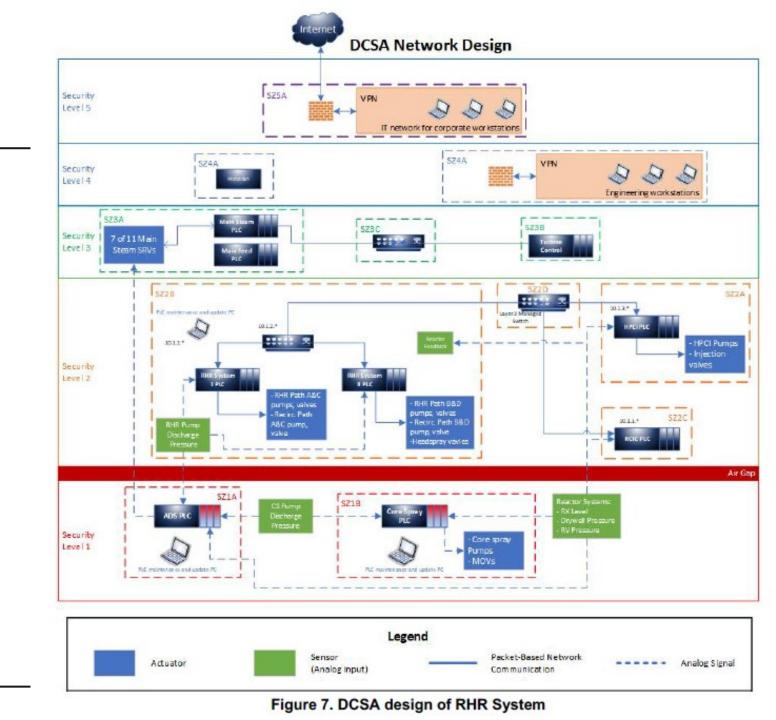
- MSRs are bulk facilities and will very likely need to submit an FNMC plan.
- Item accounting at front end and back end, with diversion monitoring for the reactor loop.

13



Periodic inventories performed, IDs and SEIDs calculated (follows Part 74 requirements)

Monitoring performed in specific locations to detect diversion




Periodic inventories performed, IDs and SEIDs calculated (follows Part 74 requirements)

# Cybersecurity R&D

- One program goal is to define a Defensive Cyber Security Architecture for each class of advanced reactor.
- The DCSA is used to develop the network design, system components, and flow of information.
- The goal here is not to design the system for the vendors, but rather provide recommendations and develop the technical basis for components that may be used.

14



### Cybersecurity R&D



- Advanced Reactor Cyber Analysis and Development Environment (ARCADE)
  - Modeling environment that connects physical plant models to control system emulations to support cyber security testing and evaluation
- Development and evaluation of security techniques for control systems
  - Identify performance characteristics and requirements for using security techniques (e.g., encryption and authentication) in control systems
  - Secure Elements Explore use of smart chips in control system components for supply chain security and embedded encryption and authentication
  - Integrity guaranteeing protocols Evaluate alternatives to encryption to ensure integrity in control systems
- Wireless Cybersecurity

15

- Develop requirements for secure wireless applications
- Develop testing and evaluation protocols to support use of wireless in new applications

### Discussion



- New reactors can take full advantage of a 3S by Design approach to develop cost-effective yet robust plant protection systems.
- We see more of a need for integrated 3S as we move toward the more exotic fueled reactors (PBRs and MSRs).
- Existing program work is beginning to evaluation 2S interfaces, but we expect to expand work on integrated 3S approaches as the program matures.
- We plan to develop a series of reports in the 3-5 year time frame on integrated 3S design recommendations for each class of advanced reactor.



UUR Reports will be posted to the program website:

https://energy.sandia.gov/ars

CUI Reports can be shared with vendors, NEI, and NRC provided certain conditions are met to protect the information.

Ben Cipiti, National Technical Director (SNL) <a href="mailto:bbcipit@sandia.gov">bbcipit@sandia.gov</a>

Katya Le Blanc, Deputy National Technical Director (INL) <u>katya.leblanc@inl.gov</u>

Dan Warner & Savannah Fitzwater, Federal Program Managers (DOE)

daniel.warner@nuclear.energy.gov, savannah.fitzwater@nuclear.energy.gov



### Safety, Safeguards and Security (3S)-by-Design: An Engineering-Based Approach

Adam D. Williams (Sandia National Laboratories)

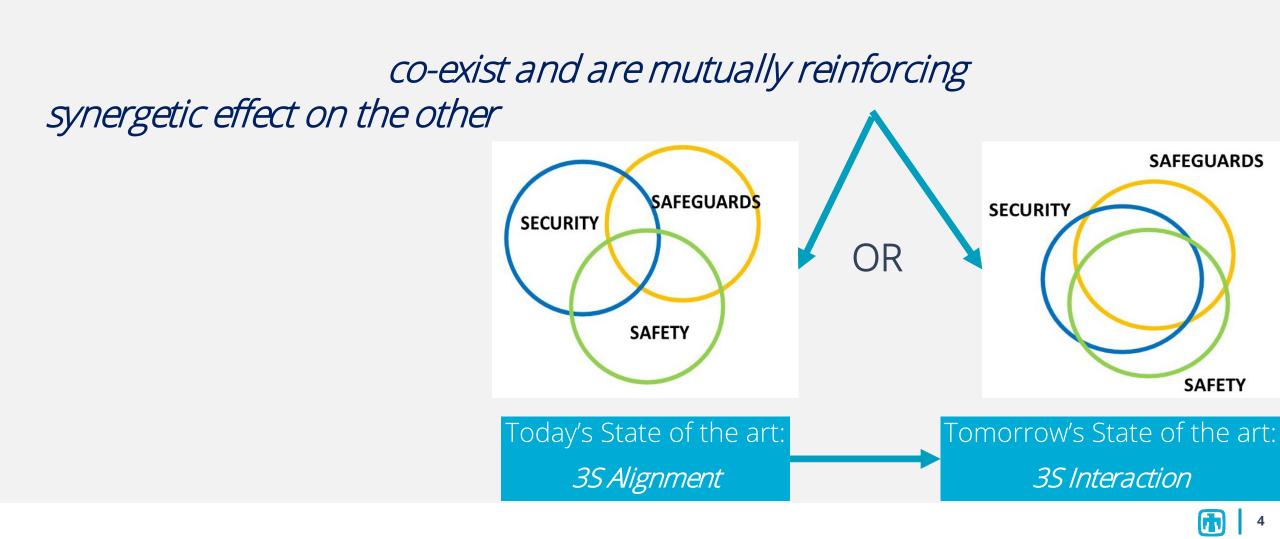
NRC 3S Workshop: Advanced Reactors and Fuel Fabrication December 2023



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.





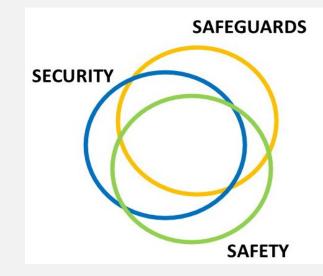

Safety-Security-Safeguards (3S) Examples in Advanced & Small Modular Reactors

Engineering Basis for "3S-by-design"

Conclusions, Insights & Implications

Safeguards, security, and safety are commonly seen as separate areas in nuclear governance. While there are technical and legal reasons to justify this, they also co-exist and are mutually reinforcing. Each has a synergetic effect on the other, and authorities should carve out avenues for collaboration to contribute to the effectiveness of the nuclear order. For instance, near real-time nuclear material accountancy and monitoring systems provide valuable information about the location and status of nuclear material. This in turn is useful for *nuclear security* measures. Similarly, such information enhances *nuclear safety* by contributing as input to critical controls and locations of nuclear materials.

> Former Deputy Director-General for Safeguards at the International Atomic Energy Agency Olli Heinonen




#### co-exist and are mutually reinforcing.

#### synergetic effect on the other,

#### How do we ENGINEER for these effects & interactions?

- Increased overlap between safety-security-safeguards related to such A/SMR characteristics as:
  - Increased deployment flexibility
  - Novel fuel types (including physical attributes)
  - New fuel flows & handling systems
  - Increased automation in operations
  - Smaller onsite staffing







#### (3S) Examples: Advanced & Small Modular Reactors





#### Example 1: Security-Safety Interfaces in SMRs

- Challenge: smaller economic margin vs. same DBT
- Individual 'S' Considerations.
  - Increased reliance on off-site response
  - Increased efficiency for onsite solutions
  - Implementing advanced technologies
- Interactions-based Solution(s).
  - Additional protection for "less-critical"
  - Decay heat removal can mitigate sabotage

#### Example 2: *3S Implications from New Fuel Forms*

- Challenge shift 3S approaches from item to bulk/mass materials
- Individual 'S' Considerations.
  - Safeguards refocus on C&S (vs. NMA)
  - Increased uncertainty in safety calculations
  - More security challenge via insider threat
- Interactions-based Solution(s).
  - Advanced technical & procedural measures
  - Balance relative "S" risk per material form

#### Example 3: Impacts on Risk Management

- Challenge how to handle new risk dynamics (vs. traditional elements of NPP risk)
- Individual 'S' Considerations.
  - Established PRA approaches  $\rightarrow$  Safety
  - Established VAI approaches  $\rightarrow$  Security
  - Passive technologies
- Interactions-based Solution(s).
  - Incorporate passive/inherent safety  $\rightarrow$  VAI
  - Overlapping "by-design" approaches

(



"By-Design" characteristics

- Built "into", not "onto" or "around"
- Included "during" not "after the fact"
- Informed decisions to optimize across functions
- Reactor-technology neutral
- Allows opportunities for innovation

**If** "by-design" focuses on optimally arranging features and functions of nuclear facilities, **then** engineering design approaches can help facilitate 3S interaction

SAFEGUARDS

"Security-By-Design" considerations (per conversations with participants in related IAEA consultancy meetings)

- "to reduce...vulnerabilities, improve...effectiveness related to design, layout, operations, maintenance"
- "to eliminate or mitigate vulnerabilities...using a graded approach before construction or manufacturing"

"Safeguards-By-Design" considerations (per J. Whitlock, Safeguards by Design, IAEA Bulletin 63-3 & IAEA NE No. NP-T-2.8, 2.9, 3.1, 3.2, 4.7, 4.8, 4.10)

- "earlier the discussion of safeguards the better"
- "improves the efficiency of safeguards by helping the IAEA to optimize their application"

"Safety-By-Design" considerations (per J. Liou, Safety By Design, IAEA Bulletin 62-1)

- "radical changes in the use of coolants, fuels, operating environments and system configurations"
- "increasing emphasis on inherent safety...and passive features and decreasing reliance on the operator"

SAFEGUARDS

"Security-By-Design" considerations (per conversations with participants in related IAEA consultancy meetings)

- "to reduce...vulnerabilities, improve...effectiveness related to design, layout, operations, maintenance"
- "to eliminate or mitigate vulnerabilities...using a graded approach before construction or manufacturing"

"Safeguards-By-Design" considerations (per J. Whitlock, Safeguards by Design, IAEA Bulletin 63-3 & IAEA NE No. NP-T-2.8, 2.9, 3.1, 3.2, 4.7, 4.8, 4.10)

- "earlier the discussion of safeguards the better"
- "improves the efficiency of safeguards by helping the IAEA to optimize their application"

"Safety-By-Design" considerations (per J. Liou, Safety By Design, IAEA Bulletin 62-1)

- "radical changes in the use of coolants, fuels, operating environments and system configurations"
- "increasing emphasis on inherent safety...and passive features and decreasing reliance on the operator"

#### "By-design" -> Supports an "all-hazards" approach to engineering

| SAFEGUARDS                          | 3S Interaction  | Representative Example                                                                            |
|-------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|
|                                     |                 | [Location on Venn Diagram]                                                                        |
|                                     | Interdependency | Coordination of 3S responsibilities during emergency operations [A]                               |
|                                     | Conflict        | Intrusive access control could impede evidence of peaceful<br>uses (increase safeguards risk) [B] |
|                                     | Gap             | Passive safety systems could be new targets for malicious acts (increase security risk) [C]       |
| Tomorrow's State of the art:        | Leverage Point  | Safeguards inspections could reveal a reactor vessel                                              |
| <i>3S Interaction</i> integrity iss |                 | integrity issues (reduce safety risk) [D]                                                         |

- System theory principles  $\rightarrow$  hierarchy, emergence, interdependence
- Complex systems concepts  $\rightarrow$  socio-technical, multidomain interactions

# "3S-By-Design" Engineering Basis

| SAFEGUARDS                                    |                 |                                       |
|-----------------------------------------------|-----------------|---------------------------------------|
| SAFEGUARDS                                    | 3S Interaction  | Systems Engineering Design Goal       |
|                                               | Interdependency | Identify & (possibly) decouple        |
|                                               | Conflict        | Identify, eliminate, and/or reconcile |
|                                               | Gap             | Identify, eliminate, and/or reconcile |
| <b>SAFETY</b><br>Tomorrow's State of the art: | Leverage Point  | Identify & exploit                    |
| 3S Interaction                                |                 |                                       |

- Interactions *may* be desired, but *need* to be identified/understood
- Interactions *can be* categorized based on relational dynamics
- 3S interactions  $\rightarrow$  facility design parameters to reduce risk

# "3S-By-Design" Engineering Basis

| A/SMR<br>Example | Safety                                                                                                                 | Security                                                                                                        | Safeguards                                                                                                                            | [3S Interaction Type] Systems<br>Engineering Design Goal                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | Capturing increased role<br>of "less-critical" facility<br>components as potential<br>targets for malicious<br>actions | Co-locating "critical"<br>facility components to<br>reduce security system<br>footprint                         | (Similar challenges can be<br>expected when considering<br>fewer resources to support<br>safeguards obligations)                      | [Conflict]<br>Identify & reconcile → Security<br>designs can incorporate<br>facility/reactor physics                                                                |
| 2                | Verifying the burnup of<br>each pebble/<br>concentration of liquid<br>fuel during rotation for<br>efficiency           | Accounting for/locating<br>each pebble or amount of<br>liquid fuel to prevent<br>potential use as RDD           | Confirming location of<br>pebbles/liquid fuel to prevent<br>diversion                                                                 | [Leverage points]<br>Identify & exploit → Selected<br>measurement solutions for<br>process monitoring can support<br>actinide accounting &/or asset<br>tracking     |
| 2                | Implementing traditional<br>PSA-approaches can<br>neglect important<br>elements of A/SMR<br>operational risk           | Conducting traditional VAI<br>techniques<br>propagate/compound<br>these missing elements of<br>operational risk | (Similar challenges might be<br>expected when acquisition<br>pathway analysis borrows from<br>traditional adversary path<br>analysis) | [Gaps]<br>Identify & eliminate → New VAI<br>approaches should be able to<br>include passive safety systems &<br>conducted earlier in the facility<br>design process |

(†

# **Conclusions, Insights & Implications**

- New A/SMRs characteristics → Opportunities to engineering for 3S interactions
  - Risks may *not be* independent
  - Systems theory concepts → framework for *addressing interactions*
- Commonalities in "by-design" → *Foundation for unified 3S approach* 
  - Emphasize "built into now" & not "around after" → *Innovation!*
  - Both *commonality & divergence* between 3S need to be addressed
- Engineering for *interactions* → *Can drive optimized A/SMR performance* 
  - Exploring interactions can help *reduce uncertainty* in A/SMR operations
  - Additional 3S & operations benefits from *explicitly designing* for *interactions*

# **Conclusions**, Insights & Implications

- Engineering-based approach → supports AdSec/INSAG Report No. 1 (2023) recommendations
  - Potential basis for "a common process of [safety & security that is] both more effective and more resource efficient"
  - *Directly* addresses 6 of the 10 key areas of interfaces, including: *identification of vital areas, optimization, human risk factors, information and communications, computer security, emergency preparedness* (and indirectly supports other 4)
- More specifically, this framing provides a possible structure for
  - "The identification and consideration of the interfaces between the well established nuclear safety system and the more recent nuclear security system...in order to reflect the equal value and priority given to nuclear safety and nuclear security"

# QUESTIONS???

THE OWNER WATCHING.

TREES FOR THE PARTY OF



# An Approach to Integrating 3S Modeling and Simulation

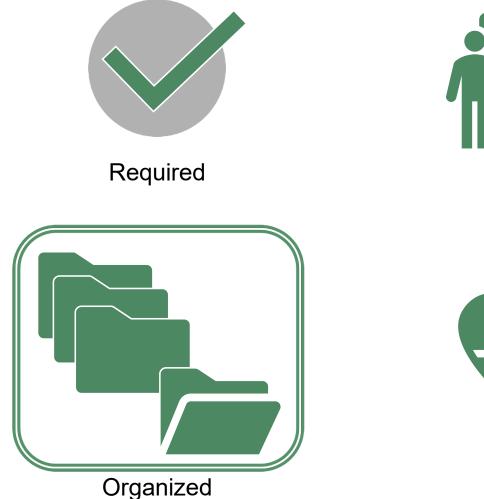
Stephen Reed, PE, P.Eng. 6 DEC 2023, 1300-1315

ORNL is managed by UT-Battelle LLC for the US Department of Energy



# Presentation Overview

- When is Integrated 3S Beneficial?
- Key Aspects of Integrated 3S
- Integration of 3S
- Next Steps



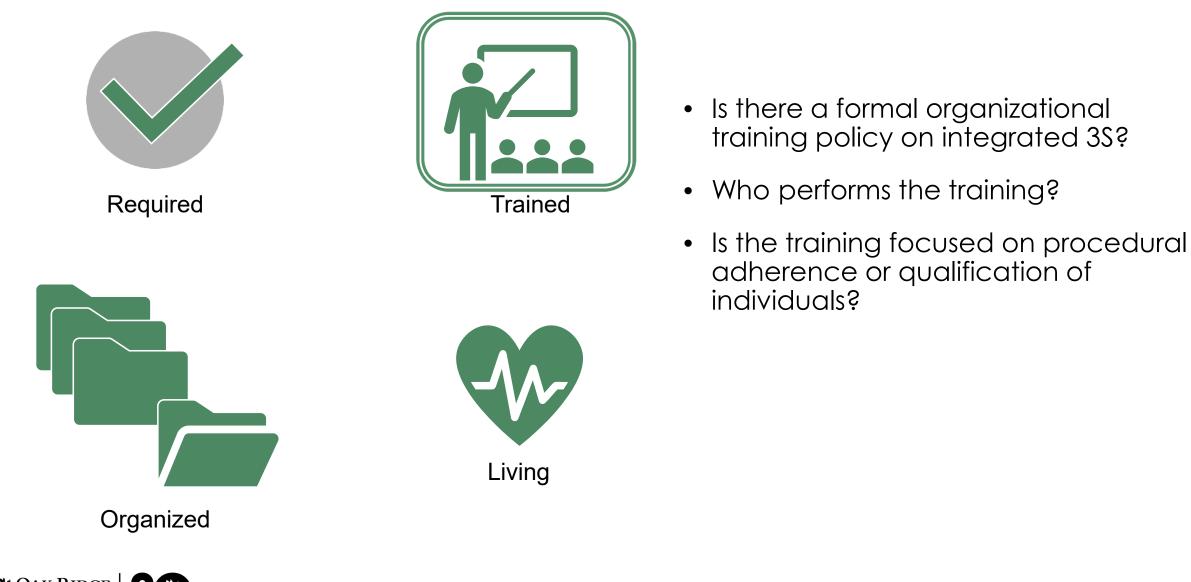





- Deployment in NWS may not provide a business justification for building integrated 3S program
- Internal Points of Contact and Divisions of Responsibility defined

3





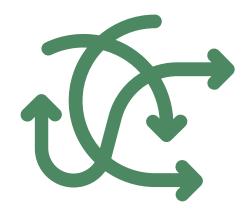


Trained

Living

- Is there a formal organizational program?
- Are there procedures available?
- Are the software and methodologies V&V'd? Approved?
- Are connections between methods and software well-defined?

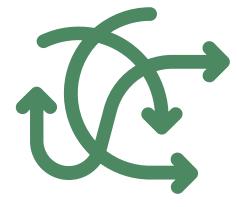







- Is Integrated 3S a living program?
- Is the process/procedure/program update and altered as lessons learned are developed and reviewed?
- Are there SMEs within the organization?

6


# Key Aspects of Integrated 3S



Integrated 3S is Complex



# Key Aspects of Integrated 3S





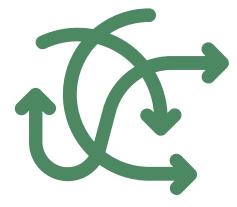
**Commitment from Leadership** 



Clear Positive Investment Case



Well-defined Program Architecture




Industry Group Support



8

# Key Aspects of Integrated 3S





**Commitment from Leadership** 

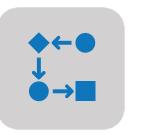


**Clear Positive Investment Case** 



Well-defined Program Architecture




Industry Group Support



9

### **Integration of 3S**





- INS Integrated Mod/Sim project has begun
  - Objective to document areas of interface, methodologies, and software between the 3S's
- Aid in:
  - Definition of 3S
  - Organization of Program



- INS SeBD Business Case and Tabletop has begun
  - Objective to develop a clear picture of the benefits and risks of investing in 3SBD, SeBD
- Aid in:
  - Financial Justification
  - Leadership Commitment





# Other Steps

- Consider developing training and qualification matrix for SMEs
- Build industry groups or Include 3S, 3SBD, Integrated 3S into existing industry groups





Scott Ferrara Chris Chwasz Idaho National Laboratory

December 6, 2023

United States Department of Energy National Nuclear Security Administration International Nuclear Security

NNSA INSTAR Multi-Lab FY23 Integrated Advanced Reactor Security Project Summary Summary Methodology, Categorization, Unique Aspects



### International Nuclear Security for Advanced Reactors (INSTAR)

Multi-Lab Integrated Project Overview



#### Scope and Objective:

To provide a logical framework to qualitatively characterize and risk-qualify advanced reactor security vulnerabilities early in the design and licensing process.

#### Key Outcomes:

Provide a schema that:

- Informs developers early in the design and licensing process on Inherent Security Considerations to address security concerns for domestic application and potentially for streamlined international deployment.
- Can be applied by National Nuclear Security Administration (NNSA)/Department of Energy (DOE)/producers to provide Insight on Basic Risk/Consequence management of a particular class or design/class of advanced reactors (ARs).
- Contains no proprietary or sensitive information that would preclude an outward facing report for maximum impact to developers and end users (state or utilities).

#### Importance:

Provides comprehensive AR risk insight and mitigations that will help lower overall security risk profiles through security by design for emerging AR technologies.

#### **Technology Considerations:**

Domestic only, classes based on technology type (MSR, HTGR, SFR, A-LWR, Micro Subset), Technology Readiness Level (TRL) and publicly available information driven.



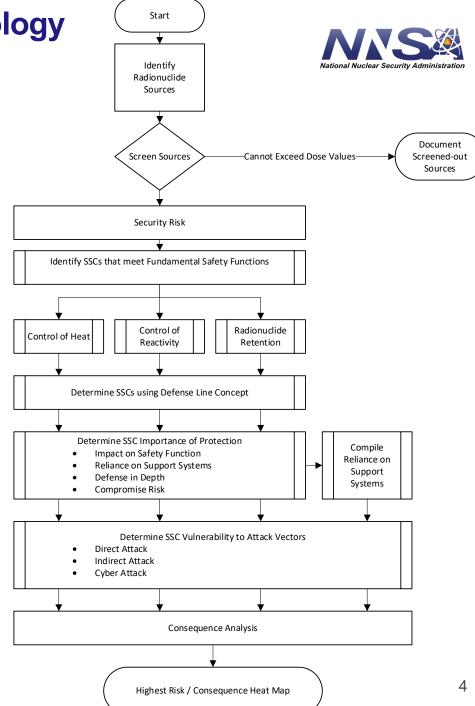
### **Regulatory Consideration and Motivators for Security by Design**



#### Regulatory Advantages to SeBD for Developers and Operators

- Security costs for current operators is 20% of Management and Operations (M&O) budget\*
- Security and Nuclear Safety nexus = enhancements that provide a safer, more marketable technology
- Licensing case can be more straightforward and accomplished at reduced cost
- Long term cost to operators may be reduced by decreased security staffing requirements
- Domestic Policy Actions Supporting SeBD in A/SMR Designs
  - Nuclear Regulatory Commission Limited Scope Security Rulemaking
    - Applies to current regulatory licensing constructs in 10 CFR Part 50 and 52
    - Allows for licensees to demonstrate through analysis where:
      - Nuclear safety and security design features can contribute to prevention or mitigation of radiological sabotage
        - Could result in reduced or no armed responders required onsite

#### - New Regulatory Construct 10 CFR Part 53 (DRAFT) Rulemaking


- New risk informed and technology agnostic construct
  - Provides for similar possible regulatory latitude to the limited scope rulemaking and much more related to risk informed alternative measures for meeting security performance objectives

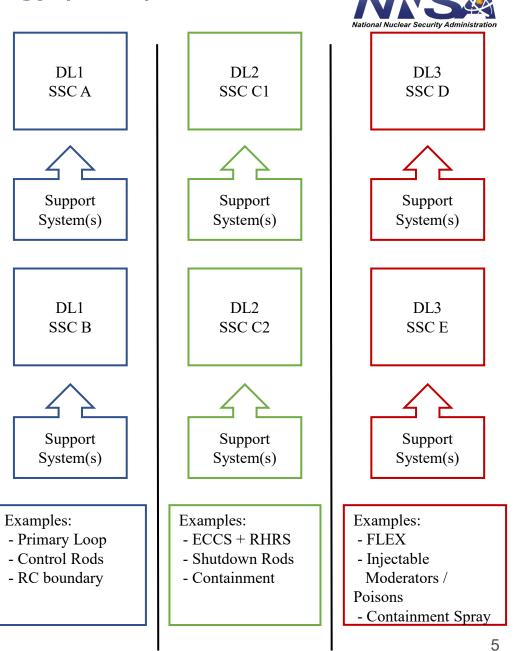




### **Security Analysis Methodology**

- A first step technology and security neutral analysis method that evaluates all important sources of radioactivity for nuclear power plants
- Evaluates SSC importance, vulnerability, source consequence
- Updated methodology to IAEA NSS 16 Vital Area Identification
  - Top-down analysis / Provides SSeBD and SeBD insights
  - Aligns with modern safety analysis methods (fundamental safety functions)
  - Includes consideration for cyber security
  - Compatible with hazards analysis methodologies for the identification of specific targets and sabotage modalities
- Credits enhanced safety system performance and evaluates safety systems for importance of their protection based on:
  - Fulfillment of the fundamental safety functions (FSFs) as determined using the SSeBD defense line concept:
    - Control of heat / Control of reactivity / Retention of radioactivity
  - SSC reliance on support systems / Defense in depth / Compromise risk





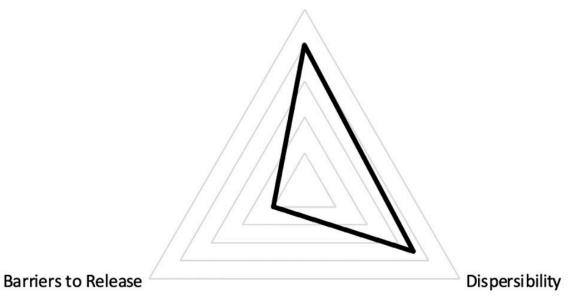

### Security Analysis Methodology (cont.)

- Evaluates System Security Vulnerability to:
  - Direct adversary attack (adversary at target)
  - Indirect adversary attack (adversary defeats or compromises from remote location)
  - Cyber adversary attack (is vulnerable to insider / adversary cyber-attack)
- Direct / Indirect Vulnerability Risk evaluated by SSC:
  - Accessibility
  - Within adversary capabilities

Reducing Risk of Nuclear Terrorism

- Timeframe to defeat / compromise
- Cyber Attack vulnerability evaluated by SSC:
  - Degree of control by CDA / Degree of information reliance on CDA
- Defense line concept groups SSCs by functionality, and importance.
  - DL1 SSCs may fully fulfill FSFs (some AR designs rely on passive reactivity control) or ultimately rely on a DL2 SSC.
  - DL2 SSCs will likely have higher importance than DL1 and DL3 SSCs
  - DL3 SSCs provide design defense in depth the fulfillment of an FSF
  - More than one SSC may be required to fully meet an FSF



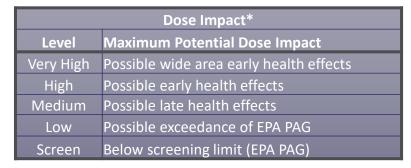

# Nuclear Consequence Assessment

Methodology



**Consequence Potential Ranking:** 

#### Max Dose Potential




#### **Consequence Potential**

educing Risk of Nuclear Terrorism

The sources of radioactivity can be evaluated based on the following characteristics:

- 1. Magnitude of source: Quantity and type of radioactive material
- 2. Potential dose impact: Potential impact on human health
- 3. Dispersibility: Inherent ability of the source to be dispersed to the environment
- **4. Barriers to release:** Radionuclide retention barriers preventing release of the source to the environment not security barriers to sabotage, but may overlap



\*Simplified total effective dose equivalent (TEDE) calculation performed using a preliminary radionuclide inventory estimate and postulated X/Q dispersion metric.

| Barriers to Radionuclide Release* |                                                                |  |  |
|-----------------------------------|----------------------------------------------------------------|--|--|
| Level                             | Description                                                    |  |  |
| High                              | No inherent barriers or single applied barrier                 |  |  |
| Medium                            | Single inherent barrier or multiple applied<br>barriers        |  |  |
| Low                               | Multiple inherent barriers or mix of inherent/applied barriers |  |  |

| Dispersibility* |                                              |  |  |
|-----------------|----------------------------------------------|--|--|
| Level           | Description                                  |  |  |
| High            | Very limited or no energy needed for dispe   |  |  |
| Medium          | Energy needed to initiate dispersal or small |  |  |
|                 | amount of continuous energy                  |  |  |
| Low             | Significant energy needed for dispersal      |  |  |
|                 |                                              |  |  |

\*Radionuclide retention barrier assumptions can be assessed independently or modified in coordination with the security analysis results. For example, if the attack compromises one or more of the radionuclide retaining barriers.

\*For example, a noble gas decay tank requires no energy for radionuclide dispersal once opened. In contrast, significant energy may be needed to liberate and disperse radionuclides from stored spent TRISO fuel.

rsal

### **Example Assessment Tables- Liquid Metal Fast Reactor (LMFR)**



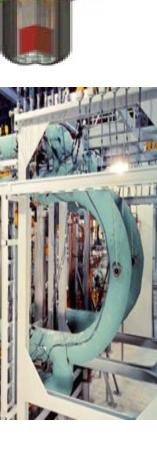
Table 5-27. SFR core security assessment rankings.

|           | Safety Function        | Structures, Systems, and<br>Components | Defense<br>Line | SSC<br>Importance | SSC<br>Vulnerability |
|-----------|------------------------|----------------------------------------|-----------------|-------------------|----------------------|
|           | Heat removal           | PHTS                                   | 1               | Low               | Very High            |
|           |                        | DRACS/RVACS                            | 2               | Medium            | Medium               |
|           | Reactivity control     | Inherent reactivity feedback           | 1               | Low               | Low                  |
| 1         |                        | Control rods                           | 1               | Medium            | Medium               |
|           |                        | Safety rods                            | 2               | High              | Medium               |
|           | Radionuclide retention | Fuel/cladding                          | 1               | Low               | Low                  |
|           |                        | Coolant                                | 1               | Medium            | Low                  |
|           |                        | Primary coolant boundary               | 1               | Medium            | Medium               |
|           |                        | Guard vessel                           | 2               | Low               | Low                  |
|           |                        | Confinement (HVAC)                     | 3               |                   | Very High            |
| ed<br>ier | Chemical hazards       | Oxygen                                 | N/A             |                   | Medium               |
|           | Support systems        | Power                                  | 1               |                   | Very High            |
|           |                        | 1&C                                    | 1,2             | Medium            | High                 |
|           |                        | Plant cooling                          | 1               | Low               | Very High            |

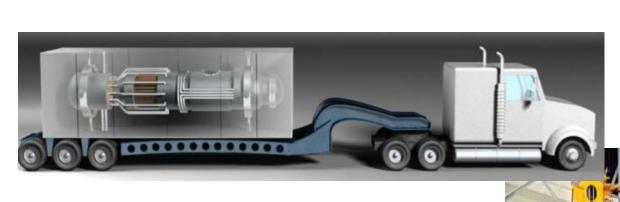
NOTE: The defense line value represents the typical use of the SSC in an operational plant according to the defense line concept in this report, SSC Importance is the relative importance of protection of that SSC (and not necessarily the direct importance of that SSC to the safety of the plant), and the SSC Vulnerability represents the relative vulnerability of the SSC to direct, indirect, and cyber-assisted adversary action.

Table 5-26. Summary of SFR risk consequence rankings for various sources.

|  | Reactor<br>Type | Source                        | Maximum Dose<br>Potential Ranking | Dispersibility<br>Ranking | Barrier<br>Ranking1 |
|--|-----------------|-------------------------------|-----------------------------------|---------------------------|---------------------|
|  |                 | Core                          |                                   | Low                       | Low                 |
|  |                 | Cesium trap                   | Medium                            | Medium                    | Low                 |
|  |                 | Sodium cold trap              | Medium                            | Medium                    | Low                 |
|  | SFR             | Noble gas decay tanks         | Low                               | High                      | High                |
|  |                 | Used subassembly wash station | High                              | Medium                    | Low                 |
|  |                 | Used fuel storage pool (Na)   |                                   | Low                       | Low                 |
|  |                 | Used fuel storage pool (H2O)  |                                   | Low                       | Medium              |


NOTE: Multiple barriers, inherent or applied, results in a lower ranking. For example, the "Low" ranking is characterized by multiple inherent or mix of inherent/applied barriers while the "High" ranking is characterized by no inherent barrier or a single applied barrier. Section 4.3. provides a more detailed description of these rankings.

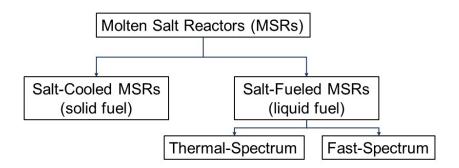


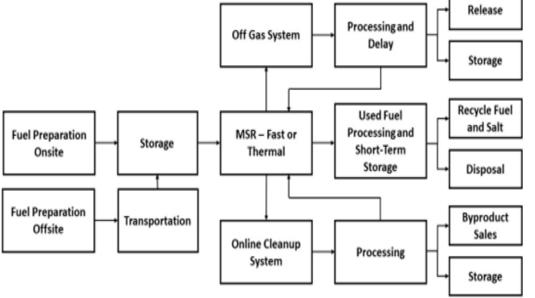

#### **Advanced Reactor Classes and Attributes of Interest**

- Advanced Pressurized Water/Boiling Water Reactors
- High Temperature Gas Reactors
- Molten Salt Reactors
- Liquid Metal Fast Reactors
- Microreactors
- Common Considerations
  - Passive Decay Heat Removal
  - Final Security Barrier Protection of Critical Systems and Source Terms
  - Ex-Core Source Targets
  - Functional Containments
  - Control Systems and Remote Operations (Cyber)
  - Dispersibility Models for Advanced Fuels Related to Radiological Sabotage








### **Molten Salt Reactor Considerations**

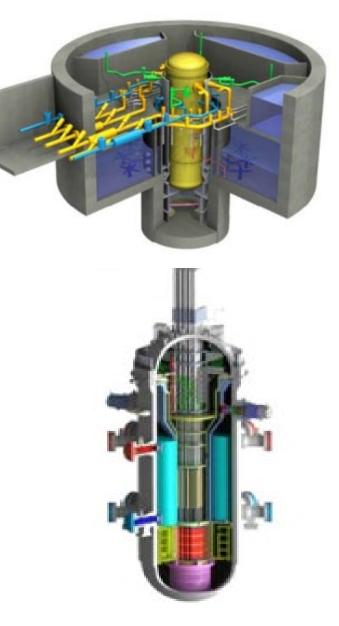
- Platforms:
  - Pool and Forced Flow, Thermal and Fast, Homogeneous Dispersed and Rodded Fuels
- Key MSR Considerations:
  - Keeping the fuel salt and off-gas in-vessel reduces the number of locations for large quantities of radioactive materials during operation and thereby the number of potential targets for an adversary.
  - Salt Drain Tank Design
  - Decay Heat Removal Systems
  - Off Gas System Management for Source Term Reduction (design and operations)
  - Fuel Salt on-line processing systems
  - Fuel Salt Waste Processing (waste form processing and stabilization)
  - Refueling Line Concerns







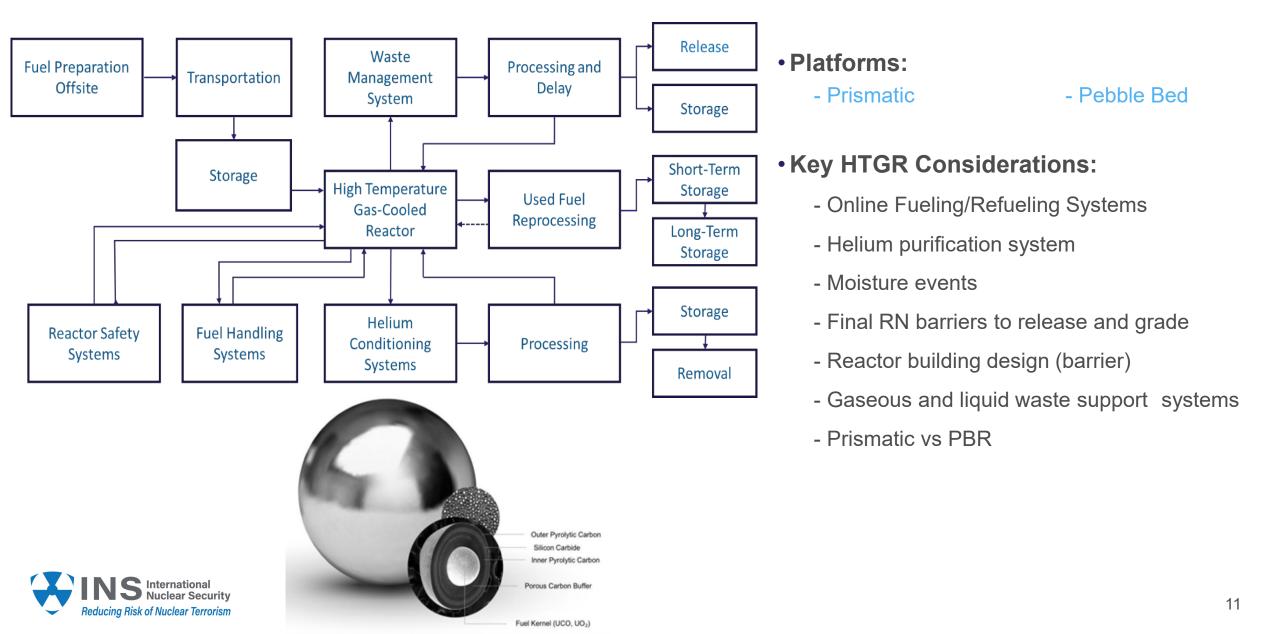



### **Advanced Light-Water Reactors**

• Platforms:

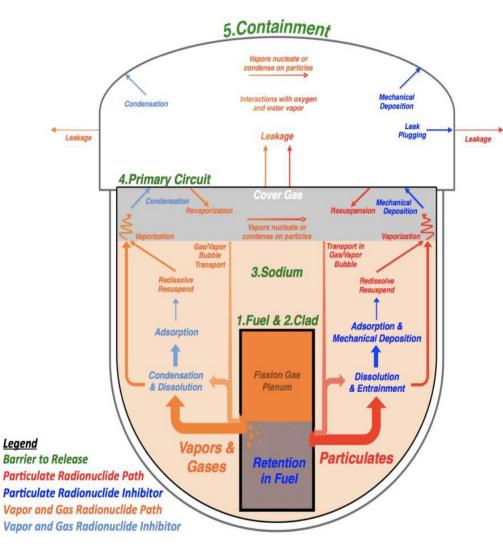
-Advanced Pressurized Water Natural Convection Flow Reactors -Advanced Boiling Water Reactors

- Key ALWR Considerations:
  - Passive Decay Heat Removal
  - Final Security Barrier Protection of Critical Systems and Source Terms
  - Critical Systems Vessel Integrity
  - Functional Containments
  - Control Systems and Remote Operations (Cyber)
  - Dispersibility Models for Advanced Fuels Related to Radiological Sabotage









#### **HTGR Considerations**





#### **Liquid Metal Fast Reactors**





#### **Platforms:**

- Pool and Forced Flow Loop Types,
- Fast Spectrum
- **Key Considerations:**
- Passive Decay Heat Removal
- Final Security Barrier Protection of Critical Systems and Source Terms
- Cover Gas Cleanup System Sources
- Na Purification System: Cesium Cold Trap / Cleanup System & Support Systems
- Na Air / Water Interactions
- Control Systems and Remote Operations (Cyber)

12



#### **Micro-Reactors**

Types of Platforms:

Reducing Risk of Nuclear Terrorism

-Molten Salt Reactors

National Nuclear Security Administration

-Heat Pipe Reactors

Key Considerations: - Compact Nature, Footprint, Source Strength Fuel Preparation & **Off-Site Storage** Loading Offsite - Final Barriers (RN Retention and Security) Re-enforced / below grade - Passive Decay Heat Removal Transportation / Site Setup Used Fuel / - Heat Pipe Energy Transfer Reversals and Ramp Reactor - Fast or **Reactor Recovery** Thermal Rates (HP Protection by design) by Vendor - Remote Operations Considerations Offsite Short-Adiabatic Evaporator Condenser Term Storage Section **Reactor Safety** Systems Offsite Long-8 Liquid Flow **Term Storage** dWick Heat Sink Heat Source Structure Lnternational

-High Temperature Gas reactors

#### **Summary Status of Report Availability and Closing**



- Actions to Validate the Process
  - A peer review of the process by Sandia National Lab experts will further inform/refine the approach
  - Test case use to be performed on a developer design as part of the NNSA NEXUS collaborative support process
- Finalize the report and release to OSTI and NEXUS Website for use by developers and bi-lateral partners internationally
- Finalize the one-page technology summary sheets for deployment on the NNSA NEXUS website for reference by interested partners

https://nuclear-nexus.anl.gov/nexus/

https://nuclear-nexus.anl.gov/nexus/#/international-nuclear-security/security-by-design#how-canindustry

### **NNSA International Advanced Reactor Deployment Goals**





De-Risk by Design

Deploy







United States Department of Energy National Nuclear Security Administration International Nuclear Security

**Economic Reasons for 3S-by-design** 

December, 2023

Bobby D. Middleton, PhD



Release number



#### **Overview**

- Nuclear Construction Costs Recent History
- Nuclear O&M Costs
- Translating to ASMRs
- Regulatory Questions
- Example: Measuring Financial Benefits of SeBD
- Investor Perspective





#### Some Recent History in Nuclear Construction costs

Vogtle Units 3 and 4

- -Cost of \$30 Billion (with Unit 4 still under construction)<sup>1</sup>
- -Total expected to be more than \$35 Billion
- -Two 1117 MWe AP1000s
- Expected overnight costs of ~\$8000/kWe with total costs (including cost of money) about twice that<sup>2</sup>

VC Summer

- -In 2008, estimated costs expected to be \$9.8 Billion
- -By 2017, this had grown to \$25 Billion
- -Westinghouse filed for bankruptcy
- -Project abandoned by Santee Cooper and SCANA





#### **O&M Costs**

- Different estimates exist for nuclear O&M costs
  - (Burli, Yadav; 2020) ~ \$19.69/MWh
    - Assuming:
      - \$31.88/MWh cost to produce electricity (LWRS study)
      - 93% capacity factor (~industry average)
      - Obtain O&M ~ \$160 M/yr for 1000 MWe plant
    - => ~ \$160/kWe physical security costs
  - (Middleton, Drennen; 2021)
    - ~ \$86/kWe without security costs (in 2020 dollars)
    - Security costs depend on design and response time
      - Baseline design (Fences and badge readers) with 10 minute response time: \$36.03/kWe
      - Baseline design (Fences and badge readers) with 1 minute response time: \$45.03/kWe
    - => ~ \$122 \$131/kWe O&M costs
    - Advanced design (Baseline plus Xray, BMS, PIDAS, vibration cables)
      - Baseline design with 10 minute response time: \$64.44/kWe
      - Baseline design with 1 minute response time: \$73.44/kWe
    - > ~ \$150 \$159/kWe O&M costs
    - Construction costs are also highly dependent on design (\$15-\$300/kWe).





#### **Translating to ASMRs (Discussion)**

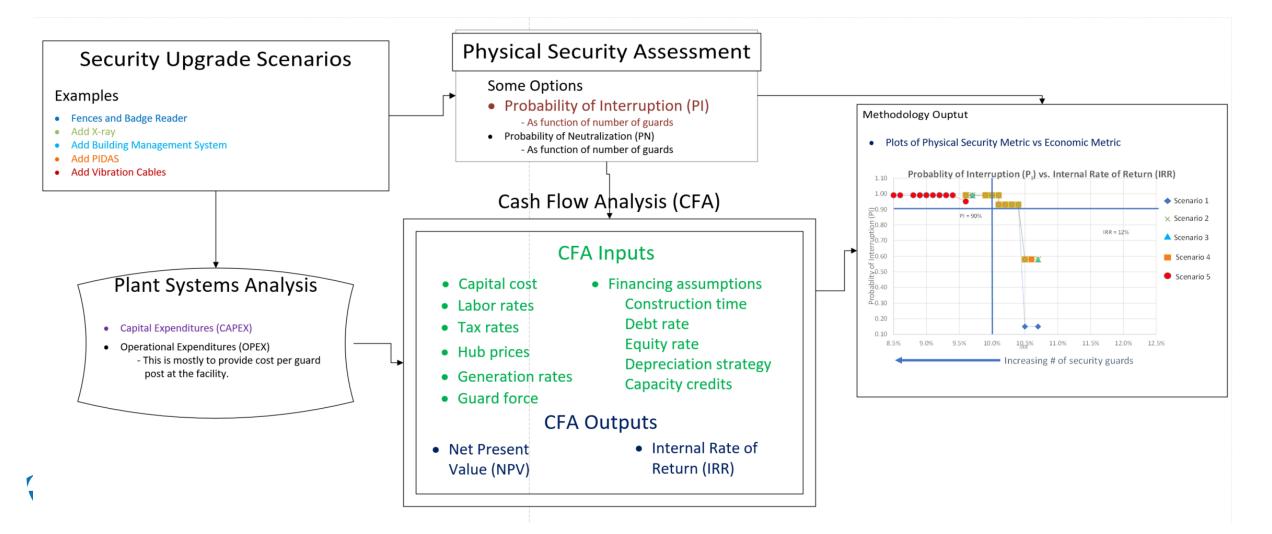
- How does security cost scale with power output?
  - Anything less than a proportional scaling is likely not going to be acceptable for commercial power production).
  - Niche markets
    - Remote villages (Shungnak)
    - DoD
    - Space nuclear
- Who pays for the design work?
  - It would seem that any 3S-by-design work would need to be done by the vendor at an early stage.
  - Even if it is successful, the designers' must be paid.
  - This cost must be rolled into the cost that the vendor charges the owner/operator.
- Who pays for the PPS upgrades?
  - Who is responsible for ensuring the PPS is constructed correctly?
  - Who interacts with the contractor?
- If contractor can't deliver on budget, who is responsible?





#### **Regulatory Questions**

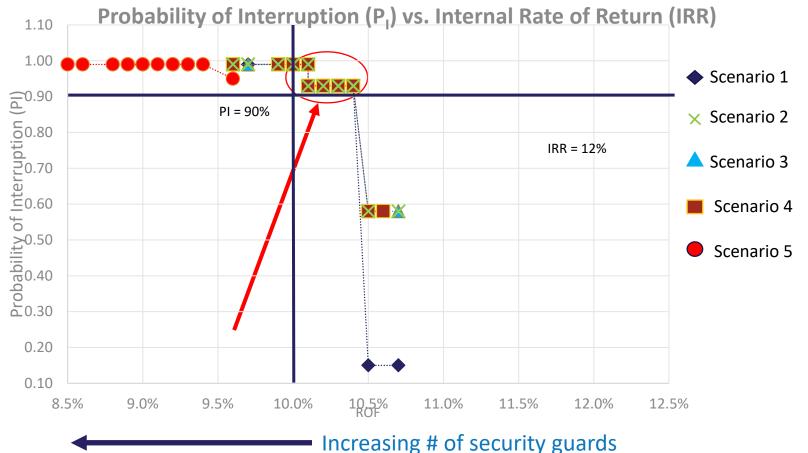
- For niche markets, who regulates security?
  - Military bases
  - DOD bases
  - Space
  - Remote villages (assume this one is NRC, but how to have NRC reps on-site)
- How will the NRC handle security regulations at various ASMRs?
  - First of all, some people at Sandia may already know this (not my expertise)
  - Smaller LWRs (e.g., one NuScale unit)
  - Advanced reactors (e.g., molten salt, gas-cooled, liquid metal)
  - HALEU fuel


• How do regulations translate from traditional to smaller reactors?



# Example: How do we measure financial benefit of security-by-design (SeBD)?




Sandia, INL, and ORNL developed a methodology for combining standard financial tools to SeBD





#### **Investor Perspective**

Investors typically have a minimum rate of return (ROR) requirement. For a required ROR of 10%, 5 or 6 scenarios are profitable.







# Discussion/Questions



9