

# High Burnup Fuel Accident Source Terms ACRS Briefing Nov 16, 2023

Presented by Lucas I. Albright and David L. Luxat



## **Contents**



- Motivation and Background
- Key Messages
- Deep Dive
- Summary
- Independent Peer Review
- Upcoming Work



# Motivation and Background



#### SANDIA REPORT

SAND2023-01313 Printed April 2023

# High Burnup Fuel Source Term Accident Sequence Analysis

L.I. Albright, L. Gilkey, D. Keesling, C. Faucett, D.M. Brooks, K.C. Wagner, L.L. Humphries, J. Phillips, D.L. Luxat

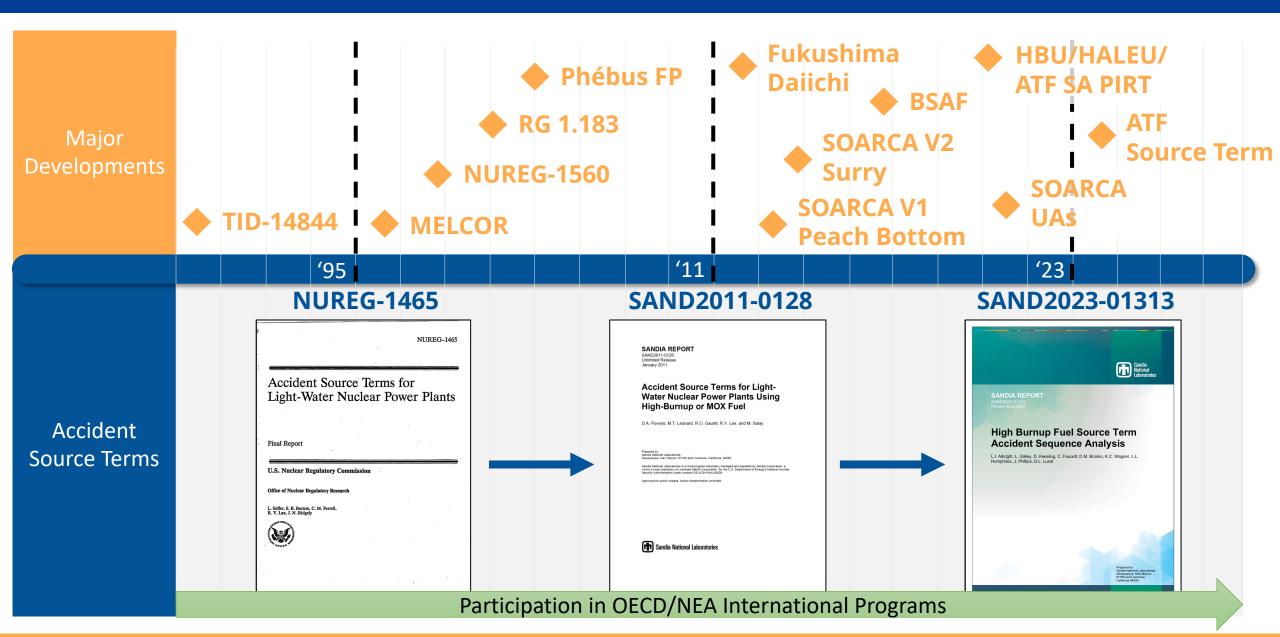
SAND2023-01313

# High Burnup Fuel Source Term Analysis Motivation

- Develop alternative source term applicable to LWR cores with HBU/HALEU fuel
  - Different burnup levels and enrichments considered
- Extends NUREG-1465 and SAND2011-0128 alternative source terms

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550




# Historically Relevant Studies



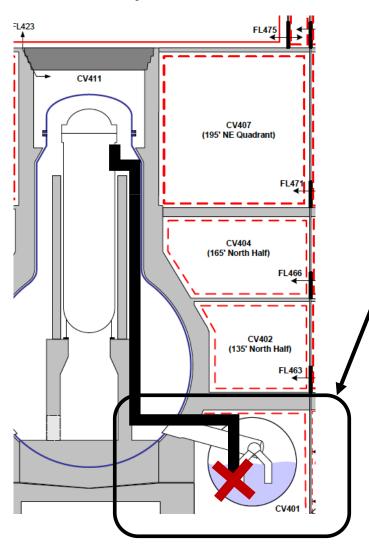
- TID-14844: "Calculation of Distance Factors for Power and Test Reactors," USAEC 1962
- NUREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants,"
   USNRC 1995 (code: STCP)
- **SAND2011-0128** "Accident Source Terms for Light- Water Nuclear Power Plants Using High-Burnup or MOX Fuel" (code: MELCOR 1.8.5)

## Source Term Timeline



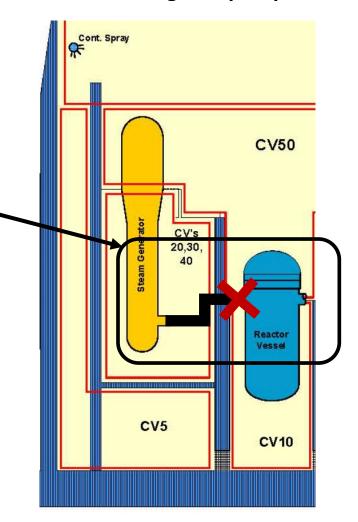


## Severe Accident Modeling Advancements




- Heterogeneous, integrated reactor core modeling tends to promote to progressive and extended core degradation.
  - 2D discretization of the reactor core
  - No more distinct "gap release phase"
  - Prolonged core damage progression
  - Longer times to lower head failure
- Prevalence of accident-induced low-pressure scenarios SOARCA
  - Thermally induced SRV seizure for majority of BWR sequences
  - Hot leg creep rupture for majority of PWR sequences

# Impact of Early Depressurization




#### **BWR: Thermally induced SRV seizure**



Early loss of the primary pressure boundary induces depressurization of the reactor coolant system and opens a release pathway for radionuclides to transport directly to containment during early in-vessel core degradation

#### **PWR: Hot Leg Creep Rupture**



\*Diagrams are for illustration purposes only

## Selected Severe Accident Datasets



More recent severe accident datasets have improved characterization of core damage progression and subsequent radionuclide releases since NUREG-1465

- Severe accident experiments used to validate severe accident codes
  - Phébus FP
    - Early fuel failure
    - Hypothesized CsMoO<sub>4</sub> as the dominant chemical form of Cs
  - VERCORS
    - Early fuel failure
    - High burnup fission product release rates
- Severe accidents are a primary data source for severe accident code validation
  - Fukushima Daiichi
    - Existing data confirms that CsMoO<sub>4</sub> is the dominant chemical form of Cs

## Severe Accident Knowledge Advancements



## Chemical form of iodine:

- NUREG-1465 assumed 95% of iodine in the form of CsI
- Current practice assumes all lodine to be Csl
- Still assume 5% of the total iodine inventory is present in the gap inventory

## Chemical form of cesium:

- NUREG-1465 assumed Cs predominantly in the form of volatile CsOH
- Current best-practice assumes 5% of cesium present in the gap inventory as both CsI and CsOH
- All remaining cesium assumed to react with Mo to form Cs<sub>2</sub>MoO<sub>4</sub>

#### Mo release:

Mo releases are now higher than other metallic fission products such as Ru and Pd.

#### • Te release:

- Current best practice is more extensive Te release than reported in NUREG-1465
- Due to change in chemical form with more efficient transport of Te to containment



NUREG/CR-7282 ERI/NRC 21-203

## **HBU/HALEU/ATF PIRT**



Review of Accident
Tolerant Fuel Concepts
with Implications to Severe
Accident Progression and
Radiological Releases



NUREG/CR-7283 ERI/NRC 21-204

Phenomena Identification
Ranking Tables for
Accident Tolerant Fuel
Designs Applicable to
Severe Accident Conditions

## HBU/HALEU fuel severe accident behavior

- No significant differences between HBU and HBU/HALEU fuels
- Thermophysical property differences expected
- Fuel fragmentation and sintering can impact core degradation
- Fission product chemistry may change
- Possibility of cladding embrittlement
- Greater potential for recriticality during reflood using unborated water for HALEU



# Key Findings

# **Study Highlights**



**Key Finding 1:** Increased burnup and enrichment does not strongly impact incontainment source term

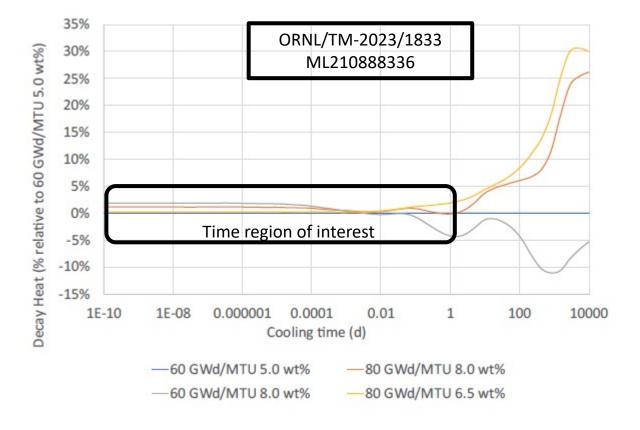
 Most significant variation in source term arises due to differences between accident scenarios

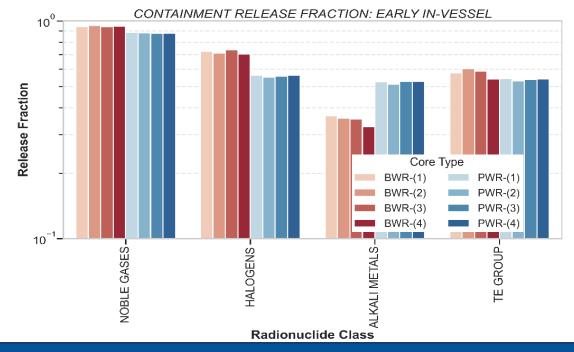
**Key Finding 2: L**arger early releases to containment result from early primary pressure boundary failure

- Set of accident scenarios dominated by low pressure accident sequences
- NUREG-1465 prescribed a larger number of high pressure scenarios

**Key Finding 3:** Releases to containment significantly reduced if primary pressure boundary remains intact

- Low pressure scenarios lead to more significant releases to containment
- Evolution of severe accident modeling state-of-art since NUREG-1465 (e.g., SOARCA)


# High Burnup and Extended Enrichment Impact on Source Term

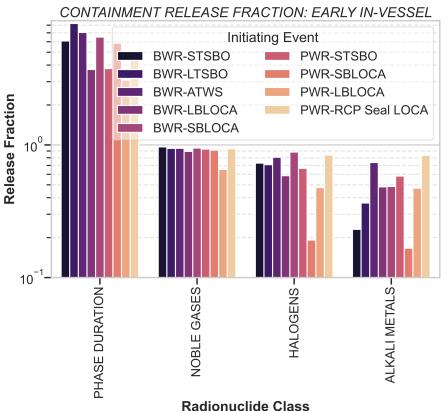







(3) 60 GWd/MTU HALEU (4) 80 GWd/MTU HALEU

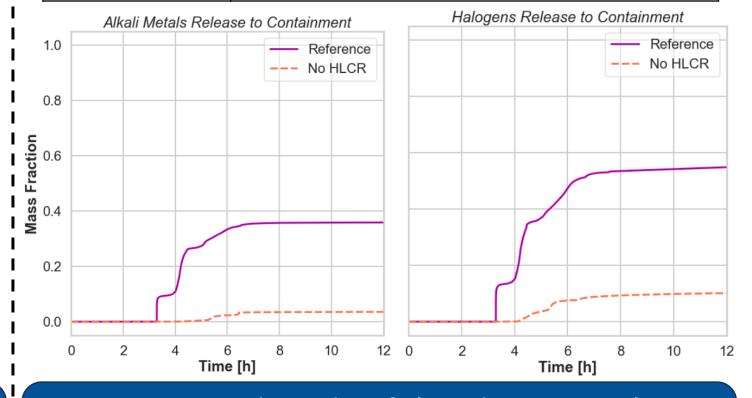





Burnup and enrichment do not significantly change decay heat after reactor shutdown

Increased burnup and enrichment does not strongly impact in-containment source term

Impact of Accident Scenarios on In-containment Melcor **Source Term** 






| e Fraction |                 | Initia  BWR-STSBO BWR-LTSBO BWR-ATWS BWR-LBLOCA BWR-SBLOCA | PWR-L      | STSBO<br>SBLOCA<br>BLOCA<br>RCP Seal LOCA |
|------------|-----------------|------------------------------------------------------------|------------|-------------------------------------------|
| Release    |                 |                                                            |            |                                           |
| 10 '-      | PHASE DURATION- | NOBLE GASES-                                               | HALOGENS - | ALKALI METALS-                            |

| Accident progression and in-       |
|------------------------------------|
| containment source terms different |
| across accident sequences          |

| Reference | Hot leg creep rupture enabled  |
|-----------|--------------------------------|
| No HLCR   | Hot leg creep rupture disabled |



Primary pressure boundary failure during critical accident phases is a significant factor in accident progression and in-containment source term

15 of 70

## In-Containment Source Term Differences



|          |                   | Gap R | elease     | Early Ir | n-vessel   | Late In-vessel |                                                              | Ex-ve  | Ex-vessel  |  |
|----------|-------------------|-------|------------|----------|------------|----------------|--------------------------------------------------------------|--------|------------|--|
|          | Report            | 2023  | NUREG-1465 | 2023     | NUREG-1465 | 2023           | NUREG-1465                                                   | 2023   | NUREG-1465 |  |
| /R       | Phase<br>Duration | 0.70  | 0.50       | 6.7      | 1.5        | 44.6           | 10.0                                                         | 3.1    | 3.0        |  |
| BWR      | Noble Gases       | 0.016 | 0.050      | 0.95     | 0.95       | 0.005          | 0.0                                                          | 0.011  | 0.0        |  |
|          | Halogens          | 0.005 | 0.050      | 0.71     | 0.25       | 0.16           |                                                              | 1 /070 | .30        |  |
|          | Alkali Metals     | 0.005 | 0.050      | 0.32     | 0.20       | 0.021          | The NRC has determined (SECY-94-302, December 19, 1994) that |        |            |  |
|          | Te Group          | 0.003 | 0.0        | 0.56     | 0.050      | 0.19           | design basis sou                                             | •      | 75         |  |
|          |                   | Gap R | elease     | Early Ir | n-vessel   | Late           | •                                                            |        |            |  |
| œ        | Phase<br>Duration | 1.3   | 0.50       | 4.0      | 1.3        | 24.0           | include the ex-vessel and late invessel phases.              |        | 2.0        |  |
| PW       | Noble Gases       | 0.026 | 0.050      | 0.93     | 0.95       | 0.010          | 0.0                                                          |        | 0.0        |  |
| <b>a</b> | Halogens          | 0.007 | 0.050      | 0.58     | 0.35       | 0.031          | 0.10                                                         | 0.020  | 0.25       |  |
|          | Alkali Metals     | 0.003 | 0.050      | 0.50     | 0.25       | 0.013          | 0.10                                                         | 0.015  | 0.35       |  |
|          | Te Group          | 0.006 | 0.0        | 0.55     | 0.050      | 0.019          | 0.005                                                        | 0.005  | 0.25       |  |

• Longer in-vessel phase durations due to progressive core degradation

## In-Containment Source Term Differences



|     |               | Gap R       | elease     | Early Ir        | n-vessel   | Late Ir | n-vessel                                                        | Ex-v       | essel      |
|-----|---------------|-------------|------------|-----------------|------------|---------|-----------------------------------------------------------------|------------|------------|
|     | Report        | 2023        | NUREG-1465 | 2023            | NUREG-1465 | 2023    | NUREG-1465                                                      | 2023       | NUREG-1465 |
|     | Phase         |             |            |                 |            |         |                                                                 |            |            |
| BWR | Duration      | 0.70        | 0.50       | 6.7             | 1.5        | 44.6    | 10.0                                                            | 3.1        | 3.0        |
| B   | Noble Gases   | 0.016       | 0.050      | 0.95            | 0.95       | 0.005   | 0.0                                                             | 0.011      | 0.0        |
|     | Halogens      | 0.005       | 0.050      | 0.71            | 0.25       | 0.16    |                                                                 | 1 /0=0     | .30        |
|     | Alkali Metals | 0.005       | 0.050      | 0.32            | 0.20       | 0.021   | The NRC has det                                                 | •          | .50        |
|     | Te Group      | 0.003       | 0.0        | 0.56            | 0.050      | 0.19    | 302, December 19, 1994) that design basis source terms will not |            |            |
|     |               | Gap Release |            | Early In-vessel |            | Late    | include the ex-vessel and late in-                              |            |            |
|     | Phase         |             |            |                 |            |         |                                                                 | I phases.  |            |
| ~   | Duration      | 1.3         | 0.50       | 4.0             | 1.3        | 24.0    | 10350                                                           | . pridoco. | 2.0        |
| 3   | Noble Gases   | 0.026       | 0.050      | 0.93            | 0.95       | 0.010   | ).(                                                             |            | 0.0        |
|     | Halogens      | 0.007       | 0.050      | 0.58            | 0.35       | 0.031   | 0.10 0.020                                                      |            | 0.25       |
|     | Alkali Metals | 0.003       | 0.050      | 0.50            | 0.25       | 0.013   | 0.10                                                            | 0.015      | 0.35       |
|     | Te Group      | 0.006       | 0.0        | 0.55            | 0.050      | 0.019   | 0.005                                                           | 0.005      | 0.25       |

- Longer in-vessel phase durations due to progressive core degradation
- Progressive releases to containment due to enhanced reactor coolant system modeling

## In-Containment Source Term Differences



|             |               | Gap R | elease     | Early Ir | n-vessel   | Late Ir | n-vessel        | Ex-v            | essel      |
|-------------|---------------|-------|------------|----------|------------|---------|-----------------|-----------------|------------|
|             | Report        | 2023  | NUREG-1465 | 2023     | NUREG-1465 | 2023    | NUREG-1465      | 2023            | NUREG-1465 |
|             | Phase         |       |            |          |            |         |                 |                 |            |
| \<br>R<br>\ | Duration      | 0.70  | 0.50       | 6.7      | 1.5        | 44.6    | 10.0            | 3.1             | 3.0        |
| B           | Noble Gases   | 0.016 | 0.050      | 0.95     | 0.95       | 0.005   | 0.0             | 0.011           | 0.0        |
|             | Halogens      | 0.005 | 0.050      | 0.71     | 0.25       | 0.16    |                 |                 | .30        |
|             | Alkali Metals | 0.005 | 0.050      | 0.32     | 0.20       | 0.021   | The NRC has de  | •               | .55        |
|             | Te Group      | 0.003 | 0.0        | 0.56     | 0.050      | 0.19    | design basis so | er 19, 1994) th | 75         |
|             |               | Gap R | elease     | Early Ir | n-vessel   | Late    | include the ex- |                 |            |
|             | Phase         |       |            |          |            |         |                 | I phases.       |            |
| <b>~</b>    | Duration      | 1.3   | 0.50       | 4.0      | 1.3        | 24.0    | 1 0000          | . p             | 2.0        |
| <b>\$</b>   | Noble Gases   | 0.026 | 0.050      | 0.93     | 0.95       | 0.010   | 0.0             |                 | 0.0        |
|             | Halogens      | 0.007 | 0.050      | 0.58     | 0.35       | 0.031   | 0.10            | 0.020           | 0.25       |
|             | Alkali Metals | 0.003 | 0.050      | 0.50     | 0.25       | 0.013   | 0.10            | 0.015           | 0.35       |
|             | Te Group      | 0.006 | 0.0        | 0.55     | 0.050      | 0.019   | 0.005           | 0.005           | 0.25       |

- Longer in-vessel phase durations due to progressive core degradation
- Progressive releases to containment due to enhanced reactor coolant system modeling
- Larger release magnitudes prior to lower head failure due to early loss of the primary pressure boundary (by safety relief valve seizure and hot leg creep rupture)

## In-Containment Source Term Release Rates



|    |               | Gap R | elease     | Early Ir | n-vessel   | Late I | n-vessel         | Ex-v                             | essel      |  |
|----|---------------|-------|------------|----------|------------|--------|------------------|----------------------------------|------------|--|
|    | Report        | 2023  | NUREG-1465 | 2023     | NUREG-1465 | 2023   | NUREG-1465       | 2023                             | NUREG-1465 |  |
|    | Phase         |       |            |          |            |        |                  |                                  |            |  |
| 8  | Duration      | 0.70  | 0.50       | 6.7      | 1.5        | 44.6   | 10.0             | 3.1                              | 3.0        |  |
| BW | Noble Gases   | 0.023 | 0.10       | 0.14     | 0.63       | 0.0001 | 0.0              | 0.003                            | 0.0        |  |
|    | Halogens      | 0.007 | 0.10       | 0.11     | 0.17       | 0.004  | 0.004            | 2.000                            | 100        |  |
|    | Alkali Metals | 0.007 | 0.10       | 0.047    | 0.13       | 0.0006 |                  | The NRC has determined (SECY-94- |            |  |
|    | Te Group      | 0.005 | 0.0        | 0.091    | 0.033      | 0.005  | •                | er 19, 1994) th                  | UO5        |  |
|    |               | Gap R | elease     | Early Ir | n-vessel   | Late   | design basis sou |                                  |            |  |
|    | Phase         |       |            |          |            |        | include the ex-  |                                  | in-        |  |
|    | Duration      | 1.3   | 0.50       | 4.0      | 1.3        | 24.0   | vesse            | l phases.                        | 2.0        |  |
| ×  | Noble Gases   | 0.019 | 0.10       | 0.21     | 0.73       | 0.0008 |                  |                                  | 0.0        |  |
| ۵  | Halogens      | 0.003 | 0.10       | 0.16     | 0.27       | 0.001  | 0.010            | 0.009                            | 0.12       |  |
|    | Alkali Metals | 0.001 | 0.10       | 0.15     | 0.19       | 0.0005 | 0.010            | 0.008                            | 0.17       |  |
|    | Te Group      | 0.003 | 0.0        | 0.15     | 0.038      | 0.0008 | 0.0005           | 0.002                            | 0.12       |  |

• Assumes uniform release rate across the entire phase duration

## In-Containment Source Term Release Rates



|     |               | Gap R | elease     | Early Ir | n-vessel        | Late I | n-vessel                           | Ex-v            | essel      |
|-----|---------------|-------|------------|----------|-----------------|--------|------------------------------------|-----------------|------------|
|     | Report        | 2023  | NUREG-1465 | 2023     | NUREG-1465      | 2023   | NUREG-1465                         | 2023            | NUREG-1465 |
|     | Phase         |       |            |          |                 |        |                                    |                 |            |
| 8   | Duration      | 0.70  | 0.50       | 6.7      | 1.5             | 44.6   | 10.0                               | 3.1             | 3.0        |
| BWR | Noble Gases   | 0.023 | 0.10       | 0.14     | 0.63            | 0.0001 | 0.0                                | 0.003           | 0.0        |
|     | Halogens      | 0.007 | 0.10       | 0.11     | 0.17            | 0.004  | 0.001                              | 0.000           | 2 100      |
|     | Alkali Metals | 0.007 | 0.10       | 0.047    | 0.13            | 0.0006 | The NRC has det                    | •               |            |
|     | Te Group      | 0.005 | 0.0        | 0.091    | 0.033           | 0.005  | •                                  | er 19, 1994) th | U05        |
|     |               | Gap R | elease     | Early Ir | Early In-vessel |        | design basis source terms will not |                 |            |
|     | Phase         |       |            |          |                 |        | include the ex-                    |                 | in-        |
|     | Duration      | 1.3   | 0.50       | 4.0      | 1.3             | 24.0   | vesse                              | l phases.       | 2.0        |
| WR  | Noble Gases   | 0.019 | 0.10       | 0.21     | 0.73            | 0.0008 |                                    |                 | 0.0        |
| Ь   | Halogens      | 0.003 | 0.10       | 0.16     | 0.27            | 0.001  | 0.010                              | 0.009           | 0.12       |
|     | Alkali Metals | 0.001 | 0.10       | 0.15     | 0.19            | 0.0005 | 0.010                              | 0.008           | 0.17       |
|     | Te Group      | 0.003 | 0.0        | 0.15     | 0.038           | 0.0008 | 0.0005                             | 0.002           | 0.12       |

- Assumes uniform release rate across the entire phase duration
- Release rates (release fraction/hour) are generally smaller

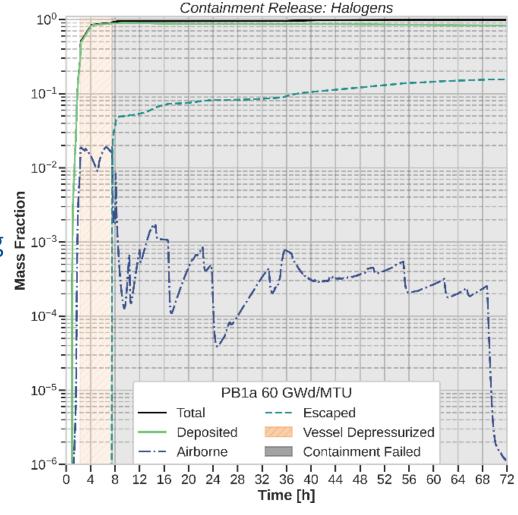
## In-Containment Source Term Release Rates



|     |               | Gap R | elease     | Early Ir        | n-vessel   | Late I | n-vessel         | Ex-v            | essel      |
|-----|---------------|-------|------------|-----------------|------------|--------|------------------|-----------------|------------|
|     | Report        | 2023  | NUREG-1465 | 2023            | NUREG-1465 | 2023   | NUREG-1465       | 2023            | NUREG-1465 |
|     | Phase         |       |            |                 |            |        |                  |                 |            |
| ~   | Duration      | 0.70  | 0.50       | 6.7             | 1.5        | 44.6   | 10.0             | 3.1             | 3.0        |
| BW  | Noble Gases   | 0.023 | 0.10       | 0.14            | 0.63       | 0.0001 | 0.0              | 0.003           | 0.0        |
|     | Halogens      | 0.007 | 0.10       | 0.11            | 0.17       | 0.004  | 0.004            | 2 222           | 2 100      |
|     | Alkali Metals | 0.007 | 0.10       | 0.047           | 0.13       | 0.0006 | The NRC has det  | •               |            |
|     | Te Group      | 0.005 | 0.0        | 0.091           | 0.033      | 0.005  | •                | er 19, 1994) th | U05        |
|     |               | Gap R | elease     | Early In-vessel |            | Lat    | design basis sou |                 |            |
|     | Phase         |       |            |                 |            |        | include the ex-  |                 | in-        |
|     | Duration      | 1.3   | 0.50       | 4.0             | 1.3        | 24.0   | vesse            | l phases.       | 2.0        |
| N N | Noble Gases   | 0.019 | 0.10       | 0.21            | 0.73       | 0.0008 |                  |                 | 0.0        |
| 4   | Halogens      | 0.003 | 0.10       | 0.16            | 0.27       | 0.001  | 0.010            | 0.009           | 0.12       |
|     | Alkali Metals | 0.001 | 0.10       | 0.15            | 0.19       | 0.0005 | 0.010            | 0.008           | 0.17       |
|     | Te Group      | 0.003 | 0.0        | 0.15            | 0.038      | 0.0008 | 0.0005           | 0.002           | 0.12       |

- Assumes uniform release rate across the entire phase duration
- Release rates (release fraction/hour) are generally smaller
- Larger Te group release magnitude prior to lower head failure

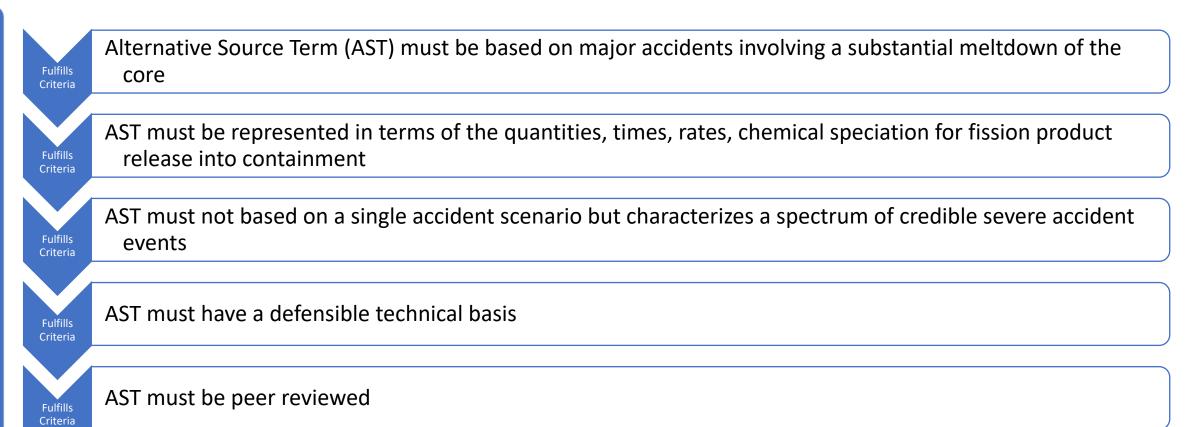



# Deep Dive

## In-containment Source Term



- In-containment source term characterizes **total** radioactive inventory in containment
  - In-containment source term combines deposited, airborne, and escaped radionuclide inventories
- MELCOR simulations can track deposited and airborne masses separately
  - This additional information not used in determining in-containment source term
- Radionuclide removal mechanisms accounted for in downstream calculations with RADTRAD


10 CFR 50.2 – Source term refers to the magnitude and mix of the radionuclides released from the fuel, expressed as fractions of the fission product inventory in the fuel, as well as their physical and chemical form, and the timing of their release



## **Alternative Source Term**



# "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors," Regulatory Guide 1.183



## **Process for Source Term Development**



BWR and PWR core damage accident scenario identification

Develop radionuclide inventory and decay heat using the SCALE code package

Perform accident progression and source term analyses using MELCOR

Develop statistically representative source term across all accident scenarios and BWR/PWR plants

## **Evolution from SAND2011-0128**



- Overall SAND2023-01313 methodology is consistent with SAND2011-0128
  - Focus on assessing impact of HBU/HALEU fuel on alternative source term
- Key areas of consistency between the studies are
  - Nuclear power plants modeled
  - Accident scenarios simulated
  - Radionuclide chemical classes represented
  - Radiological release phases first identified in NUREG-1465 are defined using SAND2011-0128 criteria
  - Representative release phase source terms and timings are statistical median values

## **Extending SAND2011-0128 Source Terms**



- Plants analyzed from SAND2011-0128
  - BWR: Mark I containment (Peach Bottom) and Mark III containment (Grand Gulf)
  - PWR: Ice Condenser containment (Sequoyah) and large-dry containment (Surry)
- Accident scenarios analyzed from SAND2011-0128
  - BWR: SBLOCA, LBLOCA, STSBO, LTSBO, ATWS
  - PWR: SBLOCA, LBLOCA, STSBO

| Phase           | Onset Criteria – from SAND2011-0128                    | End Criteria – from SAND2011-0128                      |  |  |
|-----------------|--------------------------------------------------------|--------------------------------------------------------|--|--|
| Gap Release     | RPV water level below top of active fuel               | Release of 5% of initial, total Xe inventory from fuel |  |  |
| Early In-Vessel | Release of 5% of initial, total Xe inventory from fuel | Lower Head Failure                                     |  |  |
| Ex-Vessel       | Lower Head Failure                                     | 95% of total ex-vessel Cs releases                     |  |  |
| Late In-Vessel  | Lower Head Failure                                     | 95% of total late in-vessel Cs releases                |  |  |

- Ex-vessel and late in-vessel phase criteria have limited technical justification
- NRC determined (SECY-94-302, December 19, 1994) design basis source terms will not include ex-vessel and late in-vessel phases

## SAND2023-01313 Accident Selection



- NUREG-1560 "Individual Plant Examination Program"
- Based on SAND2011-0128 accident selection
  - Consistent with NUREG 1560 IPE results
- Representative accident sequences similar to those selected for NUREG-1465
  - Provides coverage of all major sequences
- Incorporates SBO, LOCA and ATWS scenarios and range of mitigating system operation

- More recent PRA studies may potentially show different core damage contributors
- For the intended applications the scenarios used in the current [SAND2023-01313] appropriate with regards to the progression of severe accidents, radionuclide release and transport.

## **Peach Bottom Accident Scenarios**



# FACUTE TO THE TOTAL TRANSPORT TO THE TRANSPORT TO THE TOTAL TRANSPOR

Initiating

- 4 immediate loss of DC power
- 3 with prolonged DC power
- 2 LOCAs

# Coolant Injection

## RCIC operation

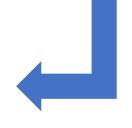
- 3 scenarios credited RCIC
- No coolant injection
- 6 scenarios had no credit for any coolant injection system

# oV Status Fra H

RPV at low pressure prior to lower head failure

- 8 low pressure scenarios
- RPV at high pressure until lower head failure
- 1 high pressure scenario

## Early failures


Status

- Drywell liner meltthrough
- Torus overpressure
- Drywell head flange leakage

#### Late Failure

 High-temperature penetration failure

Containment failures occurred at or after lower head failure



## **Grand Gulf Accident Scenarios**

Coolant



**Events** 5 SBOs

1 ATWS

1 LOCA Initiating

 Recirculation line break

## RCIC operation

• 3 scenarios credited RCIC

No coolant injection

• 4 scenarios had no credit for any coolant injection system

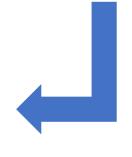
RPV at low pressure prior to lower head failure

> • 6 low pressure scenarios

RPV at high pressure until lower head failure

• 1 high pressure scenario

## Early failures Status


- Hydrogen deflagration
- High containment pressure (ATWS)

#### Late Failure

Containment

 High containment pressure

Containment failures generally occurred at or after lower head failure



# **Surry Accident Scenarios**



**Events** 2 SBOs 3 LOCAs

Initiating

**Coolant Injection** 

1 scenario crediting coolant injection 4 scenarios with no coolant injection

RPV at low pressure prior to lower head failure

- 3 low pressure scenarios RPV at high pressure in SBOs
- All SBOs exhibit hotleg creep rupture prior to lower head failure

Early failures Status

 Hydrogen deflagration Late Failure

Containment

 High containment pressure

Containment failures occurred at or after lower head failure

# Sequoyah Accident Scenarios



**Events** 2 SBOs 5 LOCAs Initiating

**Coolant Injection** 

5 scenarios crediting coolant injection 2 scenarios with no coolant injection

RPV at low pressure prior to lower head failure

- 2 low pressure scenarios RPV at high pressure in SBOs
- All SBOs and RCP seal LOCAs exhibit hot-leg creep rupture prior to lower head failure

Early failures Status

Containment

- Hydrogen deflagration Late Failure
- High containment pressure

Containment failures occurred at or after lower head failure



## **BWR Radionuclide Inventories**



|               | 60 GWd/MTU -     | 80 GWd/MTU -            | 60 GWd/MTU -      | 80 GWd/MTU -      |
|---------------|------------------|-------------------------|-------------------|-------------------|
| Class (kg)    | 5 wt% Enrichment | 5 wt% Enrichment        | 10 wt% Enrichment | 10 wt% Enrichment |
|               | B\               | WR Mark I – Peach Botto | om                |                   |
| Noble Gases   | 1323.99          | 1848.13 (+40%)          | 1280.34 (-3%)     | 1790.12 (+35%)    |
| Halogens      | 52.83            | 73.70 (+40%)            | 49.41 (-6%)       | 69.53 (+32%)      |
| Alkali Metals | 748.78           | 980.11 (+31%)           | 817.97 (+9%)      | 1082.33 (+45%)    |
| Te Group      | 142.94           | 195.01 (+36%)           | 139.99 (-2%)      | 190.51 (+33%)     |
| Ba/Sr Group   | 551.99           | 763.09 (+38%)           | 586.41 (+6%)      | 814.05 (+47%)     |
| Ru Group      | 1058.01          | 1598.56 (+51%)          | 919.02 (-13%)     | 1374.61 (+30%)    |
| Mo Group      | 973.05           | 1305.64 (+34%)          | 1007.92 (+4%)     | 1364.59 (+40%)    |
| Lanthanides   | 2943.70          | 3702.34 (+26%)          | 2922.84 (-1%)     | 3686.46 (+25%)    |
| Ce Group      | 2469.33          | 2916.84 (18%)           | 2559.90 (+4%)     | 3107.02 (+26%)    |

<sup>\*</sup>percent differences shown relative to reference core (60 GWd/MTU - 5 wt% enrichment)

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

<sup>\*\*</sup> all fuel bundles assumed to reach reported burnup

## **PWR Radionuclide Inventories**



|               | 60 GWd/MTU -     | 80 GWd/MTU -           | 60 GWd/MTU -     | 80 GWd/MTU -     |
|---------------|------------------|------------------------|------------------|------------------|
| Class (kg)    | 5 wt% Enrichment | 5 wt% Enrichment       | 8 wt% Enrichment | 8 wt% Enrichment |
|               | PWR wit          | h Large-Dry Containmer | nt – Surry       |                  |
| Noble Gases   | 740.20           | 987.15 (+33%)          | 717.66 (-3%)     | 959.00 (+30%)    |
| Halogens      | 29.31            | 39.35 (+34%)           | 27.44 (-6%)      | 37.06 (+26%)     |
| Alkali Metals | 421.27           | 537.41 (+28%)          | 455.26 (+8%)     | 584.21 (+39%)    |
| Te Group      | 74.62            | 99.01 (+33%)           | 73.02 (-2%)      | 96.81 (+30%)     |
| Ba/Sr Group   | 305.28           | 401.76 (+32%)          | 323.92 (+6%)     | 428.01 (+40%)    |
| Ru Group      | 559.35           | 807.23 (+44%)          | 487.92 (-13%)    | 701.18 (+25%)    |
| Mo Group      | 530.59           | 689.06 (+30%)          | 546.71 (+3%)     | 714.95 (+35%)    |
| Lanthanides   | 1035.01          | 1396.16 (+35%)         | 1048.46 (+1%)    | 1409.24 (+36%)   |
| Ce Group      | 1535.14          | 1780.67 (+16%)         | 1599.41 (+4%)    | 1903.19 (+24%)   |

<sup>\*</sup>percent differences shown relative to reference core (60 GWd/MTU - 5 wt% enrichment)

- Radionuclide class mass differences are not equal to radionuclide class activity differences for the considered enrichments and burnups
- Unlikely that siting calculations would be significantly impact by burnup

<sup>\*\*</sup> all fuel bundles assumed to reach reported burnup

## **Iodine and Cesium Chemical Form**



- NUREG-1465
  - 5% lodine inventory is gaseous (I<sub>2</sub> and other organic iodides)
  - 95% lodine inventory is Csl
  - Remaining Cs inventory assumed volatile (CsOH)
- SAND2023-01313 consistent with SOARCA
  - 100% Iodine inventory reacts with Cesium to form CsI
  - 5% of the total lodine and Cesium inventory present in gap
  - Of Cesium not forming Csl
    - 5% assumed to form CsOH
    - 95% assumed to form Cs<sub>2</sub>MoO<sub>4</sub>

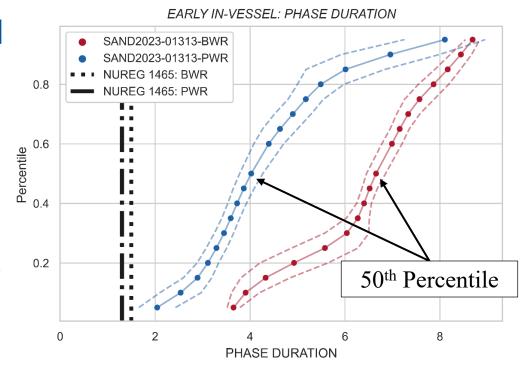
- Uncertainty in Iodine speciation persists despite experimental studies (FPT3, DF-4, and BECARRE)
- Fukushima Daiichi post-accident analyses confirm assumption that Cs<sub>2</sub>MoO<sub>4</sub> is dominant chemical form of Cs
- Recommended consideration of/validation against French CEA HBU VERDON tests

# Other Analysis Assumptions



- In-containment source term does not consider impact of
  - Variation in the gap inventory at the start of the accident
  - Fraction of aerosolized iodine in containment
  - Radionuclide removal and retention in containment
- Source term analyses based on current state-of-the-art
  - Latest major code version MELCOR 2.2
  - Majority of modeling best-practices established under SOARCA
- Some modeling best-practices have evolved since SOARCA
  - Time-at-temperature fuel rod failure model uses default time-at-temperature fuel rod lifetime curve
  - UO<sub>2</sub> and ZrO<sub>2</sub> liquefaction temperatures reduced to 2479 K to account for material interactions
  - Failure temperature of oxidized fuel rods have been reduced to 2479 K

#### Other Analysis Assumptions



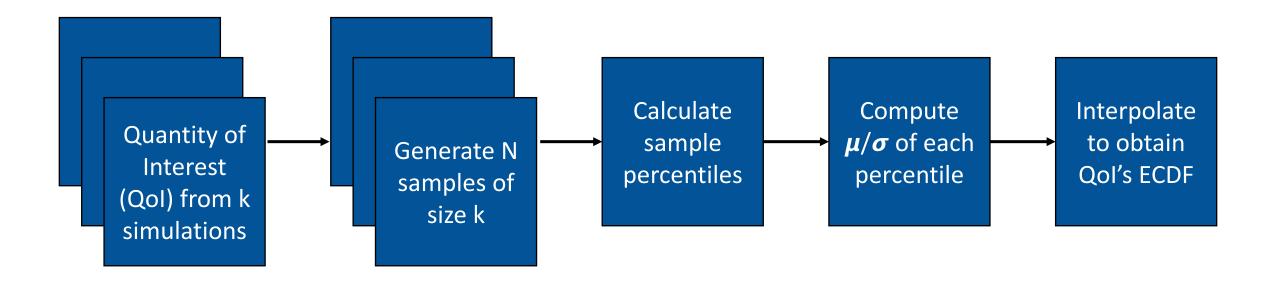

- Relative contribution of accident sequences to total BWR/PWR CDF not changed by cores with extended enrichment HBU
- Dominant uncertainty from range of possible accidents that could be realized (i.e., aleatory uncertainty)
  - Phenomenological (or epistemic) uncertainty not incorporated into BWR/PWR incontainment source terms
  - Impact of phenomenological uncertainties considered through sensitivity calculations
  - Key phenomena identified in a PIRT study are investigated through sensitivity studies
- Containment removal mechanisms not credited
  - Some removal mechanisms, such as containment sprays, are incorporated in downstream RADTRAD calculations
  - Suppression pool scrubbing not credited
- Release fractions (source terms) below 1×10<sup>-6</sup> considered negligibly small and truncated

### Non-Parametric Statistical Analysis



- Non-parametric bootstrap methodology used to determine statistically representative source term across accident scenarios
  - Can be applied to data that follow any distribution
  - Utilizes repeated re-sampling (bootstrapping) of data
  - Estimates empirical cumulative distribution function (ECDF) of a given quantity of interest (QoI)
- Representative source term is the median (50th percentile) estimate from the ECDF
  - Equally weights all simulations




\*Dashed colored lines illustrate confidence intervals spanning  $\pm$  standard deviation ( $\sigma$ ) at each percentile

#### Peer Review Finding

 Representative source term based on median value appropriate to avoid introducing bias from potential outliers

#### **Bootstrap Procedure**





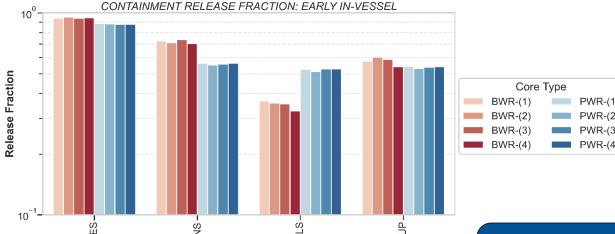
- Incorporates variability due to different plants and accident scenarios in representative source term
  - Bounds on empirical cumulative distribution function (ECDF) characterize sampling uncertainty



## Results and Discussion

#### Restating Key Aspects of the Analysis




- Objective
  - Extend the NUREG-1465 alternative source term to address LWRs with cores designed to utilize HBU fuel with varied fuel enrichments
- Plants analyzed
  - BWR: Mark I containment (Peach Bottom) and Mark III containment (Grand Gulf)
  - PWR: Ice Condenser containment (Sequoyah) and Large-dry containment (Surry)
- Reactor cores analyzed
  - 1. Core average burnup of 60GWd/MTU for enrichment of 5 wt%
  - 2. Core average burnup of 80GWd/MTU for enrichment of 5 wt%
  - 3. Core average burnup of 60GWd/MTU for enrichment of 8 wt% (peak 10 wt% for BWRs)
  - 4. Core average burnup of 80GWd/MTU for enrichment of 8 wt% (peak 10 wt% for BWRs)
- Accident scenarios analyzed
  - BWR: SBLOCA, LBLOCA, STSBO, LTSBO, ATWS
  - PWR: SBLOCA, LBLOCA, STSBO

| Phase           | Onset Criteria                                         | End Criteria                                           |
|-----------------|--------------------------------------------------------|--------------------------------------------------------|
| Gap Release     | RPV water level below top of active fuel               | Release of 5% of initial, total Xe inventory from fuel |
| Early In-Vessel | Release of 5% of initial, total Xe inventory from fuel | Lower Head Failure                                     |
| Ex-Vessel       | Lower Head Failure                                     | 95% of total ex-vessel Cs releases                     |
| Late In-Vessel  | Lower Head Failure                                     | 95% of total late in-vessel Cs releases                |

# Revisiting the Impact of Reactor Core on Incontainment Source Term



|               | Early In-vessel                                             |                                                          |                                                                                                                                                           |                                                                                      |                                                                                                    | arly In                                                                                                                                                                                                                                       | ı-vesse                                                                                                                                                                                                                                                                             | el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |
|---------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core Type     | (1)                                                         | (2)                                                      | (3)                                                                                                                                                       | (4)                                                                                  |                                                                                                    | Core Type                                                                                                                                                                                                                                     | (1)                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3)                                                                                                                                                                                                                                                                                 | (4)                                                                                                                                                                                                                                                                                 |
|               | 6.7                                                         |                                                          |                                                                                                                                                           |                                                                                      | ~                                                                                                  | Phase Duration                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                                 | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.2                                                                                                                                                                                                                                                                                 | 3.8                                                                                                                                                                                                                                                                                 |
|               |                                                             |                                                          |                                                                                                                                                           |                                                                                      | Mc                                                                                                 | <b>Noble Gases</b>                                                                                                                                                                                                                            | 0.93                                                                                                                                                                                                                                                                                | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91                                                                                                                                                                                                                                                                                | 0.92                                                                                                                                                                                                                                                                                |
|               |                                                             |                                                          |                                                                                                                                                           |                                                                                      |                                                                                                    | Halogens                                                                                                                                                                                                                                      | 0.57                                                                                                                                                                                                                                                                                | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57                                                                                                                                                                                                                                                                                | 0.58                                                                                                                                                                                                                                                                                |
| Alkali Metals | 0.31                                                        | 0.31                                                     | 0.31                                                                                                                                                      | 0.26                                                                                 |                                                                                                    | Alkali Metals                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                 | 0.51                                                                                                                                                                                                                                                                                |
|               | Core Type Phase Duration Noble Gases Halogens Alkali Metals | Core Type(1)Phase Duration6.7Noble Gases0.94Halogens0.71 | Core Type       (1)       (2)         Phase Duration       6.7       6.3         Noble Gases       0.94       0.96         Halogens       0.71       0.71 | Core Type(1)(2)(3)Phase Duration6.76.36.5Noble Gases0.940.960.94Halogens0.710.710.76 | Core Type(1)(2)(3)(4)Phase Duration6.76.36.56.3Noble Gases0.940.960.940.94Halogens0.710.710.760.71 | Core Type       (1)       (2)       (3)       (4)         Phase Duration       6.7       6.3       6.5       6.3         Noble Gases       0.94       0.96       0.94       0.94         Halogens       0.71       0.71       0.76       0.71 | Core Type         (1)         (2)         (3)         (4)           Phase Duration         6.7         6.3         6.5         6.3           Noble Gases         0.94         0.96         0.94         0.94           Halogens         0.71         0.71         0.76         0.71 | Core Type         (1)         (2)         (3)         (4)           Phase Duration         6.7         6.3         6.5         6.3           Noble Gases         0.94         0.96         0.94         0.94           Halogens         0.71         0.71         0.76         0.71      Core Type   (1)   Phase Duration   4.0   Noble Gases   0.93   Noble Gases   0.94   Noble Gases   0.94   Noble Gases   0.95   Noble Ga | Core Type         (1)         (2)         (3)         (4)           Phase Duration         6.7         6.3         6.5         6.3           Noble Gases         0.94         0.96         0.94         0.94           Halogens         0.71         0.71         0.76         0.71 | Core Type         (1)         (2)         (3)         (4)           Phase Duration         6.7         6.3         6.5         6.3           Noble Gases         0.94         0.96         0.94         0.94           Halogens         0.71         0.71         0.76         0.71 |



Radionuclide Class

#### **Core Types**:

- **(1)** 60 GWd/MTU LEU,
- (2) 80 GWd/MTU LEU
- (3) 60 GWd/MTU HALEU
- (4) 80 GWd/MTU HALEU

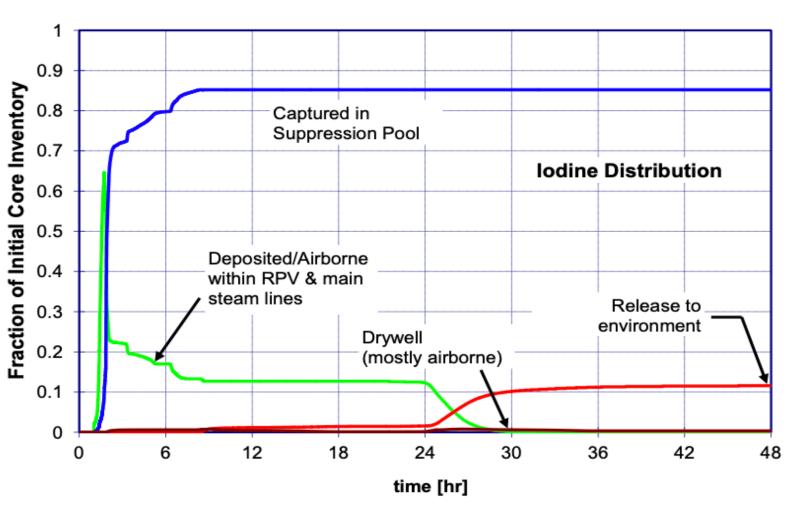
An increase in burnup and enrichment does not strongly impact the in-containment source term

#### **BWR In-containment Source Term Evolution**



|                     |         | Gap Release |            |         | Early In-vessel |            |
|---------------------|---------|-------------|------------|---------|-----------------|------------|
| Study               | 2023    | 2011        | NUREG-1465 | 2023    | 2011            | NUREG-1465 |
| Phase Duration (hr) | 0.70    | 0.16        | 0.50       | 6.7     | 8.0             | 1.5        |
| Noble Gases         | 0.016   | 0.008       | 0.050      | 0.95    | 0.96            | 0.95       |
| Halogens            | 0.005   | 0.002       | 0.050      | 0.71    | 0.47            | 0.25       |
| Alkali Metals       | 0.005   | 0.002       | 0.050      | 0.32    | 0.13            | 0.20       |
| Te Group            | 0.003   | 0.002       | 0.0        | 0.56    | 0.39            | 0.050      |
| Ba/Sr Group         | 0.0006  | 0.0         | 0.0        | 0.005   | 0.005           | 0.020      |
| Ru Group            | <1.0e-6 | 0.0         | 0.0        | 0.006   | 0.003           | 0.003      |
| Mo Group            | 1.9E-05 | 0.0         | 0.0        | 0.12    | 0.020           | 0.003      |
| Lanthanides         | <1.0e-6 | 0.0         | 0.0        | <1.0e-6 | <1.0e-6         | 0.0002     |
| Ce Group            | <1.0e-6 | 0.0         | 0.0        | <1.0e-6 | <1.0e-6         | 0.0005     |

- SAND2023-01313 and SAND2011-0128 utilized MELCOR
- Accident scenarios and modeling best-practices lead to tendency for increased early in-vessel halogen releases
- Peach Bottom and Grand Gulf modeling best-practices in SAND2023-01313 represent improvements due to SOARCA


# BWR In-Containment Source Terms Consistent with SOARCA



SOARCA found limited in-vessel halogen retention during early-in vessel phase

PB SOARCA halogen releases (STSBO without RCIC blackstart)

\*In-containment source terms reported in SAND2023-01313 characterize **total** radioactive inventory in containment



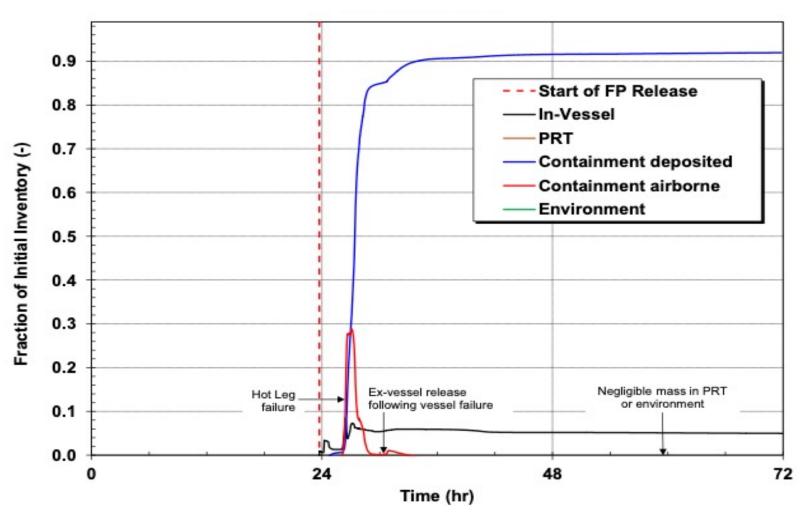
#### **PWR In-containment Source Term Evolution**



|                |         | Gap Release |            |         | Early In-vessel |            |
|----------------|---------|-------------|------------|---------|-----------------|------------|
| Study          | 2023    | 2011        | NUREG-1465 | 2023    | 2011            | NUREG-1465 |
| Phase Duration | 1.3     | 0.22        | 0.50       | 4.0     | 4.5             | 1.3        |
| Noble Gases    | 0.026   | 0.017       | 0.050      | 0.93    | 0.94            | 0.95       |
| Halogens       | 0.007   | 0.004       | 0.050      | 0.58    | 0.37            | 0.35       |
| Alkali Metals  | 0.003   | 0.003       | 0.050      | 0.50    | 0.23            | 0.25       |
| Te Group       | 0.006   | 0.004       | 0.0        | 0.55    | 0.30            | 0.050      |
| Ba/Sr Group    | 0.001   | 0.0006      | 0.0        | 0.002   | 0.004           | 0.020      |
| Ru Group       | <1.0e-6 | 0.0         | 0.0        | 0.008   | 0.006           | 0.003      |
| Mo Group       | 2.0E-05 | 0.0         | 0.0        | 0.15    | 0.080           | 0.003      |
| Lanthanides    | <1.0e-6 | 0.0         | 0.0        | <1.0e-6 | <1.0e-6         | 0.0002     |
| Ce Group       | <1.0e-6 | 0.0         | 0.0        | <1.0e-6 | <1.0e-6         | 0.0005     |

- SAND2023-01313 and SAND2011-0128 utilized MELCOR
- Accident scenarios and modeling best-practices lead to tendency for increased early in-vessel halogen releases
- Surry and Sequoyah modeling best-practices in SAND2023-01313 represent improvements due to SOARCA

# PWR In-Containment Source Terms Consistent with SOARCA




SOARCA found limited halogen in-vessel retention after hot leg creep

rupture

SQN SOARCA halogen releases (LTSBO)

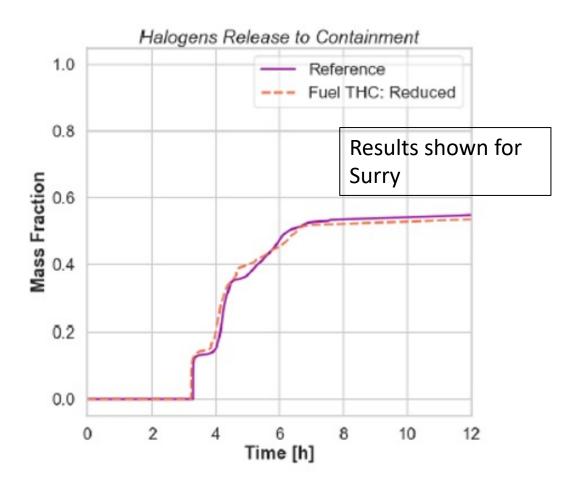
\*In-containment source terms reported in SAND2023-01313 characterize **total** radioactive inventory in containment



#### In-containment Release Rate Evolution



|               |         | BWR            |                |                 | PWR     |                |
|---------------|---------|----------------|----------------|-----------------|---------|----------------|
|               | E       | Early In-vesse | el             | Early In-vessel |         |                |
| Study         | 2023    | 2011           | NUREG-<br>1465 | 2023            | 2011    | NUREG-<br>1465 |
| Noble Gases   | 0.14    | 0.12           | 0.63           | 0.21            | 0.21    | 0.73           |
| Halogens      | 0.11    | 0.059          | 0.17           | 0.16            | 0.082   | 0.27           |
| Alkali Metals | 0.047   | 0.016          | 0.13           | 0.15            | 0.051   | 0.19           |
| Te Group      | 0.091   | 0.049          | 0.033          | 0.15            | 0.067   | 0.038          |
| Ba/Sr Group   | 0.0009  | 0.0006         | 0.013          | 0.0007          | 0.0009  | 0.015          |
| Ru Group      | 0.0009  | 0.0003         | 0.002          | 0.002           | 0.001   | 0.002          |
| Mo Group      | 0.017   | 0.003          | 0.002          | 0.045           | 0.018   | 0.002          |
| Lanthanides   | <1.0e-6 | <1.0e-6        | 0.0001         | <1.0e-6         | <1.0e-6 | 0.0002         |
| Ce Group      | <1.0e-6 | <1.0e-6        | 0.0003         | <1.0e-6         | <1.0e-6 | 0.0004         |


Reported as [release fraction/hour]

### **Fuel Thermal Conductivity Sensitivity**

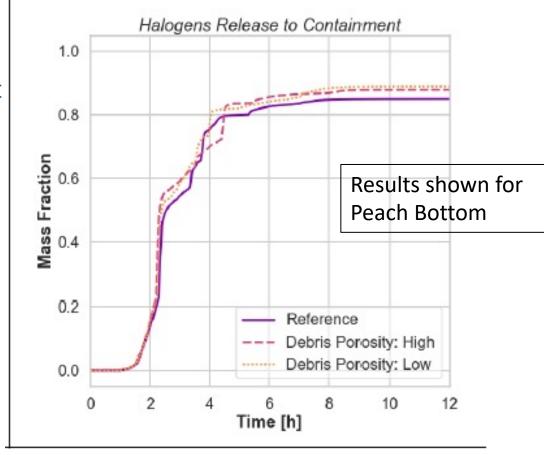


Increased burnup leads to decrease of fuel thermal conductivity

| Sensitivity<br>Case | Fuel Thermal Conductivity [W/m-K] |
|---------------------|-----------------------------------|
| Reference           | 4.92                              |
| Reduced             | 2.02                              |
| Low                 | 0.2                               |



No impact from variation of fuel thermal conductivity


### In-vessel Particulate Debris Porosity

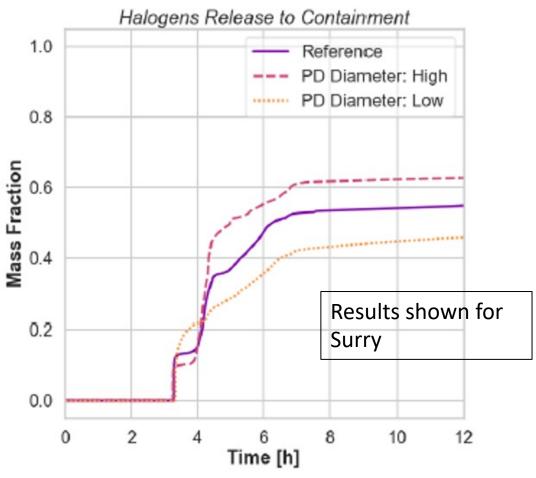


Very high burnups have been postulated to promote disintegration of the fuel material

Three sensitivity cases to assess impact on in-containment source term

| Sensitivity<br>Case | In-Vessel Particulate Debris Porosity |
|---------------------|---------------------------------------|
| Reference           | 0.4                                   |
| High                | 0.6                                   |
| Low                 | 0.2                                   |




No impact from variation of in-vessel particulate debris porosity

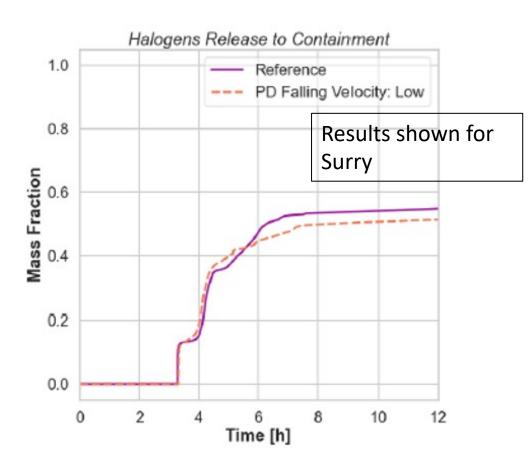
# Diameter of In-vessel Particulate Debris Sensitivity



Higher burnups result in a greater degree of fuel breakup

| Sensitivity | In-core Particulate Debris Diameter [cm] | Lower Plenum Particulate Debris Diameter [cm] |
|-------------|------------------------------------------|-----------------------------------------------|
| Reference   | 1.0                                      | 0.2                                           |
| High        | 1.5                                      | 0.5                                           |
| Low         | 0.5                                      | 0.1                                           |




Variation in particulate debris diameter impacts in-containment source term Impact smaller than changes across accident scenarios

## Particulate Debris Falling Velocity Sensitivity

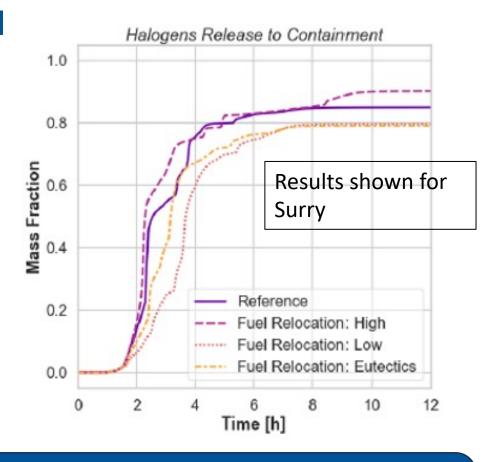


Particulate debris sizes could impact particulate debris fall velocity into lower plenum

| Sensitivity | In-Vessel Particulate Debris Fall Velocity [m/s] Peach Bottom | In-Vessel Particulate Debris Fall Velocity [m/s] Surry |
|-------------|---------------------------------------------------------------|--------------------------------------------------------|
| Reference   | 0.94                                                          | 0.094                                                  |
| Low         | 0.094                                                         | 0.064                                                  |



No impact on source term due to variation in particulate debris fall velocity


### Fuel Relocation Temperature Sensitivity



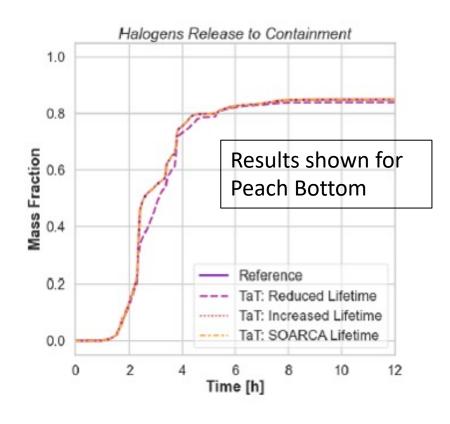
Material interactions can cause early failure of fuel assemblies and other core components

 MELCOR uses either the interactive materials model or eutectics model to represent material interactions

| Sensitivity | Fuel Relocation Temperature [K] |
|-------------|---------------------------------|
| Reference   | 2479                            |
| High        | 2728                            |
| Low         | 2230                            |
| Eutectics   | Eutectics model                 |



Material interactions that cause early fuel failure and can impact accident progression timings and in-containment source terms based on SOARCA uncertainty studies


### **Fuel Rod Lifetime Sensitivity**



## Fuel assemblies at high temperatures exhibit early failures

 Early failures captured in MELCOR simulations using a lifetime function

| Sensitivity           | Fuel Rod Lifetime Model                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------|
| Reference             | Default time-at-temperature model                                                                       |
| Increased<br>Lifetime | Lifetime function that accrues damage from 22.2 hours to 20 minutes at temperatures from 2100K – 2600K  |
| Reduced Lifetime      | Lifetime function that accrues damage from 1.67 hours to 3.3 minutes at temperatures from 2100K – 2600K |
| SOARCA Lifetime       | Lifetime function that accrues damage from 10 hours to 5 minutes at temperatures from 2100K – 2600K     |

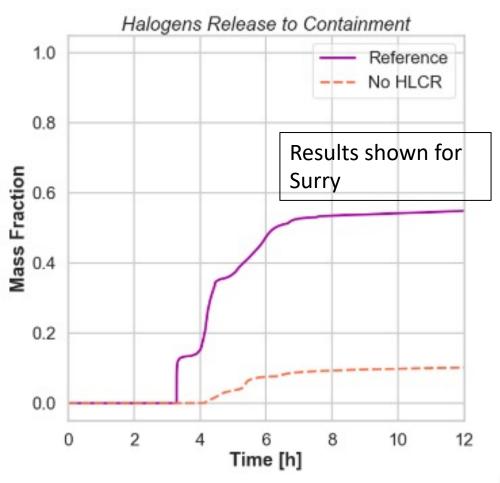


No impact due to variation of the fuel rod lifetime modeling on source term Oxidized fuel assembly temperature failure model generally dominates

### Hot Leg Creep Rupture Sensitivity



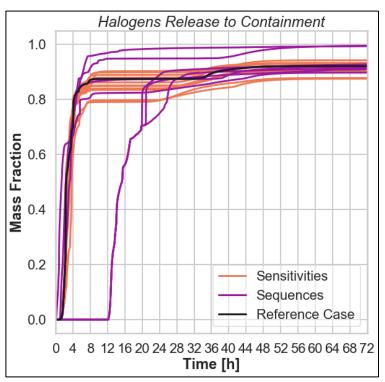
Key insight from SOARCA is potential for induced RPV pressure boundary failures

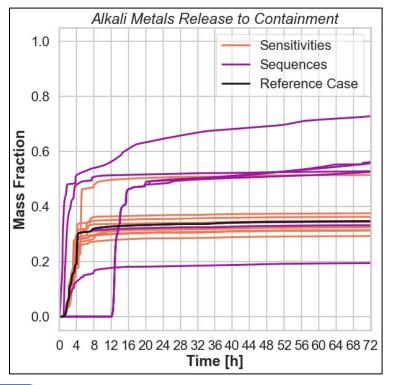

- Severe accident conditions lead to the temperature conditions at RPV boundary

   Thermally-induced hot leg creep rupture found likely for DWRs

  Output

  Output


| Sensitivity | RPV Induced Pressure Boundary Failure Modeling |
|-------------|------------------------------------------------|
| Reference   | Hot leg creep rupture enabled                  |
| No HLCR     | Hot leg creep rupture disabled                 |




Significant increase in early in-vessel source term for induced RPV failure for SBOs

## In-containment Source Term Variability







#### Peer Review Finding

• Potential for combined effects of various sensitivity studies to be larger than separate effects Nonlinear processes in severe accidents tend to limit amplification of response variability in multiparameter sensitivity studies such that single scenario variability is less than variation across scenarios

In-containment source term variation dominated by variation across sequences



#### SANDIA REPORT

SAND2023-01313 Printed April 2023

## High Burnup Fuel Source Term Accident Sequence Analysis

L.I. Albright, L. Gilkey, D. Keesling, C. Faucett, D.M. Brooks, K.C. Wagner, L.L. Humphries, J. Phillips, D.L. Luxat

SAND2023-01313

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

#### Summary



- Increased burnup or extended enrichment does not significantly impact source term
  - Most significant variation in source term arises due to differences between accident scenarios
- Status of RPV has significant impact on early in-vessel releases
  - Low pressure scenarios exhibit more significant releases to containment
  - NUREG-1465 prescribed larger number of high pressure scenarios than SAND2023-01313
- Early in-vessel source term greatly reduced if RPV pressure boundary intact



## Independent Peer Review

#### Focus of SAND2023-01313 Peer Review



PEER REVIEW OF THE IN-CONTAINMENT SOURCE TERM STUDY FOR HIGH-BURNUP AND HIGH-ASSAY LOW ENRICHED URANIUM FUELS

ERI/NRC 23-201

Work Performed under the Auspices of the United States Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555  Review technical basis of SAND2023-01313

 Recommend improvements to SAND2023-01313

 Assess suitability of SAND2023-01313 source terms for regulatory applications



April 2023 58 of 70

#### **Peer Review Organization**



#### **Panel Membership**

- Dr. Mohsen Khatib-Rahbar Panel Chair
  - Energy Research, Inc. (ERI)
- Dr. Richard S. Denning
  - Consultant
- Mr. Jeff Gabor
  - Jensen Hughes
- Dr. Didier Jacquemain
  - Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA)
- Dr. Luis E. Herranz
  - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)
- Dr. Yu Maruyama
  - Japan Atomic Energy Agency (JAEA)

#### **Panel Objectives**

- Assess technical adequacy with respect to:
  - Overall analysis approach
  - Specific applications of MELCOR to development of in-containment source terms
- Assess appropriateness of severe accident sequences selected
- Assess applied models and assumptions in terms of
  - Current understanding of severe accidents and source terms
  - Adequacy considering available experimental data, and observations
- Assess that source terms are representative, rather than conservative or bounding
- Assess adequacy of documentation against
  - Completeness of technical bases specification
  - Approach to analysis of uncertainties

#### **Peer Review Process**



- Draft High Burnup Fuel Source Term Accident Sequence Analysis (Completed 2021)
- Virtual Meetings (began in 2022)
  - 1. Briefing on the peer review objectives and the draft report by NRC and SNL
    - Panelist review reports delivered to SNL
    - Preliminary resolution of comments by SNL
    - Preparation of the draft peer review report
  - 2. Discussion of draft peer review report, comment resolution, and summary of unresolved comments
    - Final resolution of comments by SNL
    - Revision of High Burnup Fuel Source Term Accident Sequence Analysis report
  - 3. Discussion of revised report, peer review panel findings, and conclusions
    - Final High Burnup Fuel Source Term Accident Sequence Analysis report released (2023)
    - Final peer review report released (2023)

# Acceptability of the SAND2023-01313 Source Term



- "[The peer review panel] endorses the approach taken in [SAND2023-01313]"
- "[SAND2023-01313] provides a defendable technical basis for the proposed source terms"
- "The peer review panel finds that the four nuclear power plants considered in the [SAND2023-01313] reasonably represent the U.S. nuclear fleet"
- "The **spectrum of accidents is sufficient** to satisfy the following stated attributes of an acceptable alternative accident source term (RG 1.183):

The accident source term must be expressed in terms of times and rates of appearance of radioactive fission products released into containment, the types and quantities of the radioactive species released, and the chemical forms of iodine released.

# Qualities of the SAND2023-01313 Source Term



- Study is a significant technical improvement using state-of-the-art methods implemented in latest version of MELCOR
- In-containment source terms for HBU/HALEU fuels are representative MELCOR estimates, rather than conservative or bounding estimates
- No bias in the approach identified that could overestimate in-containment source terms
- Sensitivity studies documented in SAND2023-01313 valuable in supporting applications
  - Sensitivities explored limitations in understanding of HBU/HALEU fuel response under severe accident conditions
  - Results demonstrated impact of thermally induced (creep) depressurization of RCS for PWRs on in-containment source terms

#### Peer Review Report Recommendations



- Gap release phase incorporated into the early in-vessel phase
  - The panel considers the current approach of separating the gap and early in-vessel release phases, a product of the simplified single channel treatment of the STCP models of circa 1980s that is reflected in the NUREG-1465 source terms, outdated. During severe accidents, the gap and in-vessel releases from the fuel overlap to the extent that it is not possible to truly separate the two as distinct phases. Therefore, it is recommended that the gap release be incorporated into the early in-vessel release phase.
- More appropriate to represent impact of burnup using core inventories for HBU expressed in terms of radiological activities
  - The implication of comparison of mass inventories in kilogram [SAND2023-01313] is to incorrectly conclude that at higher fuel burnups, off-site doses would likely be substantially higher for high burnup fuels as the direct result of larger core mass inventories of radionuclides. In fact, when compared on the basis of integrated radiological activity, there would not be any significant differences for the two levels of fuel burnup.
  - Examples shown in the next presentation: "Follow-on Calculations"

#### Other Comments And Recommendations



- Panelists requested additional clarification (reflected in final report) that
  - Containment bypass scenarios and air ingression not considered in development of tabular source terms
  - Fission product removal mechanisms in containment not included in tabular source terms
    - Captured in MELCOR simulations, but post-processed out of reported MELCOR source terms
- Peer reviewers acknowledged more recent PRA studies could have different contributors to core damage
  - For the intended applications the scenarios used in the current [SAND2023-01313] appropriate with regards to the progression of severe accidents, radionuclide release and transport
- Panelists noted for most radionuclides no increase in activity with burnup sufficient to impact siting calculations
- Peer reviewers noted the uncertainty in Iodine speciation based on experiments (FPT3, DF-4, and BECARRE)
- Peer review noted that current Fukushima Daiichi post-accident analyses confirm the assumption that Cs<sub>2</sub>MoO<sub>4</sub> is dominant chemical form of Cs
- Peer review panel considered the use of median estimates appropriate to avoid bias due to potential outliers

#### Other Comments And Recommendations



Finally, even though tabular severe accident in-containment source terms provide a simplified tool for regulatory applications and analyses, it is important to recognize their limitations and the panel encourages the direct application of a state-of-the art severe accident code to specific issues when appropriate.

#### Fission Product Retention in Suppression Pools



|                  | Gap Release                |                            | Early In-vessel            |                            |
|------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Release Category | Including Suppression Pool | Excluding Suppression Pool | Including Suppression Pool | Excluding Suppression Pool |
|                  | Inventory                  | Inventory                  | Inventory                  | Inventory                  |
| Noble Gases      | 0.016                      | 0.016                      | 0.95                       | 0.95                       |
| Halogens         | 0.005                      | 1.30E-06                   | 0.71                       | 0.06                       |
| Alkali Metals    | 0.005                      | 1.20E-06                   | 0.32                       | 0.006                      |
| Te Group         | 0.003                      | <1.0e-6                    | 0.56                       | 0.038                      |
| Ba/Sr Group      | 0.0006                     | <1.0e-6                    | 0.005                      | 0.0003                     |
| Ru Group         | <1.0e-6                    | <1.0e-6                    | 0.006                      | 7.40E-06                   |
| Mo Group         | 1.90E-05                   | <1.0e-6                    | 0.12                       | 0.0001                     |
| Lanthanides      | <1.0e-6                    | <1.0e-6                    | <1.0e-6                    | <1.0e-6                    |
| Ce Group         | <1.0e-6                    | <1.0e-6                    | <1.0e-6                    | <1.0e-6                    |

#### Peer Review Findings

- In-containment source terms should consider the impact of retention in suppression pools, especially for SBO scenarios that discharge directly into the suppression pool
- Estimates of retention in suppression pools provided in SAND2023-01313 could be used in regulatory guidance to establish suppression pool decontamination factors

Significant effect of retention in suppression pool on key radionuclide groups



## Upcoming Work

#### **SANDIA REPORT**

SAND2022-xxxx Printed September 2022



Chromium-coated Accident Tolerant Fuel Concept Source Term Accident Sequence Analysis – High Burnup Fuel Source Term Accident Sequence Analysis Supplement

L.I.Albright, L.N. Gilkey, D. Keesling, and D.L. Luxat

#### DRAFT

#### **Cr-Coated ATF Concept**

- Cr-coated ATF concept most similar to conventional fuels
  - Thin, protective chromium coating on Zircaloy fuel cladding delays exothermic Zircaloy oxidation onset
- Cr-coated analysis informed by ATF severe accident PIRT (NUREG/CR-7283) findings





#### **SANDIA REPORT**

SAND2023-xxxx Printed September 2023



Iron-Chromium-Aluminum Accident
Tolerant Fuel Concept Source Term
Accident Sequence Analysis – High Burnup
Fuel Source Term Accident Sequence
Analysis Supplement

L.I.Albright and D.L. Luxat

#### DRAFT

## FeCrAl ATF Concept

- FeCrAl ATF concept utilizes a novel fuel cladding material
  - Substitution of Zr-based alloy with an FeCrAl alloy
  - Intended to reduce both oxidation in the core and associated hydrogen production
- FeCrAl analysis informed by ATF severe accident PIRT (NUREG/CR-7283) findings
  - Sensitivity analyses deployed to interrogate FeCrAl cladding knowledge uncertainties







Thank you for your attention!

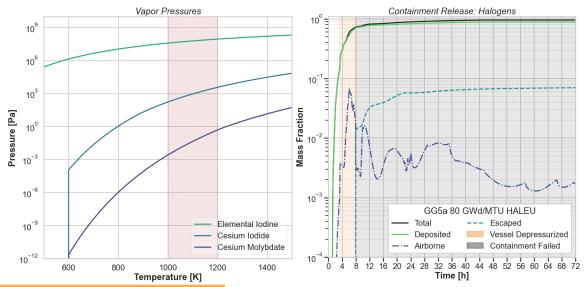


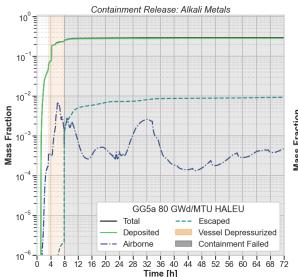


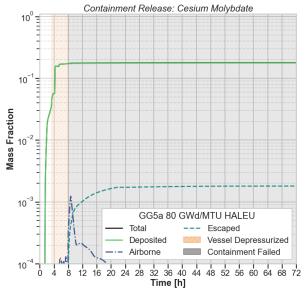
## **Backup Slides**

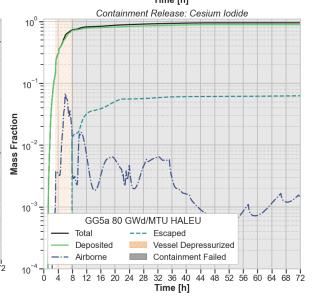


## **Acronyms**





| Acronym | Definition                                 | Acronym | Definition                                    |
|---------|--------------------------------------------|---------|-----------------------------------------------|
| AC      | Alternating current                        | NRC     | Nuclear Regulatory Commission                 |
| ADS     | Automatic depressurization system          | ORNL    | Oak Ridge National Laboratories               |
| AFW     | Auxiliary Feedwater                        | РВ      | Peach Bottom                                  |
| AST     | Alternative source term                    | PIRT    | Phenomena Identification and Ranking Table    |
| ATF     | Accident tolerant fuel                     | PORV    | Pilot-operated relief valve                   |
| ATWS    | Anticipated transient without scram        | PRA     | Probabilistic risk assessment                 |
| BWR     | Boiling water reactor                      | PRT     | Pressurizer relief tank                       |
| CCFL    | Counter current flow                       | PWR     | Pressurized water reactor                     |
| CDF     | Core damage frequency                      | Qol     | Quantity of interest                          |
| DC      | Direct current                             | RCIC    | Reactor core isolation cooling system         |
| ECCS    | Emergency core cooling system              | RCP     | reactor coolant pump                          |
| ECDF    | Empirical cumulative distribution function | RCS     | Reactor coolant system                        |
| GG      | Grand Gulf                                 | RHR     | Residual heat removal                         |
| HALEU   | High-assay low-enriched uranium            | SBLOCA  | Small-break loss of coolant accident          |
| HBU     | High burnup                                | SBO     | Station blackout                              |
| HLCR    | Hot leg creep rupture                      | SOARCA  | State-of-the-Art Reactor Consequence Analyses |
| HPCI    | High pressure coolant injection system     | SQN     | Sequoyah                                      |
| HPSI    | High-pressure safety injection             | SRV     | Safety relief valve                           |
| LBLOCA  | Large-break loss of coolant accident       | STCP    | Source Term Code Package                      |
| LEU     | Low-enriched uranium                       | STSBO   | Short-term station blackout                   |
| LOCA    | Loss of coolant accident                   | SU      | Surry                                         |
| LPCI    | Low-pressure coolant injection             | TDAFW   | Turbine-driven auxiliary feedwater            |
| LPSI    | Low-pressure safety injection              | TID     | Technical information document                |
| LTSBO   | Long-term station blackout                 | TMI-2   | Three Mile Island Unit-2                      |
| LWR     | Light water reactor                        |         |                                               |


#### Cs and I Releases




- SAND2011-0128 considered deposition of radionuclides on the lower head, leading to significantly decreased in-vessel phase releases.
  - This consideration delays a significant fraction of radionuclide release to containment until after lower head failure during the ex-vessel phase (employed for Peach Bottom and Sequoyah)
  - This practice is no longer considered appropriate, and was not employed in SAND2023-01313
- CsI (all original I inventory and ~10% original Cs inventory) transports readily from the primary system to containment during core damage due to the relatively large CsI vapor pressures at elevated primary system temperatures
  - Consistent with Peach Bottom SOARCA results









#### **NUREG-1465 Accident Selection**



- Dominant sequences were chosen based on impact on source term
  - PWRs are predominantly LOCA accidents
  - BWRs are predominantly SBO/ATWS accidents

| PWR Plants | Sequence      | Description                                                     |
|------------|---------------|-----------------------------------------------------------------|
| Surry      | AG            | LOCA (hot leg), no containment hear removal systems             |
|            | TMLB          | LOOP, no PCS and no AFWS                                        |
|            | V             | Intefacing system LOCA                                          |
|            | S3B           | SBO with RCP seal LOCA                                          |
|            | S2D- $\delta$ | SBLOCA, no ECCS and H2 combustion                               |
|            | S2D-β         | SBLOCA w/ 6" hole in containment                                |
| Oconee 3   | TMLB          | SBO, no active ESF systems                                      |
|            | S1DCF         | LOCA (3"), no ESF systems                                       |
| Sequoyah   | S3HF1         | LOCA RCP, no ECCS, no CSRS w/ reactor cavity flooded            |
|            | S3HF2         | S3HF1 w/ hot leg induced LOCA                                   |
|            | 3HF2          | S3HF1 w/ dry reactor cavity                                     |
|            | S3B           | LOCA (1/2") w/ SBO                                              |
|            | TBA           | SBO induces hot leg LOCA - H2 burn fails containment            |
|            | ACD           | LOCA (hot leg), no ECCS no CS                                   |
|            | S3B1          | SBO delayed 4 RCP seal failures, only steam driven AFW operates |
|            | S3HF          | LOCA (RCP seal), no ECCS no CSRS                                |
|            | S3H           | LOCA (RCP seal) no ECCS recirculation                           |

| BWR Plants   | Sequence | Description                                    |
|--------------|----------|------------------------------------------------|
| Peach Bottom | TC1      | ATWS w/ reactor depressurized                  |
|              | TC2      | ATWS w/ reactor pressurized                    |
|              | TC3      | TC2 with wetwell venting                       |
|              | TB1      | SBO with battery depletion                     |
|              | TB2      | TB1 with containment failure at vessel failure |
|              | S2E1     | LOCA (2"), no ECCS and no ADS                  |
|              | S2E2     | S2E1 with basaltic concrete                    |
|              | V        | RHR pipe failure outside containment           |
|              | TBUX     | SBO with loss of all DC power                  |
| LaSalle      | ТВ       | SBO with late containment failure              |
| Grand Gulf   | TC       | ATWS early containment failure fails ECCS      |
|              | TB1      | SBO with battery depletion                     |
|              | TB2      | TB1 w/ H2 burn fails containment               |
|              | TBS      | SBO, no ECCS but reactor depressurized         |
|              | TBR      | TBS with AC recovery after vessel failure      |