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Acronyms and Abbreviations 
2D two-dimensional 
3D three-dimensional 
AI artificial intelligence 
CFR U.S. Code of Federal Regulations 
CPM counts per minute 
DCGL derived concentration guideline level 
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FSS final status survey 
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GLS generalized least squares 
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ML machine learning 
NL The Netherlands 
NRC U.S. Nuclear Regulatory Commission 
OLS ordinary least squares 
PNNL Pacific Northwest National Laboratory 
SADA Spatial Analysis and Decision Assistance 
UAV unoccupied aerial vehicle 
UAS unoccupied aerial system 
USL upper simultaneous limit 
UTL upper tolerance limit 
UXO unexploded ordnance 
VSP Visual Sample Plan 
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1.0 Introduction 
The U.S. Nuclear Regulatory Commission (NRC) has responsibility for regulating the safe 
decommissioning of facilities and sites to meet the License Termination Rule in 10 CFR Part 20, 
Standards for Protection Against Radiation, Subpart E, “Radiological Criteria for License 
Termination.” Decommissioning is performed in accordance with 10 CFR Part 50, Domestic 
Licensing of Production and Utilization Facilities, as part of termination of license (§50.82) and 
release of the facility or site for unrestricted use (§50.83). Key guidance for demonstrating a 
facility or site meets these regulations – including radiological surveys – is provided in NUREG-
1507, Revision 1, Minimum Detectable Concentrations with Typical Survey for Instruments for 
Various Contaminants and Field Conditions (Abelquist et al. 2020); NUREG-1575, Revision 1, 
Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC 2000); and 
NUREG-1757, Consolidated Decommissioning Guidance (Banovac et al. 2006; Barr et al. 
2020). The guidance currently demonstrates the minimum requirements and necessary 
conditions for conducting radiological surveys of surface soils and structures by a person 
carrying a radiation detector(s). 

Radiological surveys to support decommissioning sites and facilities that may contain 
radioactive contamination involve both static measurements and scan measurements 
(scanning). Static measurements are aimed at characterizing an overall mean level of residual 
contamination but are unlikely to detect small areas of elevated activity because they are 
collected over a relatively limited area. Radiological scanning surveys, which allow for greater 
spatial coverage over a comparable study period, can guarantee a higher probability of 
detecting an area of elevated activity if it exists on a site. 

Techniques for scanning surveys have traditionally involved surveyors moving instruments over 
surface or land areas and responding to audio output from the instrument (NRC 2000; Abelquist 
2014). When the audio input changes from what is being observed under a “no residual 
contamination” paradigm, a surveyor changes the survey parameters (speed, height, path) in 
real time to gain a detailed characterization (size, shape, radioactivity) of the area that might 
contain residual contamination before resuming the survey under the planned parameters. This 
paradigm is referred to as “surveying with vigilance” (Fortin et al. 2023). 

Licensees have modernized the methods used to perform radiological surveys since MARSSIM 
was first published by increasingly using additional survey instrumentation and data capture 
tools, including global positioning system (GPS) and geographic information system (GIS) 
technologies (Abelquist et al. 2020). Scan surveys deviate from the MARSSIM approach in that 
they are now regularly conducted without surveyor vigilance, using autonomous vehicles, towing 
vehicles, or human surveyors that collect data continuously without identifying in real time areas 
where residual contamination might be present. When data are collected in a continuous and 
non-vigilant manner, additional planning and new statistical tools are needed to account for the 
differences in data collection, management, visualization, and analyses that might be required 
over traditional methods. 

This report identifies options for additional tools that could be needed to facilitate data 
importation and management, visualization, and analysis using continuous (without vigilance) 
methods for surface (2D) radiological surveys. The discussions provided in each section are 
summarized as follows: 
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• Section 2: two types of correlation that could be present in spatial data, one is the result of 
how contamination occurred at a site and the other is due to the method of continuous data 
collection. 

• Section 3: two methods for accounting for spatial correlation in final status survey (FSS) 
data analysis. Generalized least squares (GLS) is a method that could be implemented in 
Visual Sample Plan (VSP) prior to post-survey analysis. Machine learning (ML) is a method 
relevant to determining the boundaries of areas with elevated residual contamination that 
could be implemented to analyze data collected during the survey (i.e., post-survey 
analysis). 

• Section 4: three methods for determining the boundaries of areas that may contain elevated 
residual contamination and must be revisited. Methods based on observations alone include 
upper tolerance limits (UTLs), upper simultaneous limits (USLs), and z-scores. Methods that 
use observations to predict values at locations without associated observations include 
kriging methods and possibly ML. 

• Section 5: considerations for importing data from continuously collected surveys into VSP. In 
general, VSP can receive a large amount of spatial data without issue. Data management 
and pre-processing must generally be performed outside of VSP so that the analysis-ready 
data set is imported. 

• Section 6: visualization of continuously collected data. The amount of data from continuous 
surveys and the spatial area over which the data are collected would benefit from a few 
additional tools in VSP.  

Data quality assessment is vital for continuously collected data, and the methods discussed in 
this report assume that the data are adequate to support a decision. Survey data that are 
collected at a higher velocity or a higher altitude than what is planned are biased (tend to 
underestimate contamination) and could inhibit the ability to detect unacceptable levels of 
residual radioactivity. VSP has some capability for data quality assessment, such as posterior 
power curves for the quantile test implemented in MARSSIM Scenario B. However, additional 
tools to assess the quality of continuously collected data are needed. Pacific Northwest National 
Laboratory (PNNL) implemented several data quality assessment methods in the draft drone 
report (Bunn et al. 2022) and recommends additional work to identify methods to incorporate 
into VSP enhancements for continuously collected survey data. 

We have prepared two data sets to use as case studies and test data sets for data quality 
assessment analysis and new hot spot identification improvements, should we need them for 
testing and evaluating future VSP enhancements. The scenarios were provided by NRC for the 
Fortin et al. (2023) report. They have been altered to better reflect the evaluation of a land area 
for the presence of small areas of elevated residual radioactivity. Appendix A discusses these 
data sets and their application to Scenarios A and B of MARSSIM. 
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2.0 The Effects of Spatial Correlation on Statistical Tests 
The statistical decision-making techniques (hypothesis testing, calculating statistical intervals) in 
MARSSIM rely on a set of assumptions regarding 1) the probability distribution of the population 
(or a population parameter, such as a mean concentration), 2) the spatial or temporal 
dependence present in the population distribution, and 3) the error structure of observations 
within a data set. NUREG-1505 (Gogolak et al. 1998) provides a nonparametric statistical 
methodology that loosens the requirements for underlying probability distributions, but 
assumptions about the spatial- and temporal-dependence, as well as sample assumptions, are 
still required to use these methods appropriately. 

A general model for the relationship between observed data and a set of predictors is: 

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) +  𝜀𝜀 (1) 

In Equation (1), 𝑌𝑌 is a quantity of interest, 𝑋𝑋 is the set of predictors, 𝑓𝑓 is a function that defines 
the relationship between 𝑌𝑌 and 𝑋𝑋, and 𝜀𝜀 is error (e.g., measurement error and/or model error). 
Often, statistical analysis assumes that observed data are sampled from a population whose 
members are independent of one another and randomly mixed, and that individual error terms, 
𝜀𝜀, are uncorrelated in such a way that the probability of a value taken on by one model error 
term has no effect on the probability of any of the remaining model error terms.  

It is important to keep the distinction between the population characteristics (spatial, temporal 
independence) and the sample characteristics (distribution and independence of errors) in mind, 
as the toolbox of statistical analysis methods relies on assumptions about both. Sample 
characteristics can lead to exogenous correlation due to survey collection factors, such as 
scanning speed, height, and detector specifications. Related terminology is introduced in 
Section 2.1. Endogenous correlation is related to the population characteristics, including 
distribution of possible residual contamination at a site, through processes such as deposition, 
transport, and decay of radionuclides, and applies to the concentrations or radiological activity 
at a site. Endogenous correlation is discussed in Section 2.2. Section 2.3 demonstrates the 
potentially deleterious effects that not accounting for these types of correlations can have on 
statistical inference through a case study. 

2.1 Exogenous Correlation 

Final status surveys conducted by continuous methods (with or without vigilance) often induce 
spatial or temporal correlation due to the survey speed required to scan minimum detectable 
concentrations (MDCs) and the nature of radiation detection. As an example, Figure 1 shows a 
set of data collected along an outdoor transect from an experiment to compare human and 
unoccupied aerial vehicle (UAV) surveys (Bunn et al. 2022). The experiment used button check 
sources placed at known locations along a transect and subsequent continuous survey with a 
NaI scintillation detector along a survey path over the transect. The result is a data set with the 
check sources evident as symmetric peaks – the data within a peak represent a single check 
source. Data collected in this way are clearly correlated, as points nearer to each other in time 
(and space) have radiation measurements more similar to each other than those further from 
each other. 
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The model in Equation (1) is modified to capture this autocorrelation by representing the 
radiation detected at each point in time as a function of previous detections. It uses a time 
index, 𝑡𝑡, associated with the movement of the detector over the transect as follows: 

𝑌𝑌𝑡𝑡 = 𝑐𝑐 + 𝜙𝜙1𝑌𝑌𝑡𝑡−1 + 𝜙𝜙2𝑌𝑌𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑌𝑌𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 (2) 

In Equation (2), 𝑌𝑌𝑡𝑡 is the observed value at time 𝑡𝑡, the 𝜙𝜙’s are the weights of the previous 
observations collected at times (𝑡𝑡 − 1), (𝑡𝑡 − 2), … , (𝑡𝑡 − 𝑝𝑝), and 𝜀𝜀𝑡𝑡 is the error at time 𝑡𝑡. In 
Equation (2), predictions of the current value are equal to a weighted combination of previously 
observed values. This model is called an autoregressive model of lag-𝑝𝑝, where the correlation 
structure is identified through the 𝜙𝜙’s. The purpose of this model is to demonstrate how the 
dependency between observations can be captured. Although on its own it does not calculate 
an overall average or identify elevated areas, subsequent analysis could be done to these ends. 

 
Figure 1. Example of a survey transect over a set of button sources (see Bunn et al. 2022). 

Autocorrelation is evident as smooth peaks. 

2.2 Endogenous Correlation 

Endogenous correlation is introduced by the nature in which radioactivity is deposited and/or 
transported at a site. For surface contamination, endogenous correlation might be the result of 
air deposition from a stack, leakage from a tank, or transport of previously deposited 
radioactivity via surface water, animals, or weather, resulting in a spatial trend or pattern to the 
deposited contamination. The consequence is a lack of stationarity in the mean or variance of 
the underlying contaminant distribution across the site. The model in Equation (1) can be 
modified a couple of different ways to reflect these circumstances, either by stating that the 𝑋𝑋s 
are coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧), similar to Equation (1), or through a spatial correlation model where the 
𝑋𝑋s are actually nearby (near in space and/or time) observed values (𝑌𝑌s), similar to Equation (2).  
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Whether to use Equation (1) or Equation (2) as the statistical model for data evaluation depends 
on how such analysis will be used to make decisions about the site. If the goal is to compare a 
site parameter (mean or upper percentile) to an action limit, Equation (1) is the proper choice. If 
the goal is to predict values at unsampled locations or to estimate boundaries of elevated areas 
that might require further remedial action, Equation (2) is particularly useful. 

2.3 The Effect of Spatial Autocorrelation 

Spatial autocorrelation measures the spatial similarity of a set of geographically located 
variables and includes both exogenous and endogenous correlation (Beale et al. 2010; Cressie 
2015). Model-based statistical inference is widely used in environmental analyses to account for 
spatial autocorrelation, which is represented by the assumptions made (or implied) about the 
model error terms. The validity of the model assumptions determines the model’s reliability and 
performance. 

Accounting for spatial autocorrelation accomplishes two goals. First, it assesses the degree and 
nature to which the spatial independence assumption is violated. Second, and perhaps more 
importantly, it determines how statistical conclusions are impacted when non-zero spatial 
autocorrelation is neglected. In MARSSIM Class I and Class II areas, for example, the working 
(null) hypothesis for FSSs is that the site is not acceptable for unconditional release unless FSS 
data are collected to refute (reject) this hypothesis and conclude the site is acceptable. The 
statistical hypotheses usually take the form: 

𝐻𝐻𝑜𝑜: 𝜇𝜇 ≥ action limit 

𝐻𝐻𝑎𝑎: 𝜇𝜇 < action limit 

where 𝜇𝜇 is a site parameter of interest, such as the mean Co-60 concentration in the top 
6 inches of soil. Models that omit spatial autocorrelation when it is present tend to reject the null 
hypothesis more frequently than the nominal type I error rate (increased type I error rates), 
leading to conclusions that mean concentrations are below an action limit when they are not. 
Such tests are typically overly liberal in the presence of positive spatial autocorrelation because 
autocorrelation is a form of pseudo replication, resulting from observations being treated as 
statistically independent when they are not (Clifford et al. 1989; Dray et al. 2006; Hurlbert 1984). 
This effect is demonstrated by the following example, where a non-spatial model results in a p-
value that leads to the conclusion that the mean concentration is below the action limit, but a 
spatial model does not. 

The example data are shown in Figure 2, with zinc concentrations collected in a Meuse River 
flood plain near Stein, The Netherlands (NL). The data are from the “meuse” data set and a 
description can be found in the R sp package documentation (R Core Team 2020; Pebesma 
and Bivand 2005; Bivand et al. 2013). In general, higher zinc concentrations appear along the 
river shore and concentrations decrease as distance from the river increases, indicating spatial 
autocorrelation. Assume we are investigating whether there is an elevated level of zinc 
concentration compared to the historical average log zinc concentration value of 5.75 ppm. This 
can be expressed using the following statistical hypotheses testing framework: 

𝐻𝐻𝑜𝑜: 𝜇𝜇 ≥ 5.75 (mean concentration of zinc in the river exceeds the historical average) 

𝐻𝐻𝑎𝑎: 𝜇𝜇 < 5.75 (mean concentration is less than the historical average) 
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Using the spatial model to account for spatial autocorrelation, the average log zinc 
concentration was found to have a 95% confidence interval of (5.27 ppm, 7.73 ppm). The null 
value of 5.75 ppm clearly lies within the 95% confidence interval and the p-value corresponding 
to the hypothesis test is not significant (𝛼𝛼 = 0.05), as shown in Table 1. The non-spatial model, 
on the other hand, results in a significant p-value and the null hypothesis is rejected (𝛼𝛼 = 0.05). 
The correct decision in this case would be made using the spatial model that accounts for 
spatial autocorrelation. 

Table 1. Summary output from models highlighting the effect of spatial autocorrelation. 

Model Estimate Standard 
Error t-value p-value Result 

Non-spatial model 0.1358 0.0580 2.3417 0.0205 False positive 
Spatial model 0.7540 0.6296 1.1977 0.2329 True negative 

 
Figure 2. Zinc concentration (ppm) recorded in a flood plain of the Meuse River near the village 

of Stein, NL (R Core Team 2020). 

A simulation of the effect of spatial autocorrelation on type I error rates is shown in Figure 3. 
Type I error rates from 1000 simulations of hypothesis testing were calculated using a model 
that uses non-spatial standard ordinary least squares (OLS) estimation that does not account 
for spatial autocorrelation and a model that accounts for spatial autocorrelation using a GLS 
model. The figure shows that in the OLS model, type I error rates increase consistently as the 
number of samples (pseudo replicates) increases, whereas error rates from the GLS model 
remain roughly constant, and at the nominal level (𝛼𝛼 = 0.05), regardless of sample size. The 
GLS model is discussed further in Section 3.1. 
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Further, spatial autocorrelation can also compensate for unknown extrinsic and intrinsic factors 
that are missing from a model (Cressie 2015), where the proportion of variation explained for 
the dependent variable in a predictive model increases (Beale et al. 2010; Ver Hoef and Cressie 
1993). As a result, regression parameter estimates are more precise, increasing statistical 
power for tests of these parameters. In a simulation study, Griffith and Layne (1999) reported an 
average 5% increase in the proportion of variability explained when spatial autocorrelation is 
accounted for in regression models. 

 
Figure 3. Type I error rates for spatial and non-spatial models. 
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3.0 Methods to Improve VSP Analysis of Continuously 
Collected FSS Data 

In MARSSIM, the integrated survey design is based on two objectives to demonstrate that a site 
meets or exceeds release criteria: 1) ensure that the site average activity does not exceed a 
dose-based threshold, and 2) ensure that there are no small areas of elevated activity that 
remain at a site. Objective 1 is usually determined by comparing an estimated mean 
concentration or activity to an action limit or by comparing a site mean to a reference mean. Per 
MARSSIM, the background reference area is defined as an area that has physical, chemical, 
radiological, and biological characteristics similar to the survey unit(s) being investigated but has 
not been contaminated by site activities (i.e., non-impacted). A follow-on objective is that if the 
data indicate a small area of residual contamination may remain, the boundary of the area(s) 
that must be revisited to verify the extent of the elevated activity must be determined. 

The methods discussed in this section are attempts to increase the statistical rigor associated 
with continuously collected FSS data that may contain endo- and exogenous correlation 
structure and are consistent with the MARSSIM hypothesis testing approach. Methods for 
determining whether areas must be revisited, and their boundaries, are discussed in Section 
4.0. 

Section 3.1 discusses the GLS model introduced in Section 2.0. By modeling the data using a 
GLS framework, spatial autocorrelation is accounted for without having to model a variogram, 
used in kriging. Section 3.2 discusses ML.  

3.1 Generalized Least Squares Model 

Section 2.0 showed that a GLS model that accounts for autocorrelation outperforms OLS that 
does not account for spatial structure when estimating a mean concentration or activity and 
performing hypothesis testing. Where a kriging model uses a variogram to model the spatial 
correlation (and results in the ability to predict values where no data are collected), kriging is not 
used in the hypothesis testing framework for comparing a mean to an action limit. The 
variogram can be used in the GLS framework to estimate the covariance matrix to account for 
spatial structure and perform hypothesis testing, create a confidence or tolerance interval, and 
calculate the number of samples required to achieve data quality objectives (EPA 2000). 

3.1.1 Model Form 

Consider the commonly used standard linear regression model: 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 +  𝜀𝜀 (3) 

In Equation (3), 𝑌𝑌 = [𝑌𝑌1, … ,𝑌𝑌𝑁𝑁]𝑇𝑇 is an 𝑁𝑁 × 1 column vector of response values given a sample of 
𝑁𝑁 observations, 𝑋𝑋 =  [𝑋𝑋𝑖𝑖𝑖𝑖;  𝑖𝑖 =  1, …  𝑁𝑁, 𝑘𝑘 =  1, …  𝐾𝐾 ] is the design matrix of 𝐾𝐾 predictor variables, 
𝛽𝛽 = [𝛽𝛽1, … ,𝛽𝛽𝐾𝐾]𝑇𝑇 is a column vector of unknown linear coefficients, and 𝜖𝜖 = [𝜖𝜖1, … , 𝜖𝜖𝑁𝑁]𝑇𝑇 is an 
𝑁𝑁 × 1 random error term. This model is a particular version of Equation (1) where the conditional 
mean of 𝑌𝑌 given 𝑋𝑋, 𝑓𝑓(𝑋𝑋), is a linear function of 𝑋𝑋, 𝑋𝑋𝑋𝑋. 



PNNL-32664, Rev. 1 

Methods to Improve VSP Analysis of Continuously Collected FSS Data 9 
 

OLS is the most commonly used method for estimating the unknown coefficient 𝛽𝛽. One of the 
most important assumptions of OLS estimation is that the error terms are uncorrelated and have 
a constant variance and the covariance is a diagonal matrix 𝑉𝑉𝑉𝑉𝑉𝑉(𝜖𝜖|𝑋𝑋) = 𝜎𝜎2𝐼𝐼, where 𝐼𝐼 is an 
𝑁𝑁 × 𝑁𝑁 identity matrix. However, in the presence of spatial autocorrelation, the random error 
terms are correlated, violating this assumption. The presence of this correlation causes the OLS 
estimators to no longer be efficient and has the potential to give misleading results from 
hypothesis tests or other inferences. 

In the presence of spatial autocorrelation, GLS estimation can be used. GLS accounts for the 
spatial structure in the data by replacing the OLS covariance matrix with 𝑉𝑉𝑉𝑉𝑉𝑉(𝜖𝜖|𝑋𝑋) = 𝜎𝜎2𝑉𝑉. The 
matrix 𝑉𝑉 contains information about the form of the spatial structure in the data and/or can be 
specified using prior knowledge. It can also be estimated using the empirical variogram. 

Variogram estimation is available in VSP as part of the kriging module. The equations for the 
GLS model are straightforward to program; Section 3.1.2 briefly discusses how the GLS model 
could be set up in the MARSSIM framework and included in VSP. 

3.1.2 GLS in MARSSIM Framework 

In the majority of MARSSIM environmental investigations, the statistical hypothesis testing 
approach is used for final decision-making to meet the first objective described above, ensuring 
the site average activity does not exceed a dose-based threshold. Typically, an approach must 
be developed for one of two cases: 1) comparing observations from the survey site to a 
threshold value (one-sample case), and 2) comparing observations from the survey site to 
observations from the reference site (two-sample case). 

Case 1: One-Sample Case 

The hypothesis test for the one-sample case is: 

𝐻𝐻𝑜𝑜: 𝜇𝜇 ≥ 𝜇𝜇𝑜𝑜 

𝐻𝐻𝑎𝑎: 𝜇𝜇 < 𝜇𝜇𝑜𝑜 

which can be expressed as the following linear model: 

𝑌𝑌 − 𝜇𝜇𝑜𝑜 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖 

where 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑌𝑌 − 𝜇𝜇𝑜𝑜, 𝑌𝑌 = [𝑌𝑌1, … ,𝑌𝑌𝑁𝑁]𝑇𝑇 is an 𝑁𝑁 × 1 column vector of response values given a 
sample of 𝑁𝑁 spatially correlated observations from a survey area, and 𝑋𝑋 =  [1𝑁𝑁] is 𝑁𝑁 × 1 design 
matrix of 1s. Additionally, 𝜇𝜇 is the mean concentration from the survey site, 𝜇𝜇𝑜𝑜 is a threshold 
value, and 𝛽𝛽 is the average difference between the mean concentration from the survey area 
and the null value (𝜇𝜇𝑜𝑜). 
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Case 2: Two-Sample Case 

In the two-sample case, the means from the survey area and reference area are compared such 
that: 

𝐻𝐻𝑜𝑜: 𝜇𝜇𝑠𝑠 ≥ 𝜇𝜇𝑟𝑟 

𝐻𝐻𝑎𝑎: 𝜇𝜇𝑠𝑠 < 𝜇𝜇𝑟𝑟 

These means can be expressed as the linear model in Equation (3). Where 𝑌𝑌 =
[𝑌𝑌1∗, … ,𝑌𝑌𝑁𝑁∗,𝑌𝑌𝑁𝑁+1, … ,𝑌𝑌𝑁𝑁+𝑀𝑀]𝑇𝑇 is an (𝑁𝑁 + 𝑀𝑀) × 1 column vector of response values given a sample of 
𝑁𝑁 adjusted or observed spatially correlated observations from a survey area and 𝑀𝑀 
observations from a reference area 𝑋𝑋 = �1𝑁𝑁0𝑀𝑀

� is (𝑁𝑁 + 𝑀𝑀) × 1 design matrix with 1s denoting 
measurements from the survey area and 0s denoting measurements from the reference area. 
Additionally, 𝜇𝜇𝑠𝑠 is the mean concentration from the survey site, 𝜇𝜇𝑟𝑟 is the mean concentration 
from the reference area, and 𝛽𝛽 is the difference in mean concentration between observations 
from the survey and reference areas. 

In both cases, the hypotheses reduce to: 

𝐻𝐻𝑜𝑜:𝛽𝛽 ≥ 0 

𝐻𝐻𝑎𝑎:𝛽𝛽 < 0 

As discussed in the previous section, inference using GLS estimation for 𝛽𝛽 yields reliable results 
by accounting for any spatial structure that may exist in the data. 

3.2 Machine Learning 

The development and use of ML and artificial intelligence (AI) methods have dramatically 
increased over the last 15 years. One of the reasons for the popularity of AI/ML methods is their 
flexibility to discover and model complex and nonlinear relationships in large data sets, although 
recent advances like few-shot and zero-shot learning have also been developed for data-sparse 
applications. AI/ML includes a set of techniques that create analytical models by learning from 
data, recognizing patterns, and generating predictions and decisions based on those patterns. 
Contaminant fate and transport and physical characteristics of the surface could be incorporated 
into AI/ML methods as factors or potential predictors. For example, AI/ML could be used to 
predict contaminant levels at unmeasured locations by combining concentration measurements 
taken with and without vigilance, as well as with other surface measurements or model outputs 
(e.g., surface water transport, soil properties). 

ML methods, such as tree-based methods, support vector machine regression, and deep 
learning methods, can be used to predict outcomes based on a set of independent variables. As 
one example, recent extensions to random forest algorithms have been developed for both 
global (Hengl et al. 2018) and local (Georganos et al. 2021; Ancell et al. 2021; Benito 2021) 
spatial regression problems. However, like non-spatial statistical methods, they may not 
adequately incorporate the properties of spatially correlated data. To remedy this, spatial 
coordinates could be used as predictor variables, although caution should be used to ensure 
overfitting does not result (Meyer et al. 2019). AI/ML methods have been applied to subsurface 
data to perform tasks such as delineating layers (Wohlberg et al. 2005), clustering observations 
(Romary et al. 2015), and mapping contaminant plumes (Tao et al. 2019). Additional research 
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and development could determine if similar approaches could be used for surface applications. 
AI/ML methods could also be useful for estimating the boundaries of an area with potential 
elevated residual contamination. A few ML methods are discussed in Section 4.2.5. 

AI/ML methods can often lack interpretability, and quantifying uncertainty (to create confidence 
intervals or perform hypothesis tests) may require technical complexity exceeding that available 
to typical licensees. VSP would require research to identify which, if any, AI/ML methods are 
best suited to continuously collected data applications, and then subsequent algorithm 
development and coding to accommodate their use in characterization and/or FSSs. 
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4.0 Methods to Identify Areas of Potential Residual 
Contamination 

As mentioned in Section 1.0, continuous scanning surveys do not benefit from real-time 
surveyor vigilance; thus, there is a need to identify areas that may contain elevated levels of 
residual elevated contamination, or hot spots, after the survey has been completed. Even in the 
absence of residual radioactivity, variability is expected in survey results due to background 
levels, measurement uncertainty, and statistical counting errors. In combination, these sources 
of variability result in a distribution of measurements and possibly outliers, or observations that 
do not conform to the pattern established by other observations (Gilbert 1987). Gilbert (1987), 
Gibbons (1994), and EPA (2000) discuss the differences between outliers and elevated 
observations that represent true site conditions. Assuming anomalous values and outliers are 
corrected, there is a need for methods that can identify and delineate areas of potential concern. 
Identification of areas of potential concern is typically based on choosing an investigation level 
(IL) (NRC 2000). In this section, we focus on methods that can be used to develop an ILpp, 
where the subscript p indicates the IL is developed a posteriori using post-processed survey 
data to identify areas of potential concern. 

After data quality assessment has been performed to verify that the survey was completed 
appropriately, two steps are necessary to determine whether post-survey areas should be 
revisited. The first is to identify the ILpp comparison value such that any locations with 
observations greater than the ILpp are flagged for further inspection. Once the data are 
compared with the ILpp, boundaries of the area to revisit need to be identified. 

This section discusses different options for choosing the ILpp, including a UTL, USL, z-score, 
and local indicator of spatial association (LISA). With each method, an illustration of 
implementing it is provided using an example data set.  

Section 4.1 discusses methods to identify potential areas of elevated contamination (hot spots) 
when surveys are completed using continuous data collection and are0020performed without 
surveyor vigilance.  

Section 4.2 discusses methods to delineate areas to revisit, including a rule-based approach 
that is consistent with MARSSIM as well as geospatial methods. 

4.1 Potential Areas of Elevated Contamination (Hot Spots) 

4.1.1 UTL Method 

The UTL method should be considered for identifying areas of elevated contamination (hot 
spots) if they are present. A UTL is favored over a confidence limit approach (typically used to 
determine if the site mean is below the site-side DCGL (DCGLW) because it can be applied 
when non-uniform contamination is present. A UTL is used to estimate the pth percentile of a 
population with a chosen level of confidence. For example, the ILpp can be estimated using the 
95th percentile / 95% confidence UTL. The UTL can be based on observations from the 
reference area and the area of concern or just the area of concern if data from a reference area 
are not available. 

There are several nonparametric, parametric, and quasi-parametric methods for developing a 
UTL (Krishnamoorthy and Mathew 2009; Davis and Wambach 2015). Parametric methods 
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typically assume data from a population that can be described by a normal, log-normal, or 
gamma distribution. Nonparametric methods do not make distributional assumptions, but their 
degree of confidence can be limited by the number of samples. Parametric methods may enable 
a higher degree of confidence associated with a UTL for the same number of or fewer samples 
at the expense of distributional assumptions. 

VSP currently implements calculation of parametric and nonparametric UTLs (Millard and 
Neerchal 2001; Hahn and Meeker 1991). Davis and Wambach (2015) propose an alternative 
quasi-parametric development of UTLs that assumes a log-normal distribution with log-scale 
deviation of no greater than two (2) and conservative heuristics about the number of samples 
exceeding certain fractions of the UTL. If distributional assumptions can be verified, parametric 
UTLs will typically be smaller than their nonparametric equivalent, and so are less conservative 
as a comparison for finding elevated residual contamination (i.e., smaller UTL values will identify 
more areas with elevated contamination). 

PNNL applied the UTL method as an illustration of implementing it using an example data set. 
The data set was derived based on data previously provided by NRC for lag-k scan MDC 
research (Fortin et al. 2023), including counts per minute (CPM) observed via scanning that 
included serial autocorrelation between observations. However, the CPM observations in the 
reference area were generally higher than in the area of concern. Therefore, PNNL injected the 
data with elevated observations to demonstrate the hot spot detection methods. The resulting 
synthetic data set used in this example is shown in Figure 4, with derived observations shown 
on the left panel and hot spot locations identified in the right panel when observations were 
greater than a threshold. (The threshold was set to 14,000 CPM for the purpose of 
demonstration.) Setting the threshold provides a ground truth for the demonstration, where UTL, 
USL, and z-score results can be compared to the 23 points identified as hot spots 
(>14,000 CPM) and 333 points identified as cold spots (<14,000 CPM). 

  
Figure 4. Example data set where the left panel shows observed CPM and the right panel 

indicates observations that are hot spots (>14,000 CPM points are red) and cold 
spots (<14,000 CPM points are grey). 

The UTL method identifies the ILpp comparison value based on a selected percentile of the data 
distribution. Any observations greater than that ILpp are then identified as potential elevated 
areas or hot spots. In this example, an IL95/95 is estimated based on the 95th percentile / 95% 
confidence UTL, shown by the dashed line in Figure 5, just less than 18,000 CPM. 
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Figure 5. Example UTL and observations. The left panel shows CPM observations compared to 

the 95th percentile UTL and the right panel shows the distribution of CPM 
observations. 

The 95th percentile / 95% confidence UTL identified all cold spots correctly but only about 50% 
of the hot spots. It incorrectly identified 12 of the 23 hot spots as cold spots, as shown in Figure 
6. 

 
Figure 6. Example UTL results with grey dots correctly identified as cold spots, outlined red 

dots correctly identified as hot spots, and red dots without an outline incorrectly 
identified as cold spots. 
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A 99th percentile and 95% confidence UTL is shown compared to the observations in Figure 7.  

 
Figure 7. Example UTL diagnostic plots. The left panel shows the CPM observations compared 

to the 99th percentile threshold and the right panel shows the distribution of CPM 
observations. 

The 99th percentile UTL identified all cold spots correctly but only 40% of the hot spots correctly. 
It incorrectly identified 14 of the 23 hot spots as cold spots, as shown in Figure 8. 

 
Figure 8. Example UTL results with grey dots correctly identified as cold spots, outlined red 

dots correctly identified as hot spots, and red dots without an outline incorrectly 
identified as cold spots. 

In practice, incorrectly identifying hot spots as cold spots would lead to investigating fewer 
locations than necessary and potentially missing areas of concern. 
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4.1.2 USL Method 

The USL method should also be considered for identifying areas of elevated contamination (hot 
spots) if they are present, and like the UTL can be applied when non-uniform contamination is 
present. The USL method derives the ILpp from a reference area survey by estimating the 
maximum value of the background distribution, i.e., the value that all observations from the 
reference area are less than or equal to, with a given level of confidence. Like UTLs, parametric 
and nonparametric methods have been developed for deriving USLs (Hahn and Meeker 2011). 
A USL will always be greater than or equal to a UTL for the same site. 

PNNL applied the USL method to the same data set as described in Section 4.1.1. The USL 
method estimated the maximum of the reference area, and the ILpp was just less than 9000 at 
95% confidence. This is shown as the dashed line in the plots in Figure 9, in comparison to the 
observations (left panel) and distribution of observations (right panel) in both the reference area 
and area of concern.  

  
Figure 9. Example comparing ILpp based on the USL method to observations from the 

reference area and the area of concern. The right panel shows the distribution of 
CPM observations. 

Any observations in the area of concern that were greater than the ILpp were identified as 
potential elevated areas (hot spots). The USL method identified all 23 hot spots correctly. It 
incorrectly identified 89 cold spots as hot spots, as shown in Figure 10. In practice, incorrectly 
identifying cold spots as hot spots would lead to investigating more locations than necessary. 
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Figure 10. Example USL results with grey dots correctly identified as cold spots, outlined red 

dots correctly identified as hot spots, and outlined grey dots incorrectly identified as 
hot spots. 

4.1.3 Z-score Method 

A third method for developing an ILpp uses z-scores, where the z-score quantifies the distance 
between each observation and the sample mean scaled by the sample standard deviation. The 
use of z-scores is commonly accompanied by an assumption that the data come from a 
population that can be described parametrically by a (log) normal distribution. Under the 
assumption of normality, it is easy to create an ILpp based on a z-score corresponding to a 
chosen quantile of the standard normal distribution (e.g., for the 99th percentile, Z = 2.3). The z-
score is computed for each observation in the area of concern by comparing the observation to 
the sample mean of observations from reference area and area of concern. An ILpp can be 
derived from z-scores nonparametrically using Chebyshev’s inequality in cases where the log-
normal distribution assumption does not hold. However, this can result in overly conservative 
investigation levels (Casella and Berger 1990).  

An additional limitation of z-scores is the lack of uncertainty reflected in their determination, in 
contrast to UTLs and USLs. The latter are based on choosing values 𝛽𝛽 and 𝛼𝛼 such that 
𝛼𝛼 × 100% of the population is less than or equal to the UTL with (1 − 𝛼𝛼) × 100% confidence and 
USLs as a special case of this, with 𝛽𝛽 = 1. The confidence statements reflect sampling and 
population distribution uncertainty. While z-scores do reflect sampling uncertainty, they do not 
reflect the uncertainty about the underlying population distribution. As a result, there is no 
confidence statement associated with the ILpp derived from a z-score. 

PNNL applied the z-score method to the same data set as described in Section 4.1.1. Two 
cases were examined for the z-score method, where one ILpp was defined based on comparing 
z-scores to the 90th percentile of the standard normal and the other based on the 95th percentile.  
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Figure 11. Example z-score method. The blue line is the observed hot spot threshold value, 

and the green and red lines are the 95th z-score and 90th percentile z-score from a 
standard normal distribution 

Both percentile choices led to correct identification of all 23 hot spot locations. The 95th 
percentile incorrectly identified 10 of 333 cold spots as hot spots and the 90th percentile 
incorrectly identified 4. In practice, incorrectly identifying cold spots as hot spots would lead to 
investigating more locations than necessary. The results are shown in Figure 12. 

  
Figure 12. Example z-score results with grey dots correctly identified as cold spots, outlined 

grey dots incorrectly identified as hot spots, and outlined red dots correctly identified 
as hot spots. 
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4.1.4 Local Indicator of Spatial Association Method 

A local indicator of spatial association (LISA), also known as the Local Moran’s I statistic, is a 
method presented by Anselin (1995) to identify local clusters and local spatial outliers. The 
method can be applied to detect statistically significant points of high contamination within 
otherwise low-contamination areas and, conversely, can detect cool spots, or areas of 
significantly low contamination compared to surrounding high-contamination areas.  

A LISA value is calculated for each observed location. Positive LISA values indicate neighboring 
locations have similarly high or low contamination. Negative LISA values indicate neighboring 
locations are higher/lower concentration. Each LISA value has a corresponding p-value, where 
lower p-values indicate that clusters of locations are statistically different than neighboring 
locations. There are four types of clusters with statistical significance: 
1. Several locations with high values (HH) 
2. Several locations with low values (LL) 
3. Single high-value location surrounded by low-value locations (HL) 
4. Single low-value location surrounded by high-value locations (LH) 

Clusters of high values (HH and HL) indicate potential areas of high contamination (hot spots), 
while low values (LL and LH) indicate potential areas of comparatively low activity (i.e., cool 
spots). 

The LISA method could also be useful for data quality assurance in addition to identifying high 
contamination areas in the context of UAV or human-based continuous data collection. By 
incorporating altitude, GPS, and velocity data into the analysis, it could help to identify areas 
where scan velocity and altitude were not in compliance with established standards. For 
instance, areas with statistically significant low contamination values (LL and LH) that are 
outside the range of expected values could be flagged for further investigation. Additionally, 
NRC could use LISA to check whether scan velocity and altitude measurements collected by 
UAVs and humans are in compliance with regulatory requirements. By analyzing LISA values 
for each observed location, the NRC could identify clusters of locations with similar velocity and 
altitude measurements that differ from neighboring locations, indicating potential noncompliance 
issues. This could help to ensure that data collection is performed consistently and accurately, 
and that data quality is maintained over time. Additionally, the LISA method could be used to 
identify clusters of high or low values that may indicate specific sources of contamination or 
other environmental factors that are influencing the data. 

PNNL applied the LISA method to the same data set as described in Section 4.1.1. The results 
are shown in Figure 13. The LISA approach identifies 39 areas as having high (HH) 
contamination. It accurately recognizes all 23 induced hot spots, but mistakenly classifies 15 
cold spots as hot spots. In practice, if cold spots were mistakenly identified as hot spots, this 
would result in more areas being investigated than are required. 
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Figure 13. Example LISA method results with grey dots correctly identified as cold spots, and 

red dots as identified hot spots comprising 23 correctly identified hot spots and 15 
cold spots incorrectly identified as hot spots. 

4.1.5 Lag-k Method 

Increased continuous data collection using automated data loggers and autonomous 
radiological survey devices has introduced a need for corresponding guidance and statistical 
techniques for these data collected without surveyor vigilance. The a priori scan MDC 
calculations detailed in NUREG-1507 assume surveyor vigilance (i.e., pausing or stopping to 
investigate further when audio click data indicate potential areas of concern). Fortin et al. (2023) 
provides a priori scan MDC calculations assuming surveys will be completed without vigilance 
based on binned or integrated audio click data. These calculations provide an incremental 
advance in the a priori scan MDC methodology, moving from the with-vigilance assumption to a 
without-vigilance surveying paradigm.1 

Varying background radiation levels pose a challenge with scanning to identify areas of 
contamination relative to background. When this variation is a nuisance and not the focus of an 
analysis, one mitigating approach is to use local differencing (computing differences between 
observations and their neighbor[s]) to identify elevated areas (hotspots). The lag-𝑘𝑘 method 
offers a local differencing approach. It computes net counts based on spatially localized average 
observations rather than a single, overall background average. The distance between spatially 
localized neighbors is determined by the site conceptual model, expected hotspot sizes, 
observed background variation, and the distances between neighboring locations that are 
expected to be independent (uncorrelated). The parameter 𝑘𝑘 indicates the distance between 
independent observations. Net counts are estimated by calculating the differences between 

 
1 It is known that there are differences between binned or integrated audio click data and rate meter data. 
However, to our knowledge the magnitude of such differences and their effect on scan MDC calculations 
remains unknown. Future research and development will be required to determine the method's efficacy 
and applicability to logged ratemeter display counts (Fortin et al. 2023). 
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observations 𝑘𝑘 units or more apart. Details on the lag-𝑘𝑘 method and its derivation based on a 
familiar hypothesis testing framework are provided in Fortin et al. (2023).  

The lag-𝑘𝑘 method can be used to calculate critical levels, detection limits, and MDCR values 
similar to those derived for static measurements (Currie 1968). The main inputs include desired 
false-positive and false-negative error rates, like in MARSSIM. The MDCR values can be 
converted to a priori scan MDC values to ensure that survey parameters (e.g., scanning speed, 
scanning altitude, detector geometry) will lead to collecting data in which potentially 
contaminated areas can be detected (within acceptable statistical error probabilities) by the 
surveyor during the scanning process that meets regulatory requirements. The lag-𝑘𝑘  method 
can also be used after the survey has been completed (a posteriori) to process continuously 
collected data and perform hypothesis testing to determine if the data indicate the presence of 
potential hotspots. 

The following bullets provide a summary of assumptions and conditions under which the lag-𝑘𝑘  
approach should be considered, with limitations noted as well:  

• Lag-𝑘𝑘 is appropriate when the conceptual site model indicates that background radiation 
levels vary across the site with residual hotspots present in small areas. A site with non-
localized contamination (i.e., residual contamination spread uniformly across the site or 
large areas of distributed residual contamination near the regulatory limit) is not a 
suitable candidate for the lag-𝑘𝑘 approach.  

• The lag-𝑘𝑘 approach is a hypothesis testing procedure for localized sources intended to 
account for variability in background.  

• The formulation of the lag-𝑘𝑘 method assumes that data is collected along a transect via 
a detector moving at a uniform speed recording counts in uniform time intervals. 

• The primary advantages of the lag-𝑘𝑘 method include:  

o It is robust relative to fluctuation in background levels since the nature of its 
comparisons between differences allows the method to automatically adjust for 
local variation. This ensures that areas where readings are slightly higher 
because of historical use or geological properties are not overly likely to trigger 
further investigation.  

o It also provides the ability to detect and flag for follow-up the areas of elevated 
contamination within regions that feature lower than average background levels.  

• Limitations of the lag-𝑘𝑘 approach include: 

o The introduction of the additional lag parameter (𝑘𝑘) that must be understood and 
determined by the analyst. This parameter can significantly affect the detection 
performance of the lag-𝑘𝑘 method. However, the expected hotspot size can be 
used for determining a meaningful physical basis for the lag size.  

o Gradual increases in contamination levels across a site may not be detected 
during data analysis by this method (e.g., if slowly increasing gradient of 
contamination across the site is present, local differencing will filter out that 
signal). However, this concern should not be overemphasized because scanning 
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is aimed at identifying small areas of contamination. Large area persistent trends 
can be identified by visual inspection as part of the data analysis process.  

4.1.6 Summary  

There are several advantages to using the methods above to identify elevated measurements 
for autonomously collected data:  

• They are readily available in statistical and data analysis software (VSP, ProUCL, R).  

• The USL is an estimate of the maximum background value, so we do not expect any 
observed measurements to exceed the corresponding ILpp at a site that does not have 
residual radioactivity. Hence, the resulting elevated area identification is expected to be 
quite accurate under these conditions.  

• The UTL and USL methods provide confidence statements and uncertainty quantification for 
the resulting estimates, although z-scores do not.  

• The z-score approach, on the other hand, is particularly effective at identifying hot spots in 
normally distributed or lognormal distributed data. 

• Nonparametric UTL and USL methods avoid potential misspecification of the underlying 
distribution. 

• LISA is a local method that incorporates local spatial pattern or local spatial correlation to 
identify clusters of locations with high values (HH) or single high-value locations surrounded 
by low-value locations (HL), which indicate potential areas of high contamination (hot spots). 

• The LISA approach can also find clusters of places with statistically significant low values 
(LL) or single low-value locations surrounded by high-value locations (LH), indicating 
possible low-activity zones. These areas may be investigated for compliance as part of the 
data quality assurance process in the context of UAV or human-based continuous data 
surveys. 

• The lag-𝑘𝑘 method provides an approach to determining a priori scan MDC values when 
residual contamination hotspots are expected to be present in small areas and background 
radiation levels vary across a site. It performs local differencing (computing differences 
between observations and their neighbors) to ensure that areas in which readings are 
slightly higher because of historical use or geological properties are not overly likely to 
trigger further investigation. It also improves the ability to detect and flag areas of elevated 
contamination for follow-up within regions with lower than average background levels. 

However, there are also several shortcomings: 

• The UTL is an estimate of the upper bound of the selected percentile of a population (either 
reference area or site). This implies that there is some positive probability, although likely 
small, that the corresponding ILpp would be exceeded in the absence of residual 
radioactivity (see next bullet).  

• When comparing site data to a USL or UTL, any observation that is exceeds the ILpp is 
expected to originate from an area of residual radioactivity. However, when observations are 
compared to the ILpp estimated from a reference area using the 95th percentile / 90% 
confidence UTL, it is expected that 10% = 1 − 90% of site observations that are actually 
background would be identified as elevated areas. This is the false positive rate 𝛼𝛼, where 
𝛼𝛼 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
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• The UTL, USL, and z-score methods rely on the assumption that observations are 
uncorrelated. Applying these methods to correlated observations but assuming they are 
uncorrelated could result in error rates that are higher than nominal levels (see Section 3.0). 
The literature search performed for this report did not identify statistical UTL and USL 
methods that account for (spatial) correlation; this could be an area for future research. 

• UTLs, USLs, and z-scores are global methods that identify elevated observations relative to 
a single ILpp value applied to an entire site. While these locations are useful for identifying 
where to begin a search for areas of concern, they do not provide an estimate of the 
potential spatial extent of the area of concern.  

• Nonparametric calculations require large numbers of observations. An alternative, e.g., a 
lag-𝑘𝑘 approach, could significantly reduce the effective number of samples required. 

• The lag-𝑘𝑘 method may not be suitable for sites with large areas of distributed residual 
contamination near the regulatory limit.  

• The introduction of the additional lag parameter, 𝑘𝑘, required in the lag-𝑘𝑘 method must be 
specified for the analysis. The expected hotspot size can be used for determining a 
meaningful physical basis for the lag size. 

• Of these methods, only the UTL method (both parametric and nonparametric) is 
implemented in VSP. The remaining methods (USL, z-score, and LISA) should be 
considered for future VSP updates. 

4.2 Boundaries of Areas to Revisit 

Methods that account for spatial correlation and variability can address shortcomings of UTLs, 
USLs, and z-scores. Z-scores computed using a spatial moving window, similar to Fortin et al. 
(2023), can identify locally elevated observations. Geostatistical methods such as kriging can be 
implemented with or without assumptions about the data generating distribution. Kriging can be 
used to identify the potential spatial extent of areas of concern. Zhang et al. (2008) and French 
and Hoeting (2015) developed Bayesian geostatistical approaches for identifying areas of 
elevated concentrations. Further communications with NRC are required before making 
recommendations. 

Many traditional kriging methods rely on estimating variograms using least squares or likelihood 
methods. When using these estimation methods for kriging, it is typically assumed that the 
estimated covariance parameters are fixed. A shortcoming of this assumption is that uncertainty 
in estimated variogram parameters is not propagated to estimates of uncertainty in kriging 
predictions. Bayesian statistical methods, now commonly available in software and 
computationally feasible, offer an attractive means to overcome this shortcoming by 
incorporating variogram parameter uncertainty into kriging predictions. Furthermore, Bayesian 
uncertainty intervals offer intuitive interpretability to the user by providing probability statements 
about quantities of interest rather than probability statements about a method (e.g., about 
coverage rates of a confidence interval method). Most, if not all, kriging algorithms in VSP could 
be enhanced with a Bayesian approach. 

Section 4.3.1 summarizes the use of kriging to identify boundaries of elevated residual 
contamination in VSP. 

Section 4.3.2 discusses fixed rank kriging (FRK), which is a method incorporated into VSP in 
2022. FRK is more computationally efficient than other kriging algorithms, which could become 
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an issue with large amounts of data generated from continuous scanning surveys. FRK is also 
flexible in that it allows for multiple resolutions of data, so that, for instance, ground and aerial 
surveys can be combined into a single kriged surface. The approach to identifying boundaries of 
potentially elevated areas using FRK would be similar to that of the other kriging methods. 

Section 4.3.3 discusses Markov Bayes as presented in the Spatial Analysis and Decision 
Assistance (SADA) Version 5 User’s Guide (Stewart et al. 2009; Goovaerts 1997). It is not a 
strict Bayesian method but does appear to have some usefulness in predicting values at 
locations without data, accounting for prior knowledge about the probability of residual 
contamination.  

Section 4.3.4 discusses a method for searching for the presence of elevated values that might 
be clustered, as when searching for unexploded ordnance. If a site is transect surveyed with 
less than 100% coverage, this module can be used to delineate boundaries of areas to revisit if 
elevated values are found. 

Section 4.3.5 discusses ML methods. 

4.2.1 VSP Kriging 

VSP uses the kriging algorithms available through the Geostatistical Software Library (GSLIB) 
(Deutsch and Journel 1998), which includes ordinary, simple, and indicator kriging. As of the 
date of this report, VSP implements 2D versions of these algorithms, but the extension to 3D is 
a matter of “turning on” those sections of the code, software testing, and updating help files and 
documentation. Additionally, the VSP implementation assumes isotropy but could be extended 
to include anisotropy as well. 

VSP can produce maps of kriged surfaces, along with maps of the conditional variance, 
interquartile range of predictions, and a reference uncertainty index. VSP can produce contours 
on kriged surfaces with auto- or user-defined values for contour, like those shown in Figure 14. 
Additionally, it can delineate boundaries that account for uncertainty in the kriged estimates but 
using a method that is based on the probability of exceeding a specified threshold or based on 
an upper confidence limit. Regions based on an upper confidence limit have the interpretation 
that for a given location outside the boundary, there is 95% confidence that the values do not 
exceed a specified threshold.  

Figure 15 shows how probability contours in VSP can be used to account for uncertainty in 
kriged estimates. In this figure, the black squares represent measured data points, the colored 
background raster is the kriged spatial estimate map, and the dark blue line shows the contour 
created from a simple threshold of 200 on the spatial estimate map (delineating the kriged 
estimates with values greater than 200). The light blue contours are generated from delineating 
the locations where the probability of exceeding 200 is 10% or more (that is, areas outside the 
boundary have a 90% probability of not exceeding 200). In addition to creating a larger 
boundary around the main hot spot, several other areas are identified as potentially exceeding 
the threshold level of 200, even though the kriged estimates in those areas are all below 200.  
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Figure 14. Example kriged surface output from VSP and associated contour. A black ‘x’ marks 

the sample locations. The left panel is the kriged surface; the right panel is a 
contour at the threshold level of 4.75. 

 
Figure 15. Example VSP output of a kriged region demonstrating how delineated probability 

contours better account for uncertainty in the spatial estimate and identify regions 
where there is less confidence of being below a specified threshold.  
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4.2.2 Fixed Rank Kriging  

The FRK algorithm being implemented in VSP is based on the approach of Cressie and 
Johannesson (2008 and 2016) and the R package FRK (R Core Team 2020; Zammit-Mangion 
and Cressie 2021). This method uses the concepts of a spatial random effects model and a 
basic areal unit over which observations are averaged in the kriging equations. The spatial 
random effects model includes terms for large (site wide, endogenous correlation) and small 
(nearby, exogenous correlation) scale spatial structure. FRK is a possible solution when large 
amounts of data make standard kriging calculations slow or intractable, although other solutions 
are available for the large data problem (Heaton et al. 2019). FRK allows data with different 
fields of view (i.e., data sets with different supports such as ground scans and aerial scans) to 
be combined into a single model (Cressie and Johannesson 2008 and 2016; Zammit-Mangion 
and Cressie 2021). An additional benefit of FRK is that it employs a flexible covariance structure 
that does not assume stationarity or isotropy. As with other kriging methods, uncertainty in the 
kriged estimates can be incorporated into the identification of boundaries of a potential area of 
elevated residual activity. 

Application of this method to continuously collected data should be explored, especially with 
respect to its flexible covariance assumptions. PNNL released a new version of VSP that 
includes FRK in September 2022. 

4.2.3 Bayesian Ellipgrid and Markov Bayes 

SC&A (2022) recommends Bayesian Elipgrid for initial survey design, before a detailed 
contamination of concern map is available, and Markov Bayes for secondary survey design to 
indicate where additional data need to be collected. Markov Bayes and Bayesian Elipgrid are 
not strictly Bayesian methods but use a conditional probability framework to incorporate “soft 
data” described by Stewart et al. (2006) as well as “hard data” (observations). SC&A proposed 
using Bayesian Elipgrid as the initial survey design, based on knowledge about potential hot 
spot sizes, and then after the data are collected according to this design, using Markov Bayes 
for secondary survey design.  

Bayesian Elipgrid is an extension of the (non-Bayesian) Elipgrid algorithm used to create 
sampling designs and is intended to detect regions of elevated contamination (SC&A 2022). 
Unlike Elipgrid, Bayesian Elipgrid assumes elevated zones exist with user-specified 
probabilities, determined based on knowledge about the site and/or results of previous 
radiological surveys and site investigations. Both Elipgrid and Bayesian Elipgrid can be used to 
determine the number and location of samples. They assume a uniform probability that 
contamination exists. In cases where anisotropy is expected, calculations assuming isotropy will 
likely overestimate the number of samples required, resulting in too many samples (Stewart and 
Powers 2009). Assuming isotropy could also lead to sampling that does not capture, for 
example, contamination concentrated along transport pathways. Such considerations should be 
examined when using this method for survey design. 

Once data are collected using the initial Bayesian Elipgrid survey design, SC&A (2022) 
recommends using Markov Bayes to create a probability map (e.g., probability of contamination 
exceeding a threshold) by combining the “prior belief” (soft data) with observations collected 
through the survey (hard data). Markov Bayes is a distribution-free method that honors the 
observations. It can be used to create point estimates of the probability of elevated 
contamination in areas or volumes of the subsurface (SC&A 2022; Zhu & Journel 1993; 
Goovaerts 1997). Note that it is not a fully Bayesian method – it does not rely on a statistical 
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prior distribution or likelihood function to derive a posterior distribution accounting for 
distributional assumptions. Markov Bayes does not provide a measure of uncertainty in resulting 
probability maps. Further, information is lost when hard data are converted to zeros and ones 
via thresholding suggested in SC&A (2022), where there is no distinction between, for example, 
a measurement well below the threshold and a measurement slightly below the threshold, 
because both are coded as zero. The Markov assumption also needs to be checked when 
applying this method (Goovaerts 1997; Goovaerts and Journel 1995), a critical and non-trivial 
assumption. 

SC&A recommends using the combination of Bayesian Elipgrid and Markov Bayes for the 
purpose of characterization or initial scoping survey designs early in the radiological survey and 
site investigation. We agree that these methods could be appropriate at early stages and in 
isotropic conditions but potentially less appropriate in the compliance phase, primarily because 
the Markov Bayes results do not include a measure of uncertainty and therefore could not be 
used to support statistically-based decisions. VSP’s current module for detecting hot spots 
implements the Davidson (1995) Elipgrid algorithm but does not include Bayesian Elipgrid or 
Markov Bayes modules. We recommend adding both, which would require new code 
development. Resources may exist in GSLIB and (possibly) in a SADA development version 
that has not been released; either or both could be leveraged for VSP development purposes. 

4.2.4 Searching for an Area of Elevated Contamination (Hotspot) via Transects 

VSP also includes a method for planning transect sampling schemes to search for areas of 
elevated contamination in the UXO (unexploded ordnance) module (Gilbert et al. 2003; O’Brien 
et al. 2005). This module was designed to plan aerial geophysical surveys but could apply to on-
the-ground or unoccupied aerial system (UAS) radiation surveys as well, whenever detectors 
are deployed in an array configuration so that a transect has some specified width. It is 
particularly useful when the size of a hot spot is small relative to the size of the site and 100% 
survey coverage is either not feasible or not required. As with other continuously collected data, 
the exogenous correlation structure should be accounted for prior to data analysis. 

When data are collected along transects consistent with the UXO module methods, the area to 
be revisited would be based on implementing a moving average data adjustment (Fortin et al. 
2023) and delineating areas that exceed ILpp based on survey path orientation. 

4.2.5 AI/ML Methods 

There have been recent advances in AI/ML approaches for geographic data analysis. Typically, 
AI/ML methods divide a data set into two subsets: 1) the training set, and 2) the test set. A 
model is formulated using the spatial attribute in the training data to create models that predict, 
categorize, or cluster data. The performance of these models (prediction capability) is then 
tested using the test data set. “Adequate” models can then be used to make predictions for 
future cases or for locations that are not in the training or test data sets. Large amounts of data 
are required to train and test traditional AI/ML models, which may not be a constraint for the 
potentially large amounts of data generated through a continuous FSS but is more likely to be a 
factor for fixed location data or large sites where the proportion of sampled area is relatively 
small.  

Few-shot ML is a method that requires relatively small amounts of data and is being advanced 
in conjunction with remote sensing techniques and high-performance forward prediction. This 
approach is being developed to reliably estimate subsurface property distributions, including 



PNNL-32664, Rev. 1 

Methods to Identify Areas of Potential Residual Contamination 28 
 

(but not limited to) permeability, porosity, and hydraulic conductivity, that control fate and 
transport of radioactive material, thereby addressing the paucity of characterization data and 
complexities of heterogeneous subsurface systems. Research is required to determine if and 
how similar approaches could be used in surface applications. 

One such method includes hot spot analysis, which creates clusters of polygons to highlight 
where the high and low values are likely concentrated (Wang et al. 2020). Geographically 
weighted random forests allocate weights to data points based on their distance from one 
another and create predictions by combining the findings of numerous decision trees (Nikparvar 
and Thill 2021). Boundaries based on such predictions could be determined (as with geospatial 
methods), but because prediction uncertainty is not typically quantified with ML methods, 
confidence and/or probability statements could not be made with respect to those boundaries. 
Many ML methods are “black boxes” that are not easy to interpret and/or do not offer insight into 
underlying processes. While such inference capabilities may be lacking, AI/ML results could be 
used to guide data collection in conjunction to traditional geostatistical methods. 

Applying ML approaches to a combination of data sets – those collected with vigilance and 
those collected without vigilance – may lead to predictive models and predictions that capture 
relationships between multimodal measurements and variables of interest that can be used for 
compliance survey design. By applying deep learning to integrated multimodal sensing data, the 
performance of ML approaches is being defined, through training with large and small data sets, 
to estimate governing system-scale subsurface parameters and their spatiotemporal evolution. 
These advancements may reduce the uncertainty of system-scale characterization and radiation 
dose assessments, minimize costs, and increase worker safety and protection of human health 
and the environment. 
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5.0 VSP Data Import of Continuously Collected Data 
This section discusses the file size constraints for the current version of VSP, as well as other 
factors that could affect users’ ability to analyze continuously collected data in VSP. 

Basic data import of continuously collected data is available in VSP for any format of .csv or 
.xlsx data, with flexibility as to column order and mappings. The primary distinct challenges for 
import and management of continuously collected radiological survey data are as follows: 

• Data size. This type of data can be extremely dense and, depending on the area covered, 
can include a large number of values. The ability to import and manage upwards of 70,000 
data points using its standard data storage methods has been demonstrated at PNNL. 
Improved memory management and processing may be necessary for data sets much 
larger than that and may be desirable for usability improvements if data sets of that size will 
regularly be processed. 

• Disparate sensor platforms. These can be managed as separate analytes in VSP, but 
methods to track disparate sensor platforms while still combining analysis from all data 
sources would be valuable. 

• Unit conversion and decay correction. Currently, processing to account for unit conversions 
and/or decay corrections needs to be completed outside of VSP, since VSP operates under 
the assumption that data values for a particular analyte are all directly comparable, e.g., 
they are drawn from the same statistical population. 

• Multiple disparate sample matrices, for example, groundwater and soils data. These can 
also be managed as separate analytes in VSP, even if they are measuring the same 
radionuclide. However, this limits the ability to visualize data since visualization of data 
colored by value is limited to one analyte at a time. Adding the capability to visualize multiple 
analytes or sample matrices on the same map by using different sample symbols or multiple 
color scales would provide a better comprehensive picture of sample results.  

Data cleaning and pre-processing is typically necessary before import into VSP. However, 
common issues that arise can be addressed in VSP’s import process. For example, in earlier 
versions of VSP, a comma in a field value such as a name in the format “Lastname, Firstname” 
would disrupt the data import and cause errors. Subsequent updates to the VSP data import 
enabled VSP to correctly handle commas in input fields, making the data import process more 
efficient. While the VSP strategy is to not attempt to fully replicate the data processing 
functionality available through Excel, simple changes should be made whenever possible to 
simplify data cleaning activities necessary for import.  

Additionally, as new technologies and survey methods evolve and are utilized to collect 
continuously collected data, there will likely be increasing needs for data aggregation and data 
quality assurance. For example, data from multiple streams (e.g., sensor and GPS) will need to 
be aligned to ensure spatial and temporal correspondence between the two instruments. Data 
will need to be evaluated for potential instrument failure (e.g., dust contamination, overheating) 
or survey execution that renders the data unreliable (e.g., driving too fast, flying too high). To 
the extent that these activities and decisions about the data impact statistical analysis and 
decisions, functionality to execute them should be included in VSP and captured in the 
generated report for regulatory review. 
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6.0 VSP Data Visualization Considerations 
Visualization of continuously collected survey data presents a number of challenges and 
requires additional considerations compared to visualization of more sparsely collected data. 
Survey values can certainly be displayed as values at discrete locations spaced along the 
collection time interval, but depending on the interval and the scale, it can be difficult to 
distinguish individual values and how they vary in distance and time.  

In Figure 16, using the default VSP method to color map location values results in a cluttered 
image since the values are displayed with a black outline that enhances clarity for sparse data 
but was not designed for dense data. The survey values can be made much easier to see using 
a custom VSP sample symbol, as shown in the middle image, which eliminates the unnecessary 
outline. This type of visualization would be a superior default option for data imported and 
flagged as “survey data”. However, the density of the data value points can still mask 
fluctuations in the survey values, especially when there is small-scale variability.  

The localized elevated regions are more clearly seen in the lowest image, which shows the 
results of kriging the survey values. It would be possible to develop an intermediate visualization 
method, between the middle and the lowest image, that performs some averaging and 
smoothing of the densely spaced survey data, without needing to develop geostatistical 
estimates for the entire site. Such an option could be useful for more accurately visualizing 
survey data. 

  
Figure 16. Default VSP color sampling method (top image), improved clarity through use of 

sample symbols (middle image), and geostatistical analysis results (bottom image). 

Many types of sensors have spatial extent or spatial representativeness, such as a detector with 
a particular field of view or a UAV that represents different areas of coverage depending on the 
altitude. Accounting for the field of view in the data values in visualization would allow for more 
accurate and effective visual communication of what the survey data values represent. This 
capability would be particularly useful when implementing FRK, as that module is designed to 
use data from multiple instruments with different fields of view. 
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7.0 Conclusions and Recommendations 
VSP includes several geospatial methods that are useful for analyzing continuously collected 
data. Additional methods and tools would increase its capability and make it more useful. This 
report summarizes several methods that cover MARSSIM-type hypothesis testing, identifying 
boundaries for areas that need to be revisited, and data import and visualization. Additional 
review may be necessary to determine whether some of the newer methods available in the 
literature are consistent with the MARSSIM approach. Recommendations for added VSP 
capabilities are summarized below. 

7.1 Recommendations 
• Methods that account for spatial correlation, both endogenous and exogenous, should be 

implemented prior to hypothesis testing, as spatial correlation can result in reduced 
statistical power to verify a site meets release criteria. Data quality assessment is vital to 
ensure that the data are adequate to support a decision. 

• Once spatial correlation is accounted for, one- or two-sample tests are appropriate. GLS is a 
method that accounts for spatial correlation as well as a straightforward comparison of a site 
mean to either an action limit or a reference area mean. ML methods are not appropriate in 
the hypothesis testing framework. 

• Several methods to determine elevated values and subsequent boundaries of areas to 
revisit are already in VSP. Improvements could be made by allowing alternative formulations 
of UTLs and adding a USL method. Geospatial methods such as kriging are best used to 
determine boundaries of potential areas of elevated residual activity. Improvements to VSP 
geospatial capability that incorporate Bayesian and/or conditional probability methods would 
make the software more valuable by allowing users to incorporate prior knowledge into the 
determination of boundaries. Guidance for how to select prior distributions and verify 
method assumptions would need to be formulated. A thoughtful approach to that considers 
the ability of VSP users to identify needed inputs is a consideration when deciding whether 
to make these methods available. 

• Pre-analysis data processing generally would need to occur outside of VSP, as multiple 
tools, such as spreadsheet software and database tools, are flexible, available, and widely 
used. VSP would benefit from the capability to do unit conversions and allow for data from 
disparate sensor platforms. 

• Data visualization capability recommendations are mostly around the development of plots 
that make potential elevated areas easier to identify on maps. Improvements in the user 
interface to identify instrument fields of view would be useful for some kriging methods that 
allow data from multiple sensor platforms and/or sensors. Visualization that accommodates 
multiple analytes and/or multiple sample matrices using different symbols or color scales 
would also support practitioners in many site applications where more than one contaminant 
of concern may be present. 

Fortin et al. (2023) recommended several areas for future research to advance the state of the 
art for scan MDC and post-processing of continuously collected data, including the following.  

• The Science Advisory Board (SAB) agrees that current MARSSIM guidance does not 
adequately address modern scanning surveys. Arising from significant technological 
advancement over the past two decades, newer scanning instruments and mobile systems 
represent attractive options for consideration and assessment. In addition to the literature 
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reviewed throughout this report and Fortin et al. (2023), the following literature should be 
reviewed in the context of continuous data collection and statistical analysis. 
– Quantitative measurements with various example systems described in the scientific 

literature: Marques et al. 2021; Peeva, 2021; Ji et al. 2020; Rahman et al. 2020; Ji et al. 
2019; Lee and Kim, 2019; Sanada et al. 2019; Azami et al. 2018; Falciglia et al. 2018; 
Wilhelm et al. 2017; Sinclair et al. 2016; Sanada and Torii, 2015; Kock et al. 2014; 
Sanderson, 2013; Tanigaki et al. 2013; Kock and Samuelsson, 2011.  

– Detection efficiency and minimum detectable activity for mobile scanning speed and 
signal processing: Falkner and Marianno, 2021; Marianno, 2015.  

– The SAB does not endorse specific detection systems or commercial equipment but 
does emphasize the importance of detection system calibration to yield measurement 
quantification with uncertainties that can support defensible final survey results. 

• Expand the library of available site and reference area datasets on which to demonstrate 
scan MDC and hypothesis testing (e.g., lag-𝑘𝑘) methods. 

• Evaluate performance of these methods compared to the traditional with-vigilance MDC 
calculation method. 

• Consider the impact that omissions of “edge” or “fringe” locations would have when points in 
the scan would not have sufficient data on either side to calculate the lag-𝑘𝑘 background 
(e.g., in the lag-53 case), and whether (and how much) buffer should be added to mitigate 
such effects. 

• Study the impacts of surveyor scan parameters (e.g., using sleds mounted both inside and 
outside) with various gross-counting instruments, sources, and source scenarios. Vary 
speed, distance, type of source (distributed vs. point source), and shielding to understand 
impacts of these variables on without vigilance survey results. 

• Survey other existing signal detection frameworks for scan data (Brogan and Brandl 2019) 
and investigate applications to a priori MDCR calculation. 

• Further investigate methods in Alecksen and Whicker (2016), Alecksen and Whicker (2023), 
and additional related resources to determine how MCNPX code could be used to convert a 
calculated MDCR to a scan MDC.  

• Use simulation and field studies to evaluate the ability of hypothesis testing methods (e.g., 
lag-𝑘𝑘) to detect elevated areas in data collected via without-vigilance surveys for various 
instrument configurations and radiological sources, concentrations, spatial contamination 
areas, and distributions. 
– As a result of the above studies, develop recommendations on the following:  

○ Approaches to implementation, including software tools and needs for licensees and 
permit holders to implement the lag-𝑘𝑘 method. 

○ Methods to select an optimal 𝑘𝑘 value for the lag-𝑘𝑘 method. 

○ Flagging values based on integration over a reasonable range of values for 𝑘𝑘 to 
remove the requirement for a user-specified 𝑘𝑘 and/or reduce the false positive rate. 

– Identify the limitations of the lag-𝑘𝑘 method by outlining site conceptual models for which 
this approach is/is not suitable. 

– Extend lag-𝑘𝑘 to two dimensions when scanning transects are close to one another. 
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– Generate test datasets that would be available for licensees and permit holders to learn 
how to post-process scan data collected without vigilance and apply the lag-𝑘𝑘 method. 

One of the key concerns with producing a scan MDC value for a without-vigilance survey is the 
difference between the audio click data stream and the logged ratemeter display data stream. 
NUREG-1507 warns against calculating a scan MDC if logged ratemeter observations will be 
used because there are concerns the ratemeter will not reach full scale. However, some 
technology could facilitate simultaneous and synchronized data collection (e.g., Aleckson and 
Whicker describe using scalar counting mode output to calculate scan MDC). Future work 
should review the data recommended in Alecksen and Whicker (2023) in greater detail to 
determine if it provides a viable solution; catalogue and review available technology; and 
address discrepancies between data streams, potentially building a model to translate the 
ratemeter display data stream to a binned audio click data stream. This work would require 
taking field data and pairing logged ratemeter counts with the true audio data stream (possibly 
via an audio recording with time stamps). After collection, the data would need to be processed, 
producing paired counts of the two data streams. The paired data streams would then be 
analyzed to identify and quantify biases between the data capture techniques. Further 
mathematical modeling work would then be required to determine whether a scan MDC could 
be calculated for without vigilance surveys that intend to use ratemeter display data. 

7.2 Simulation Study for Lag-k 

Considerable work needs to be done to characterize the conditions under which the lag-𝑘𝑘 
method performs well and to determine when it performs poorly. The key metrics to evaluating 
performance include the true positive, true negative, false positive, and false negative counts 
and rates for lag-𝑘𝑘 hypothesis tests (often summarized using a confusion table, described in 
Section 5.2). Determining these metrics requires knowing the ground truth. This requirement 
leads us to make a recommendation that future work includes an extensive simulation study, in 
addition to field tests with known sources.  

Simulation studies can cover many topics of interest including variation in the data generation 
process, variation in background estimation, variation in analysis methods, and even variation in 
the metrics of evaluation. The data generation process encompasses both background and 
source distributions. The background distributions could vary spatially and may extend beyond 
Poisson. The source distributions could range between a single point source to many point 
sources to elevated regions of varying shape and size.  

The estimation of background is always a critical component in detection methodologies.  
Different background estimation approaches could be included in the simulation study, enabling 
the comparison of a variety of analysis methods, including lag-𝑘𝑘, Currie’s 1968 single paired 
measurement approach, and the signal detection theory approach given in NUREG-1507. The 
lag-𝑘𝑘 approach itself can be expanded to encompass a range of 𝑘𝑘 values or weighted 
combinations of 𝑘𝑘 values. The lag-𝑘𝑘 method could be extended to a two-dimensional distance 
metric expanding beyond the transect-based approach. Backgrounds could be estimated from 
the entire survey region, from subsets of the survey region, from reference areas that share the 
same background distribution as the simulated site of interest, or from reference areas that have 
different background distributions from the simulated site of interest.  

Current testing methodology is built around individual location-based hypothesis tests with no 
multiple testing correction, so the natural scale for method evaluation is on the same individual 
location-based scale. However, some consideration should be given to a coarser grid for 
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counting true positives and false negatives. A simulation study could provide helpful guidance 
concerning when a surveyor can expect to find sources of interest and when analysis methods 
are likely to fail. 

The data from these and/or similar simulation studies could be used to investigate and evaluate 
the other continuous data methods considered in this report for the purposes of determining 
sensitivities to site conditions, parameter specifications, and for validation and verification once 
implemented in VSP or other software. 
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Appendix A – Data Sets for Demonstration of Methods for 
Continuously Collected Survey Data 

Additional data sets representing continuously collected survey data of land areas were 
prepared for future studies to demonstrate methods of statistical analysis and visualization. The 
data sets were provided by the U.S. Nuclear Regulatory Commission to Pacific Northwest 
National Laboratory as case studies for the case studies in Fortin et al. (2023). They were 
altered to demonstrate the methods therein as well as in this report and the survey elements 
associated with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) 
(NRC 2020). This appendix describes the datasets only and not data analysis. Any analysis 
performed using these data are included in Fortin et a. (2023) and in the body of this report.  

These data sets support surveys classified by MARSSIM as Class 1 and Class 3. 

Class 1 Areas 

Areas that have, or had before remediation, a potential for residual radioactive material 
(based on site operating history) or known residual radioactive material (based on previous 
radiation surveys) above the DCGLW. Examples of Class 1 areas include: 

• Site areas previously subjected to remedial actions. 
• Locations where leaks or spills are known to have occurred. 
• Former burial or disposal sites 
• Waste storage sites 
• Areas with residual radioactive material in discrete solid pieces of material and high 

specific activity 

Remediated areas are identified as Class 1 areas because the remediation process often 
results in less than 100% removal of the radioactive material. The residual radioactive 
material that remains on the site after remediation is often associated with relatively small 
areas with elevated levels of radioactive material. This results in a non-uniform distribution of 
the radionuclide and a Class 1 classification. If an area is expected to have no potential to 
exceed the DCGLW and was remediated to demonstrate the residual radioactive material is 
as low as reasonably achievable, the remediated area might be classified as Class 2 for the 
FSS. 

Class 3 Areas 

Class 3 areas are any impacted areas that are not expected to contain any residual 
radioactive material or are expected to contain levels of residual radioactive material at a 
small fraction of the DCGLW, based on site operating history and previous radiation 
surveys. To justify changing an area’s classification from Class 1 or Class 2 to Class 3, the 
existing data (from the historical site assessment (HAS), scoping surveys, or 
characterization surveys) should provide a high degree of confidence that either there is no 
residual radioactive material or any levels of residual radioactive material are a small fraction 
of the DCGLW. Other justifications for this change in an area’s classification may be 
appropriate based on the outcome of the data quality objective process. Examples of areas 
that might be classified as Class 3 include: 
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• Buffer zones around Class 1 or Class 2 areas, and areas that have very low potential 
for residual radioactive material but insufficient information to justify a non-impacted 
classification. 

A.1 Data Set 1 

Data set 1 includes data from a reference area and an area of concern, scanned using a 
continuous surveying technique without vigilance. Figure A.1 through Figure A.4 show 
observations of each variable in the data set, including radiological measurements (reported in 
counts per minute [CPM]), geospatial information (reported in meters from the origin, similar to 
latitude and longitude coordinates), and speed of the detector (reported in meters per second 
[m/s]). In the provided data, observed CPM in the reference area were generally larger than in 
the area of concern and the area of concern did not have elevated measurements. Thus, PNNL 
altered the data so that that reference area CPM observations were less than or equal to 
majority of the CPM observations in the area of concern. PNNL also injected elevated 
measurements into the northern part of the area of concern to represent a hot spot. These data 
can be used to evaluate hot spot detection methods. 

   
Figure A.1. Data set 1 observed radiation measurements (CPM) across a land area with a 

reference area and an area of concern. 
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Figure A.2. Data set 1 observed average velocity (m/s) within reference area and area of 

concern. 

 
Figure A.3. Data set 1 observed average velocity (in m/s) over the elapsed scanning time (in 

hours and minutes) with coloration showing the radiation measurements (CPM). 
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Figure A.4. Data set 1 observed instantaneous velocity (m/s) vs. elapsed time (in hours and 

minutes) with coloration reflecting the radiation measurements (CPM). 

A.2 Data Set 2 

Data set 2 includes the same data from a reference area and an area of concern, scanned 
using a continuous surveying technique without vigilance. As for Data set 1, Figure A.5 through 
Figure A.8 show observations of each variable in the data set. PNNL injected an additional 
elevated measurement into the northern part of the area of concern to represent a second hot 
spot. These data can be used to evaluate hot spot detection methods. 
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Figure A.5. Data set 2 visualization of radiation measurements (in CPM) across a land area 

with a reference area and area of concern with two hot spots. 

 
Figure A.6. Data set 2 visualization of average velocity (in m/s) across a land area with a 

reference area and area of concern with two hot spots. 
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Figure A.7. Data set 2 visualization of average velocity (in m/s) vs. elapsed time (in hours and 

minutes) showing the radiation measurements (in CPM) for the land areas in 
Figure A.5. 

 
Figure A.8. Data set 2 visualization of instantaneous velocity (in m/s) vs. elapsed time (in hours 

and minutes) showing the radiation measurements (in CPM) for the land areas in 
Figure A.5. 
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A.3 Data Set 3 

Data set 3 includes the same data from a reference area and an area of concern, scanned 
using a continuous surveying technique without vigilance. As for Data sets 1 and 2, Figure A.9 
through Figure A.12 show observations of each variable in the data set. PNNL injected an 
additional elevated measurement into the northern part of the area of concern to represent a 
third hot spot. These data can be used to evaluate hot spot detection methods. 

 
Figure A.9. Data set 3 visualization of radiation measurements (in CPM) across a land area 

with a reference area and area of concern with three hot spots. 
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Figure A.10. Data set 3 visualization of average velocity (in m/s) across a land area with a 

reference area and area of concern with three hot spots. 

 
Figure A.11. Data set 3 visualization of average velocity (in m/s) vs. elapsed time (in hours and 

minutes) showing the radiation measurements (in CPM) for the land area in Figure 
A.9. 
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Figure A.12. Data set 1, Test 1a, visualization of instantaneous velocity (in m/s) vs. elapsed 

time (in hours and minutes) showing the radiation measurements (in CPM) for 
the land areas in Figure A.9. 

A.4 Data Set 4 

Data set 4 includes radiological measurements (reported in CPM) as well as exogenous 
information, including geospatial information (reported in meters from an origin, similar to 
latitude and longitude coordinates) and speed of the detector (reported in m/s). 

Data set 4 represents four areas of concern (A, B, C, and D) and six reference areas (E, F, G, 
H, I, J) that were scanned using a continuous surveying technique without vigilance. As for Data 
set 1, Figure A.5 through Figure A.8 show observations of each variable in the data set. PNNL 
injected an additional elevated measurement into the northern part of the area of concern to 
represent a second hot spot. These data can be used to evaluate methods associated with 
variable background. 
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Figure A.13. Data set 4 radiation measurements (in CPM) across a land area including several 

reference areas and several areas of concern. 

Suppose that regions “D” has been identified as the area of concern for a specific analysis and 
that region “J” was identified as an appropriate reference area for region “D”. The data in 
Figures A.14 through A.17 and Figures A.18 through A.21 provide the data associated with 
each, respectively. 
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Figure A.14. Data set 4 radiation measurements (in CPM) across subsite “J” reference area 

from Figure A.13. 

 
Figure A.15. Data set 4 average velocity (in m/s) across reference area “J” from Figure A.13. 
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Figure A.16. Data set 4 average velocity (in m/s) vs. elapsed time (in hours and minutes) 

showing the radiation measurements (in CPM) for reference area “J” in Figure 
A.14. 

 
Figure A.17. Data set 4 instantaneous velocity (in m/s) vs. elapsed time (in hours and 

minutes) showing the radiation measurements (in CPM) for reference area “J” in 
Figure A.14. 
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Figure A.18. Data set 2 radiation measurements (in CPM) across area of concern “D”. 

 
Figure A.19. Data set 2 average velocity (in m/s) across area of concern “D” in Figure A.18. 
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Figure A.20. Data set 2 average velocity (in m/s) vs. elapsed time (in hours and minutes) 

showing the radiation measurements (in CPM) for area of concern “D” in Figure 
A.18. 

 
Figure A.21. Data set 2 visualization of instantaneous velocity (in m/s) vs. elapsed time (in 

hours and minutes) showing the radiation measurements (in CPM) for subsite “D” 
area of concern evaluated in Figure A.19. 
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