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Objective

e Characterize the ranges of operating conditions being experienced
by high burnup rods and quantify FFRD susceptibility

Transient and

Ranges of Ranges of thermal- Susceptibility

GJREIELME L1 hydraulic to FFRD

conditions performance analyses

 VERA - identify operating conditions
* Burnups

* Linear heat rates (LHRS) '-? cladding ballooning
« Peaking factors = crienon
§o)
e BISON — critical fuel performance behaviors < || temperature

» Fuel centerline temperatures (FCTS)
* Rod internal pressures (RIPS)

» Fission gas release (FGR)

fuel radius [~0.4 cm]
Capps et al. Nuclear Engineering and Design 2021
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BISON - Critical Fuel Performance Behaviors

 Critical fuel performance parameters increase as burnup
Increases

 Peak fuel centerline temperature located at ~3.15-3.25m

 FFRD limiting event occurs at end of cycle
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BISON - Critical Fuel Performance

» Fuel performance depends on: Effféjﬁ'.ﬁF =
location in the core and "‘E%“EE“%@%%?%? &
assembly
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radial pin LHGR: Assv (E-10). exposure 28.44

* Translates to temperature and rod, i b
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Thermal Hydraulic Model and Benchmark

TRACE BEMUSE Participants
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e TRACE model based on the BEMUSE International Benchmark

« Benchmarked initial conditions to BISON steady state
conditions
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PCT [K]

Transient TH LOCA Results for HBu Fuel Rods

- Analyzed 281 HBu rods in TRACE based on steady state results
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- Representative of core wide response

DEH

200 300

Time [s]

400 500 600

Avg LHR [kW/m]

20.0

17.5

150"

=
M
L

=
=
=

-
Ln
1

W
o

B
n

Pre-transient Operating Conditions

@ ] n =
0?. 5% _Bog ¢
® _a¥ [0 15,
S @ L% .9] @ ‘
& & i o - ‘
4 @ ’ o
e w @
@
a
62 64 66 68 70 72 74

Avg BU [GWD/MTU]

SEH — Stored Energy Heatup
DEH — Decay Energy Heatup

B

=

J3guiny peojsy



DEH PCT [K]
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Transient Thermal Hydraulic Behavior

Cladding Temperature Dependencies Local Burnup at PCT Axial Location
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Peak Fuel Centerline T (°C)
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Transient Fuel Performance Analysis

e Most rods on the interior of the core failed

e Critical Parameters: LHR and Rod Internal Pressure
* No twice burned rods failed using any criteria
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800 -

Transient Fuel Performance
Analysis

* Fuel rod failure occurs at the top of
therod - ~3.19-3.2m

600 -

Temeprature (°C)
B
o
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* Quench front started at time of 200 {
failure
* Grid-spacers and mixing vanes 0 50 100 150 200 250 300 350 400
locally suppress deformation N Axial Fastigh (cm)
« Not explicitly modeled |
* Double ballooning not impossible 151 i
but unlikely

e Assumptions 109

 tFGR not modeled

« Assembly structural features not explicitly
model

Hoop Strain (%)

6 50 100 150 200 250 300 350 400
Axial Position (cm)



Determining FFRD Susceptibility

» Determine Cladding Rupture Susceptibility 70 4

e Evaluate cladding deformation during transient )
« Determine if, when, and where burst occurs =

E 60 A

* Determine Fuel Susceptibility to Relocation = -
and Dispersal =

« Evaluate fuel pulverization against Turnbull 2 50 -
pulverization threshold @

« Determine cladding balloon geometry =

« Estimate relocation and packing fraction 40 - ,J ,

0 50 100 150 200 250 300 350

« Evaluate rupture opening _ ‘
Axial Position (cm)

|| NRCRIL1mm NRC RIL 2 mm Turnbull « Key Assumptions

Average fuel susceptible to
FFRD per failed rod (kg) 0.048 0.060 0.018 » Assembly structural features
mitigate additional FFRD

Total fuel susceptible to * Double ballooning and burst
FFRD simulated rods (kg) 7.35 9.18 272 was not considered

e Mass below rupture was

Total fuel susceptible to ] .
FFRD in full core (kg) 330.9 413.7 122.4 considered susceptible to

+53.7 +67.1 +19.9 dispersal — per RIL definition




Addressing Modeling Assumptlons

e Quantify transient
uncertainties

e Impact of pin-by-pin thermal
hydraulics

» Assess tFGR impact on
cladding rupture

* Evaluate the impact of
assembly structural features °
on cladding deformation

 Identify core design
optimization strategies to
limit FFRD
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Critical Fuel Performance Behaviors - Uncertainties

[>]

I

8- 2 * Assessed the impact of steady
7- = = & state FGR on rod internal
6- == pressure and fuel temperature
o e e oy E » Selected 16 rods
i s Y e Arbitrary increased and decreased
y
2 4 2 4 FGR
Core exposure (hours) le4 Core exposure (hours) le4
= * Rod Internal Pressure
B :_S,;U'S e Max effect — 1% FGR = 0.9 MPa
j: fgw_ — * Fuel Centerline Temperature
|- re— PP ——  Max effect — 1% FGR =10 °C
gl - go.s —: —r—
2 4 2 4
Core exposure (hours) le4 Core exposure (hours) le4
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Process for Determining FFRD Susceptibility

Full Core of Rods with Steady-
State Conditions (Jake)

}

Down Selection based on rods most

likely to fail during LOCA (based on

LHR and burnup, cladding condition,
FGR)

Transient Thermal
Hydraulics calculations to
provide cladding surface

temps during LOCA
(Aaron)

! ! !

Simulate rods of interest from steady-state through LOCA
« Cladding rupture census (rupture temperature / strain / burst opening size)
» Determine fuel pulverization and susceptibility

Determination of decay heat
over LOCA scenario using
ORIGEN

cladding creep, rupture opening

| Deploy Mechanistic Models to Support = = = = = = = = e o =
| Industry Application [ See NEAMS Fuels

1 ° Fuel Models — tFGR and pulverization | ———| Presentation for Model

|  Cladding Models - high temp. : l Development Details

|
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