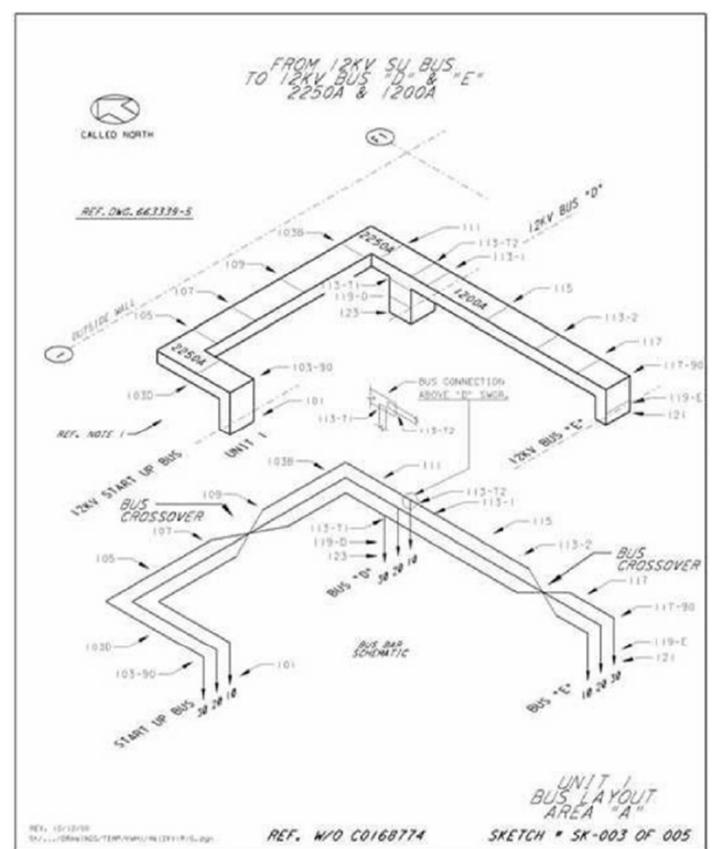


HEAF LIC-504 Public Meeting Notes

November 16, 2022

Topics

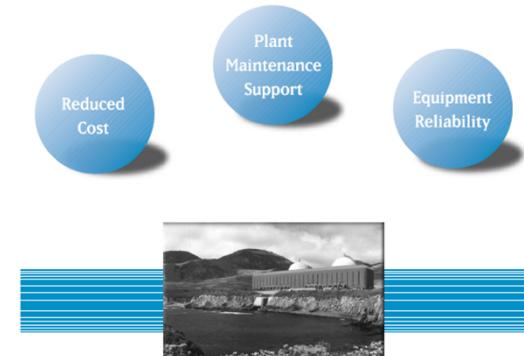
- Importance of HEAFs
- HEAF prevention
- Application of the draft methodology


Importance of High Energy Arcing Faults (HEAFs)

- HEAFs are a hazard inherent to generating stations and any high-energy industrial application
- Can occur on both active (breaker) and passive (busbar) components in electrical distribution systems
- Primarily a generation risk due to conservative design and preventative operating practices

Importance of High Energy Arcing Faults (HEAFs)

- Degradation precursors are long-term and slow-developing
 - Damage and energy release develops almost instantly once a HEAF occurs
 - HEAF prevention and mitigation drive electrical system design and operating practices
 - As with any high-energy or high-hazard system, safety is paramount


Prevention of HEAFs

- Design to prevent, protect, and mitigate
 - Protective relaying
 - HEAF shields
 - Clearance distances
 - Procurement
- Share and respond to Operational Experience
 - EPRI reports
 - OE reviews/communications
- Preventive maintenance and inspections
 - Especially on passive components
 - Clear inspection guidance is critical

Nuclear Maintenance Applications Center:
Switchgear and Bus Maintenance Guide

Technical Report

Effective December 6, 2006, this report has been made publicly available in accordance with Section 734(b)(3) and published in accordance with Section 734.7 of the U.S. Export Administration Regulations. As a result of this publication, this report is subject to only copyright protection and does not require any license agreement from EPRI. This notice supersedes the export control restrictions and any proprietary licensed material notices embedded in the document prior to publication.

Prevention of HEAFs

- Common failure mechanisms
 - Degraded insulation
 - Moisture or debris intrusion
 - Loosening of bolted connections due to cyclic heat/loads
- Technology upgrades have improved both design and testing capabilities
 - Partial discharge testing
 - fiber optic technology for temperature monitoring
 - acoustic monitoring
 - thermography.

Standard	Title
D 150-98 (R2004)	Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation
D 1654-1992	Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments Document
D 229-2001	Test Methods for Rigid Sheet and Plate Materials Used for Electrical Insulation
D 257-99	Standard Test Methods for DC Resistance or Conductance of Insulating Materials
D 2671	Standard Test Methods for Heat-Shrinkable Tubing for Electrical Use
D 412-1998A (R2002) e1	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers – Tension
D 5374-93 (R2005)	Standard Test Methods for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation
G 21-1996 (R2002)	Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi
D 2303	Standard Test Methods for Liquid-Contamination, Inclined-Plane Tracking, and Erosion of Insulating Materials
B 187/B 187M – 02	Standard Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes

Draft Methodology Application

- Improved realism
 - switchgear zones of influence
 - NSBD ZOI shape
 - modeling differences across the electrical distribution zones
- New Insights
 - Importance of fault clearing times
- Effort to implement
 - Bus duct targets for the new ZOIs were a considerable effort to collect due to locations in overheads

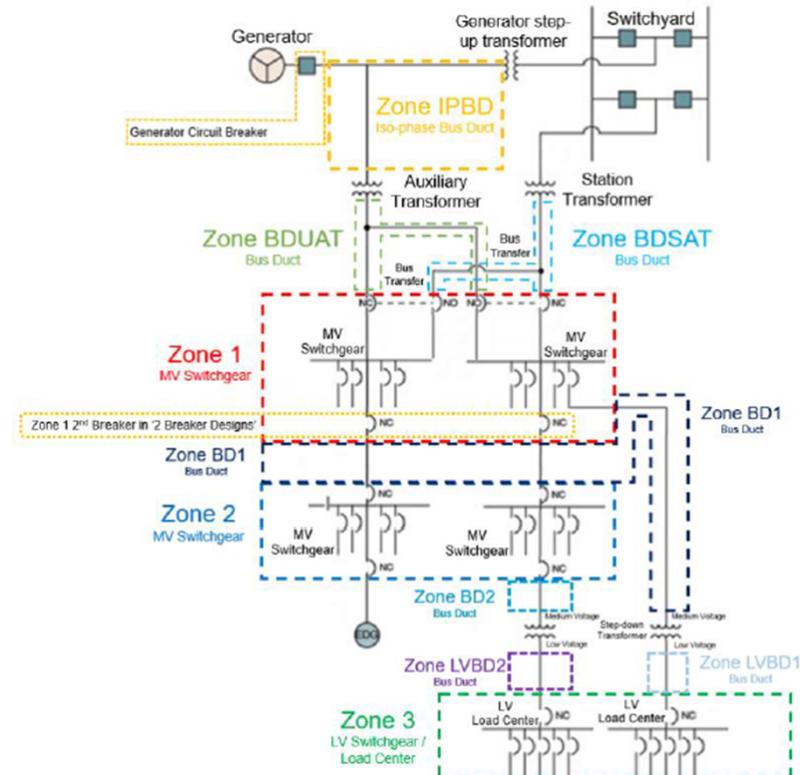


Figure 4.1-1: HEAF Fault Zones (Excerpt from Draft Methodology [3])

Questions

Questions