

NATRÍUM

Status of Volcanic Hazards Analyses for the Proposed Kemmerer, WY Site

a TerraPower & GE-Hitachi technology

NATD-LIC-PRSNT-0023

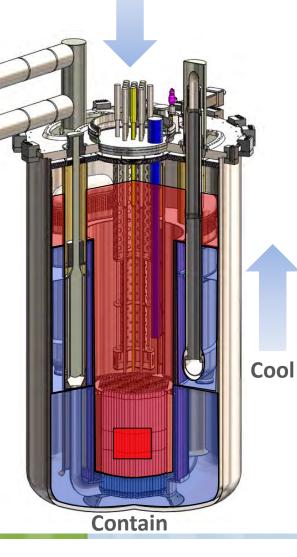
SUBJECT TO DOE COOPERATIVE AGREEMENT NO. DE-NE0009054 Copyright© 2022 TerraPower, LLC. All Rights Reserved.

Goals

- Ensure alignment on interpretations of guidance in RG 4.26 for volcanic hazards analyses
- Volcanological overview including the summary of ongoing investigations of Quaternary volcanic systems in the site region
- Present current approaches for the practical implementation of RG 4.26 guidance in conducting volcanic hazards analyses
 - Initial results of characterization and screening

Presentation Outline

- Natrium[™] reactor overview
- Volcanological overview of the proposed Natrium site region.
- Planned approach to implementing guidance in RG 4.26 for the volcanic hazards analyses
 - Initial results of characterization and screening
- Questions and discussions


Natrium Reactor Overview

- Regulatory Engagement Plan was submitted 6/8/2021
- Construction Permit Application submittal planned for 8/2023
- Pre-application interactions are ongoing, intended to reduce regulatory uncertainty and facilitate the NRC's understanding of the Natrium advanced reactor and its safety case
- The Natrium Reactor is demonstrating the ability to design, license, construct, startup and operate the Natrium reactor within a seven-year timeframe

Natrium Safety Features

- Pool-type Metal Fuel SFR with Molten Salt Energy Island
 - Metallic fuel and sodium have high compatibility
 - No sodium-water reaction in steam generator
 - Large thermal inertia enables simplified response to abnormal events
- Simplified Response to Abnormal Events
 - Reliable reactor shutdown
 - Transition to coolant natural circulation
 - Indefinite passive emergency decay heat removal
 - Low pressure functional containment
 - No reliance on Energy Island for safety functions
- No Safety-Related Operator Actions or AC power
- Technology Based on U.S. SFR Experience
 - EBR-I, EBR-II, FFTF, TREAT
 - SFR inherent safety characteristics demonstrated through testing in EBR-II and FFTF

Control

Control

- Motor-driven control rod runback
- Gravity-driven control rod scram
- Inherently stable with increased power or temperature

Cool

- In-vessel primary sodium heat transport (limited penetrations)
- Intermediate air cooling natural draft flow
- Reactor air cooling natural draft flow always on

Contain

- Low primary and secondary pressure
- Sodium affinity for radionuclides
- Multiple radionuclides retention boundaries

Demin Water

Firewater

Standby Diesels

Warehouse & Admin

Salt Piping

Rx Aux. Building

Shutdown Cooling-

Control Building

NI Power Distribution Center & Controls -Rx Building Energy Storage Tanks

-Fuel Building

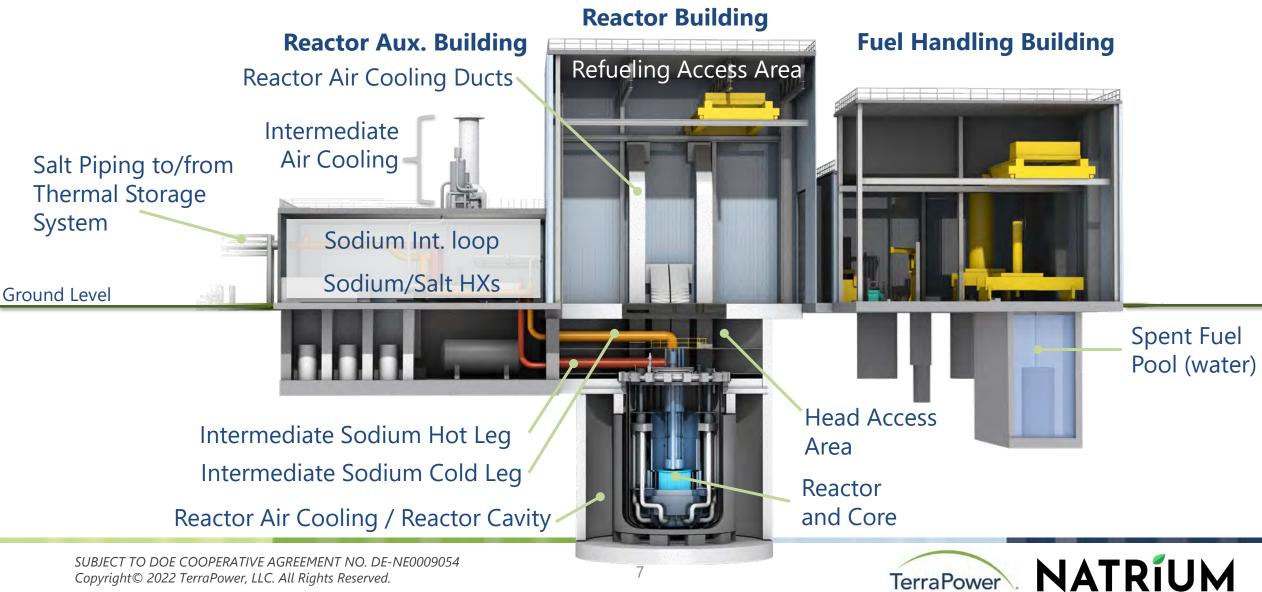
Steam

Generation

Fuel Aux. Building

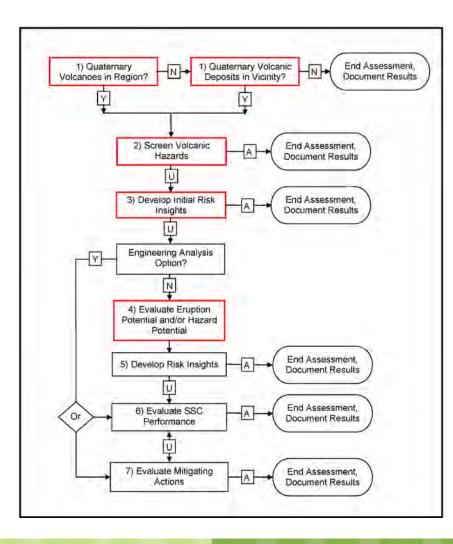
6

TerraPower NATRIUM


Turbine Building

Center

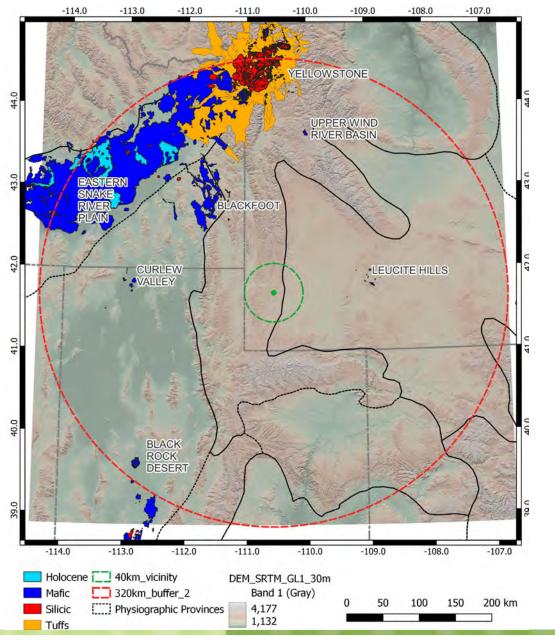
TI Power Distribution


SUBJECT TO DOE COOPERATIVE AGREEMENT NO. DE-NE0009054 Copyright© 2022 TerraPower, LLC. All Rights Reserved.

Plant Overview

Copyright© 2022 TerraPower, LLC. All Rights Reserved.

Volcanic Hazards Analysis Guidance in RG 4.26

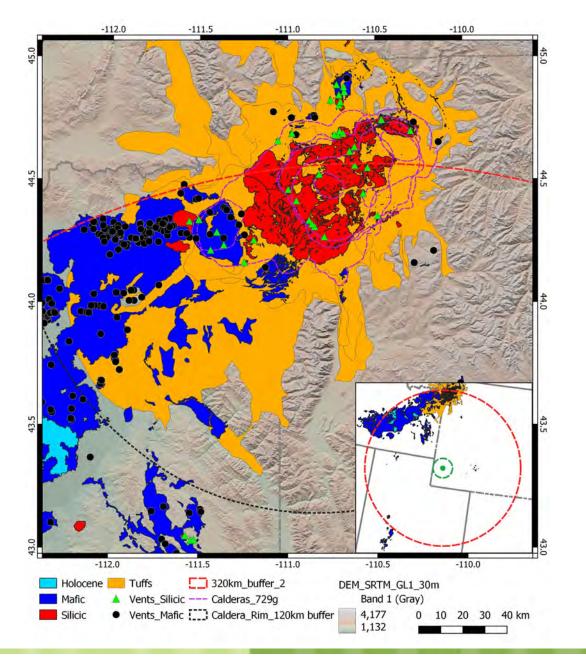


- The volcanic hazards analysis will follow the approach in RG 4.26.
- Deterministic screening analysis.
 - Information from regional and analogue systems.
- Probabilistic hazards analyses (P_H with P_E bounds, if necessary).

Today's discussion focuses on status and approaches for Steps 1–4.

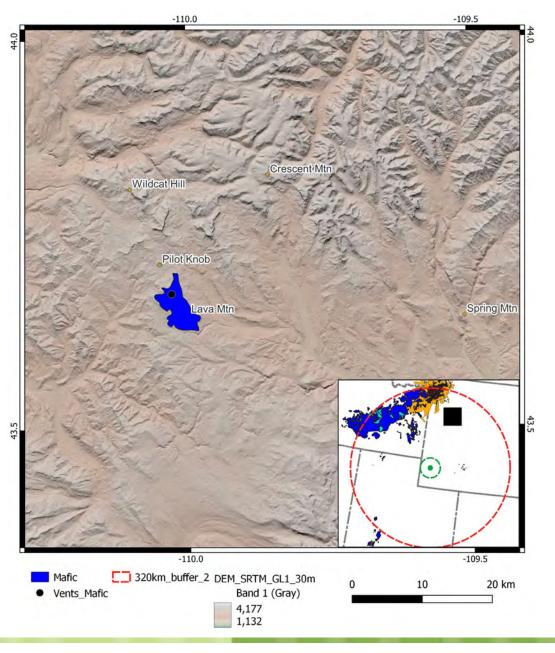
All information from published sources.

Geologic Setting


- Proposed site located in the Sevier Overthrust belt of the central Rocky Mountain tectonic province.
 - Sevier = 60-120 Ma orogeny.
- 7 Quaternary volcanic systems within 320 km (region) of the proposed site.
 - 320 km = NRC RG 4.26.
 - 40 km = site vicinity.
 - Nearest volcanic system is ≈100 km east in the Leucite Hills.

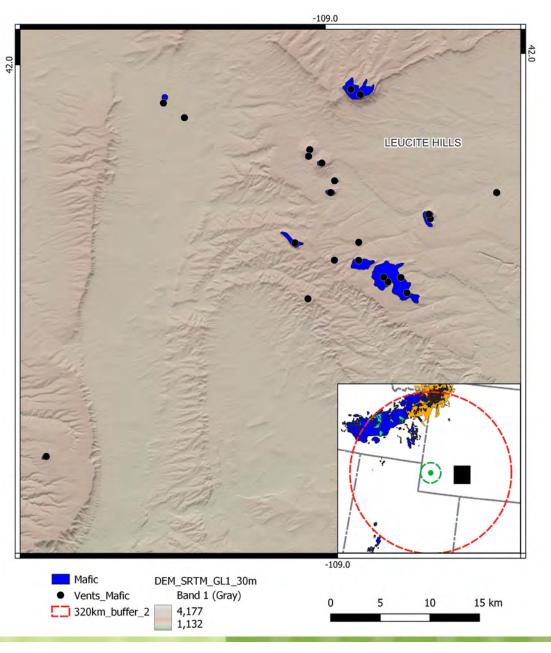
RG 4.26 Step 1a: Characterization of Volcanoes

- Identify all Quaternary-age volcanoes in the site region (<320 km).
- Determine characteristic phenomena for each volcano.
 Lava flows, pyroclastic flows, tephra falls, etc.
- Develop maximum-magnitudes for each characteristic phenomena to support screening decisions in Step 2.



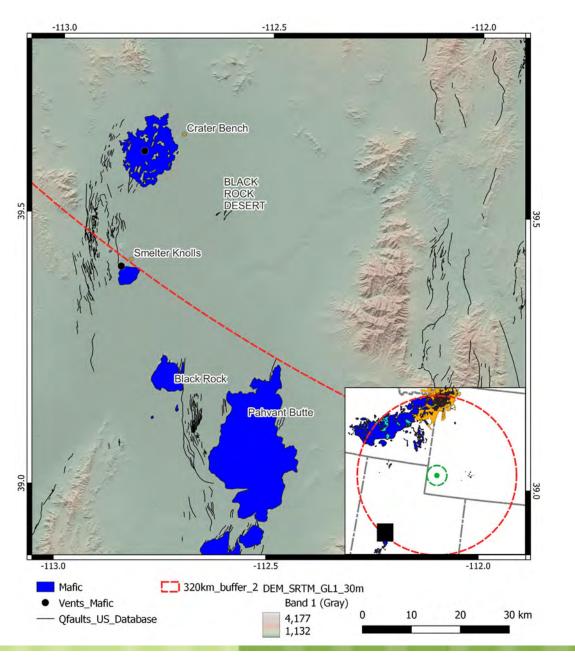
Yellowstone Volcanic System

- 3 major caldera eruptions, each with pyroclastic flows <120 km long:
 - Lava Creek (0.64 Ma, 1000 km³).
 - Mesa Falls (1.3 Ma, 280 km³).
 - Huckleberry Ridge (2.1 Ma, 2450 km³).
- 35 rhyolite vents (18 in site region).
- 21 basaltic vents in site region.
- Total of 59 Quaternary vents.



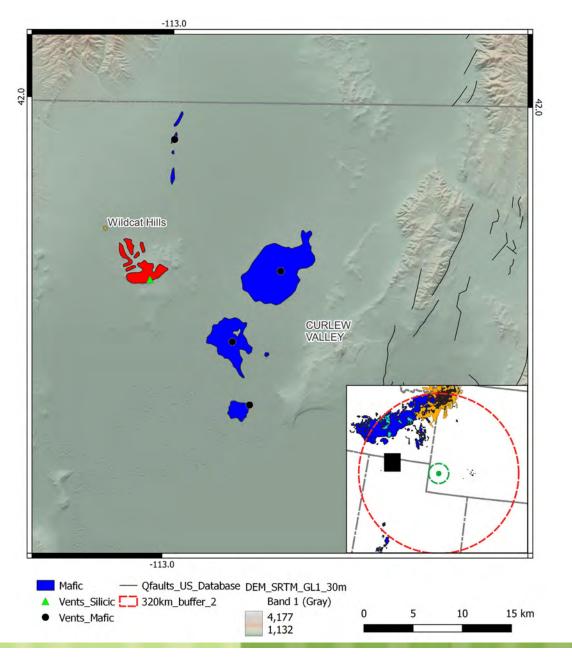
Upper Wind River Basin, WY

- Broad area of mafic volcanism since ~9 Ma from Jackson Hole to Wind River area.
 - 4 volcanoes 2.6-5 Ma shown on figure.
- Lava Mountain: 0.43±0.09 Ma scoria cone, 29 distinct flows.
 - Basaltic andesite to dacite.
 - Model as single event with compositional variability.



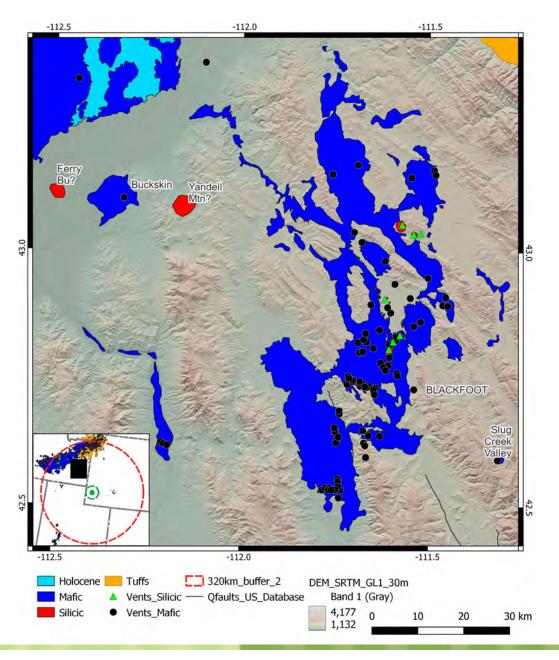
Leucite Hills, WY

- NE shoulder of Rock Springs anticline (Laramide age) in Green River/Wyoming basin.
- 21 small, distributed scoria cones, lavas, and subvolcanic intrusions.
- Activity 0.89-3 Ma, 90% occurring 0.89-0.94 Ma.
- Lamproite (Hi-K basalt) magmas, high volatility contents.



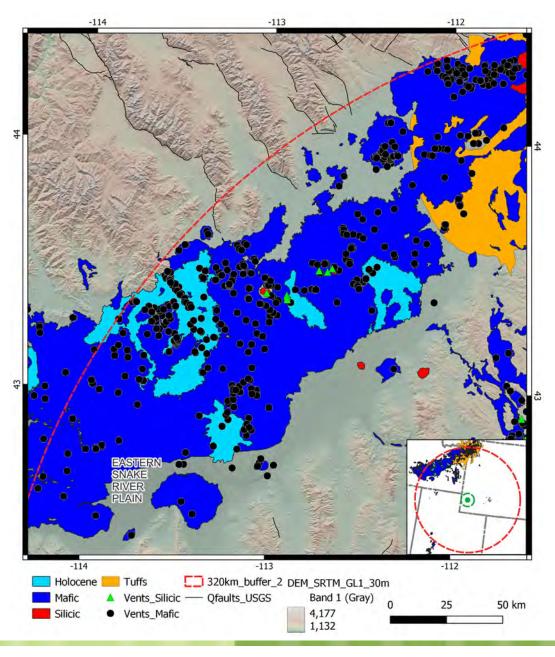
Black Rock Desert, UT

- Eastern Basin & Range tectonic province.
- Northern end of the Quaternary Black Rock Desert volcanic field (mostly outside of the <320 km site region).
- Two ≈1 Ma small basaltic scoria cones and lava flows in the site region.



Curlew Valley, UT

- Eastern Basin & Range tectonic province.
- Rhyolitic flow-dome and basaltic fissure vents (NW cycle), 2.1-2.2 Ma.
- Four isolated basaltic scoria cones and lavas (SE cycle), 0.44-1.16 Ma.

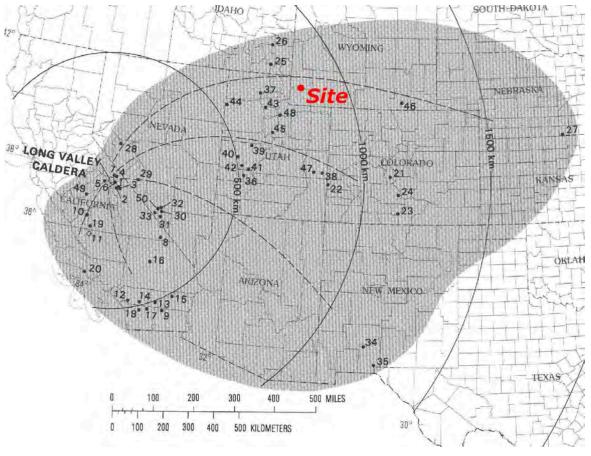


Blackfoot Volcanic Field, ID

- NE Basin & Range tectonic province.
- 87 basaltic scoria cones & fissures, most with lava flows.
 - Poor age constraints; 2 dates of 0.5 Ma and 2.4 Ma.
- 7 small rhyolite domes, 1.4 to 1.6 Ma (N) and ≈50 ka (S).
 - Shallow silicic intrusions(?) at Ferry Butte & Yandell Mtn.

Eastern Snake River Plain, ID

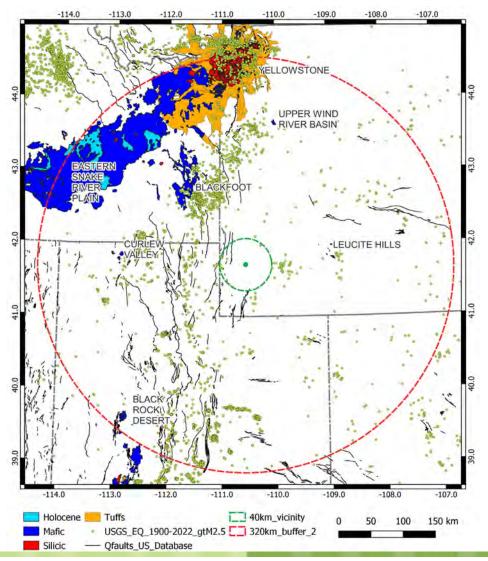
- Distributed volcanic field with 433 basaltic fissures and spatter cones in site region.
 - Surface flows 5-400 ka.
- 28 intermediate composition scoria cones at Craters of the Moon, 2-15 ka.
- 7 rhyolite domes 0.3-1.6 Ma.


Summary of Characteristic Volcanic Hazards

Volcano Type	Count	Opening Of New Vents	Proximal Hazards	Lava Flows	Pyroclastic Density Currents	Tephra Falls
Mafic & Intermediate Scoria Cones	598	Х	Х	Х		Х
Silicic Domes	30	Х	Х	Х	Х	Х
Silicic Calderas	3				Х	Х
Volcanic sources >320 km from site	4					Х

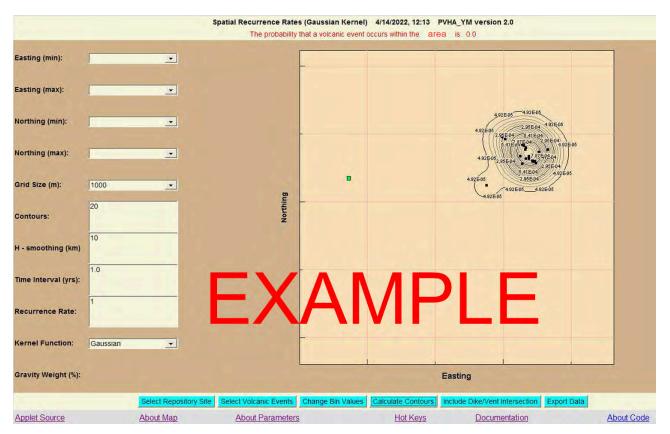
- 631 Quaternary volcanoes in site region.
- Volcanic sources
 >320 km:
 - Long Valley CA
 - Valles, NM
 - Cascades, WA
 - Mazama, OR

RG 4.26 Step 1b: Characterization of Distant Sources

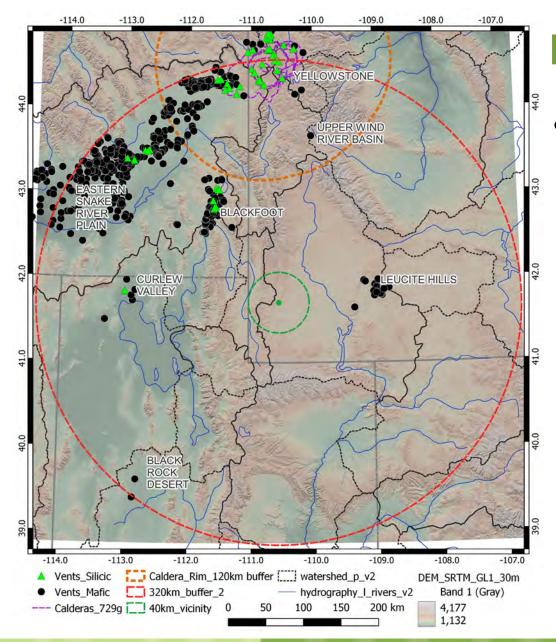


Izett et al. (1988) USGS B-1675, Fig. 1

- Any ash deposits from volcanoes > 320 km away within 40 km of the proposed site (RG 4.26)?
 - Bishop ash, nearest actual deposit
 100 km from site.
 - No Valles tephra fall within 100 km of site.
 - No Mazama/Cascades tephra-falls within 40 km of site.
- Conservative screening: distal fall hazards will be less than potential hazards from Yellowstone and other volcanoes in the region.


RG 4.26 Step 2a: Tectono-magmatic Model

- Rational framework to consider potential for future volcanism at or near the proposed site.
- Proposed site is in Sevier Overthrust belt of central Rocky Mountain tectonic province:
 - East of Basin & Range faulting and seismicity.
 - West of Laramide-age basin tectonics.
 - South of Yellowstone-ESRP hot-spot tectonics and seismic "parabola."
- Anticipate that the model will contrast the tectonic characteristics of the site to those of volcanic fields in the region, to help inform screening decisions for new vent openings.


RG 4.26 Step 2b: Screening Analysis

PVHA_YM Version 2.0, NRC ADAMS No. ML033640083).

- Opening of new vents
 - Insights from tectono-magmatic model.
 - PVHA_YM for spatial clustering using kernel density functions.
 - Meets Parts 50 & 63 QA.
- Proximal hazards
 - Initial investigations show opening of new vents is not a hazard at the proposed site.
 - If verified, proximal hazards can be screened from further analysis.

RG 4.26 Step 2b: Flow Screening

- Flow phenomena, evaluate:
 - Maximum flow lengths.
 - Yellowstone pyroclastic flows traveled <120 km.
 - Other flows <100 km.
 - Consider topography between site and potential vent locations.
 - Intrabasin drainage (Green River) traps potential flows from Leucite Hills.
 - Other volcanoes in separate drainage basins from proposed site.
 - Volcanic flows physically cannot reach the proposed site.

RG 4.26 Step 2b: Tephra-fall Screening

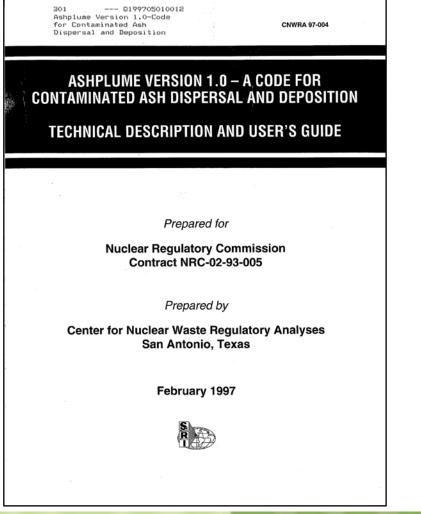
- Potential sources of future tephra falls in site region:
 - Yellowstone caldera eruption.
 - Yellowstone silicic dome eruption.
 - Scoria cones with intermediate compositions (e.g., Leucite Hills, Craters of the Moon).
 - Basaltic scoria cones with evidence of violent strombolian activity.
- Basaltic fissure vents, shield volcanoes, and spatter cones likely screenout based on limited transport distances shown at analogue volcanoes (<100 km dispersal).

RG 4.26 Step 2b: Preliminary Screening Analysis

Volcano Type	Count	Opening Of New Vents	Proximal Hazards	Lava Flows	Pyroclastic Density Currents	Tephra Falls
Mafic & Intermediate Scoria Cones	598	Out; T-M model, distance	Out; new vent >40 km	Out; distance, topography		IN
Silicic Domes	30	Out; T-M model, distance	Out; new vent >40 km	Out; distance, topography	Out; distance, topography	IN
Silicic Calderas	3				Out; distance, topography	IN
Volcanic sources >320 km from site	4					Out; no deposits <40km

RG 4.26 Step 3: Initial Risk Insights

- Screening analysis gives maximum-magnitude event.
- Consider whether a maximum-magnitude event might affect performance of Structures, Systems, and Components important to safety.
- Risk insights guide the need to develop in Step 4 either:
 - Hazard curves that are conditional on eruption occurrence (P_H).
 - Probabilistic hazard curves with eruption likelihoods ($P_E \times P_H$).



RG 4.26 Step 4: Tephra-fall Hazard Analyses

- Caldera eruptions from Yellowstone mostly form pyroclastic flows.
- Tephra-fall deposits from past eruptions are poorly preserved and inadequate to constrain potential hazard.
- Plan to use analyses in Mastin, et al. (2014; doi:10.1002/2014GC005469) as maximum-magnitude event for a conditional tephra-fall hazard, based on past eruption volume.
 - Represents a conservative upper bound on future tephra-fall volume.
- Bound the likelihood of a future caldera-scale eruption at $<10^{-6}$ /yr.
 - "The probability of another major caldera-forming Yellowstone eruption, in the absence of strong
 premonitory indications of major magmatic intrusion and degassing beneath a large area of the caldera,
 can be considered to be below the threshold of useful calculation." USGS Open-file Report 2007-1071, p.
 4.

RG 4.26 Step 4: Tephra-fall Hazard Analyses

- Silicic dome and scoria-cone tephra falls, all vents >100 km from the proposed site.
- Analyze using ASHPLUME code (NRC ADAMS No. ML040200038).
 - Meets Parts 50 & 63 QA.
- Eruption parameters from analogue systems.
 - Fall deposits in region eroded away.
 - Develop cone:fall relationships.
- Direct plume towards site, sample characteristic wind speeds.
- Bound probability of eruption occurring (P_E), if necessary.

Key Points

- ~630 Quaternary volcanoes are located within 320 km of the proposed site near Kemmerer, WY.
- The proposed site, however, is located >100 km away from the nearest Quaternaryage volcano.
- Initial screening analyses suggest tephra fall is the only potential volcanic hazard of concern for this site.
- The PVHA_YM and ASHPLUME codes meet NRC Part 50 Quality Assurance requirements and appear suitable for use in these hazard analyses.
- Information from analogue volcanoes must be used to conduct the tephra-fall hazard evaluations.
- Plan to evaluate conditional tephra-fall hazards by directing plume towards the proposed site, and sampling representative wind speeds and eruption parameters.
- If warranted by risk insights, eruption probabilities might need to be bounded.

Acronyms

- ka Thousand years ago
- LMP Licensing Modernization Project
- Ma Million years ago
- NRC U.S. Nuclear Regulatory Commission
- P_E Probability of Eruption (RG 4.26)
- P_H Probability of Hazard (RG 4.26)
- RG Regulatory Guide
- QA Quality Assurance

