

10 CFR 50.69 and TSTF-505 License Amendment Requests NRC Pre-Submittal Meeting

Agenda

- Introductions and Opening Remarks
- 10 CFR 50.69 License Amendment Request Overview
- TSTF-505 License Amendment Request Overview
- Closing Remarks
- Current Schedule

Introductions and Opening Remarks

- Introductions
 - Nuclear Regulatory Commission
 - Columbia Generating Station
 - Enercon Services, Inc.
- Opening Remarks
- Purpose of Pre-Submittal Meeting

10 CFR 50.69 Overview

- Provides a graded approach to SSC treatments
- Categorizes SSCs using a risk-informed process and adjusts treatment requirements consistent with the relative significance of the SSC
- For equipment determined to be of high safety significance, requirements will not be changed or will be evaluated for enhanced treatment

Requested Change to Operating License

"Energy Northwest is approved to implement 10 CFR 50.69 using the processes for categorization of Risk-Informed Safety Class (RISC)-1, RISC-2, RISC-3, and RISC 4 structures, systems, and components (SSCs) using: Probabilistic Risk Assessment (PRA) models to evaluate risk associated with internal events, including internal flooding, internal fire, and seismic risk; the shutdown safety assessment process to assess shutdown risk; the Arkansas Nuclear One, Unit 2 passive categorization method to assess passive component risk for Class 2 and Class 3 SSCs and their associated supports; and the results of non PRA evaluations that are based on a screening of other external hazards updated using the external hazard screening significance process identified in ASME/ANS PRA Standard RA-Sa-2009; as specified in License Amendment No. [XXX] dated [DATE]."

- SSC Categorization
 - Follows NEI 00-04 without exceptions
 - PRA-based evaluations utilizing internal events, internal flooding, fire, and seismic PRAs
 - Non-PRA approaches such as external events screening and shutdown assessment
 - Seven qualitative criteria of NEI 00-04
 - ➤ Defense-in-depth assessments
 - Passive categorization using ANO RI-RRA Methodology
 - Performed by an independent decision-making panel

- External Hazards
 - Screened in accordance with GL 88-20, Supplement 4, and using criteria in ASME PRA Standard RA-Sa-2009, NUREG/CR-2300 and NUREG-1407
 - PRA models were developed for internal flooding, internal fire, and seismic activity
 - Future identification of unscreened hazards will follow NEI 00-04
 - > Station modifications
 - Industry operating experience
 - PRA model error or limitation

- Shutdown Risk follows process illustrated in NEI 00-04
- Integration of importance measures across all hazards performed manually using NEI 00-04
- LAR addresses use of Regulatory Guide (RG) 1.200,
 Revisions 2 and 3
 - RG 1.200, Revision 2 Internal Events, Seismic PRA
 - RG 1.200, Revision 3 Fire PRA

- PRA Technical Adequacy Internal Events (with Internal Flooding) PRA Model
 - Full Scope Peer Review using RG 1.200, Revision 2
 - Reviewed by NRC for SFCP and ILRT
 - Focused Scope Peer Review for Model Upgrade
 - > Human Failure Events methodology was re-evaluated
 - ➤ Changes in Dependency Analysis
 - F&O closure using Appendix X to NEI 05-04
 - No open Finding-Level F&Os

- PRA Technical Adequacy Seismic PRA Model
 - Seismic PRA rev 8.1 evaluated during Staff Review of NTTF Recommendation 2.1
 - Full Scope Peer Review using RG 1.200, Revision 2
 - Focused Scope Peer Review of Model Upgrade
 - > Recalculated fragilities using scaling approach
 - Additional Focused Scope Peer Review of Model Upgrade
 - ➤ Secondary Containment effectiveness model of Reactor Water Clean-Up line break to support a seismic PRA LERF reduction
 - F&O closure using NEI 12-13
 - No open Finding-Level F&Os

- PRA Technical Adequacy Fire PRA Model
 - Full Scope Peer Review using RG 1.200, Revision 3
 - F&O Closure using NEI 17-07, Revision 2
 - No open Finding-Level F&Os

- FLEX Strategies are credited in the Internal Events,
 Fire, and Seismic PRA Models
 - Battery Chargers
 - Hardened Containment Vent System
 - Low Pressure RPV Injection

- Uncertainty Evaluations within PRA Models
 - Process defined in NEI 00-04
 - Uncertainty in PRA Models reviewed using NUREG-1855,
 EPRI TR-1026511, and EPRI TR-1016737

PRA Maintenance

- Regularly scheduled updates will occur at least once every two refueling outages
- Unscheduled updates will be performed as necessary (e.g., +/-25% CDF or LERF for modeled hazard)
- SSC categorization re-evaluation during model updates

TSTF-505 Overview

- Applies PRA to establish RICTs for LCO actions when PRA and TS functions are preserved
- Uses same PRA models and PRA maintenance process as described in the 10 CFR 50.69 LAR
- Application of the RICT is limited to a maximum of 30 days (termed the "backstop")

- The RICT Program provides the necessary administrative controls to permit extension of CTs
- Delays reactor shutdown or Required Actions while preserving sufficient safety margins and defense in depth
- RICT program integrated into conduct of operations ensuring risk is assessed and managed

- Consistent with TSTF-505, Revision 2, and NEI 06-09-A
- Total CDF and LERF meet RG 1.174 guidelines
- RICT will apply to MODES 1 and 2
- 23 TS impacted by the proposed change

- Approval of TSTF-439 is expected prior to the submittal of TSTF-505
- TS 5.5.16, RICT Program (new program in TS)
 - PRA is based on the as-built, as-operated, and maintained plant; and reflects the operating experience at the plant, per RG 1.200, Revision 2
 - Plant configuration changes and overall program managed in accordance with NEI 06-09-A
 - Provides guidance on determining RICT for emergent conditions

- Variations from TSTF-505, Revision 2:
 - CGS is a BWR 5 resulting in administrative differences from the TSTF based on BWR 4 (NUREG-1433) and BWR 6 (NUREG-1434) standard TS;
 - Plant specific LCOs are identified and justification for applying RICT is provided
 - Cleanup of expired one-time notes included in LAR
- Minimal Variances do not impact TSTF-505 applicability

- Example TS Variation TS 3.3.8.1 Loss of Power (LOP)
 Instrumentation
 - Condition B is plant specific
 - ➤ Required Action B.2 Restore channel to OPERABLE status, 24-hour Completion Time (CT) front stop
 - For SSCs are modeled consistent with the TS scope, unavailability included in CRM tool for the RICT program
 - For unmodeled undervoltage relays, loss of time delay relays used as a conservative surrogate that fails the channel
 - ➤ RICT is consistent with TSTF-505 changes

Closing Remarks

10 CFR 50.69 LAR

- Utilizes industry template and industry peer review of LAR
- PRA Models, external hazards screening and categorization methods in accordance with relevant guidance and standards
- No open finding level F&Os

TSTF-505 LAR

- Utilizes TSTF template and developed using industry OE
- Justification for RICTs requested for plant specific TS
- PRA Models and supporting information in accordance with relevant guidance and standards
- No open finding level F&Os

Current Schedule

- 10 CFR 50.69 LAR
 - Submittal 1st half of November 2021
- TSTF-505 LAR
 - Submittal 2nd half of November 2021
- Common PRA models robust & technically adequate
 - Stand-alone LARs submitted in close succession allowing for streamlined review

