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Life Beyond 80. Concrete Aging
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Varied Structures and Concrete in Light Water Reactors
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Aging Mechanisms of Priority Interest (2014) and Progress

Containment Degradation Mechanisms L.
(A) Concrete @ Irradiation

1, chloride diffusion; 2, carbonation; 3, AAR;
4a, DEF; 4b, external sulfate attack; o Alkali-silica reaction (ASR)
5, acid attack; 6, leaching; 7, shrinkage;

8, creep; 9, thermal cycling; 10, freeze/thaw;

11, fracture; 12, radiation @ Creep / creep-fracture

Confidence Values
Symbol size and color is a measure

L il mlon b el Excerpt from Expended Materials Degradation Analysis report
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¢ | | l | ‘Irradiation for "Containments-Concrete Component” emerged

= ¢ 1 - 2 as the most important degradation mechanism, mainly driven by
the fact that insufficient data is available to improve the level of
knowledge about the effects of irradiation on concrete

T mechanical properties.’

‘Though ASR is well documented by the operating experience
(for bridges and dams in particular) and scientific literature, its
high ranking in the EMDA analysis describes the need to assess
its potential consequences on the structural integrity of the
containment.’
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Irradiated Concrete in a Nutshell
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Alkali-Silica Reaction in a Nutshell

Expansive gel resulting from

the alkali-silica reaction and
micro-cracking

Cement alkali

Aggregate reactive silica

+ And absorbs

e Water
: >~70% moisture content

Hot Thermal activation
(accelerated test 100°F)
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Corrosion of Embedded Steel in Concrete in a nutshell
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https://www.cement.org/learn/concrete-technology/durability/corrosion-of-embedded-materials

Kinetics and Synergies Effects
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Examples of Possible Synergies

Alkali-silica reaction Creep Alkali-silica reaction
5 T }' -

Corrosion Fracture Irradiation
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Possible Interactions between Alkali-Silica Reaction and Irradiation
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Interactions between Corrosion and Alkali-Silica Reaction
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Conclusions and Perspectives

DOE, NRC and Industry materials research programs advanced
considerably the understanding, characterization, modeling of
concrete subjected to irradiation and alkali-silica reaction

Some knowledge gaps still exist:

* |rradiation: rate effects, neutronic effects on creep, bond strength
properties between concrete and embedded steel

« ASR: role of the aggregates’ mineralogy on ASR kinetics and
damage development

Synergies between irradiation, ASR, corrosion, creep and
damage are still largely unknown for an assessment of operation

beyond 80 years
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