

### Ameren Presenters

- Stephanie Banker, Vice President of Nuclear Engineering
- Andrew Burgess, 50.69 Project Manager
- Nathan Casey, Operations Supervisor-Licensed
- Justin Hiller, PRA Supervising Engineer
- Tom Elwood, Licensing Supervising Engineer

### Agenda

- Scope of Requests
- PRA Model Technical Adequacy
- PRA Model Uncertainties and Assumptions
- TSTF-439
- Potential Review Efficiencies
- Timeline for Submittals



### Scope of License Amendment Requests

50.69 LAR based on NEI 00-04

 Risk Informed Completion Time (RICT) LAR based on TSTF-505 Rev. 2 and NEI 06-09

 TSTF-439 - Eliminate Second Completion Times Limiting Time From Discovery of Failure To Meet an LCO



### 50.69 License Amendment Request

- LAR is consistent with NEI 00-04
- Passive categorizations will be performed using the Arkansas Nuclear One (ANO) methodology
  - The use of this method was previously approved by the NRC in the Vogtle 10 CFR 50.69 application
- Based on Revision 9 to the NEI template
- Reviewed by NEI LAR Coordinating Committee



### **TSTF-505**

- RICT LAR based on TSTF-505 Rev. 2 and NEI 06-09
- RICTs apply to 19 Limiting Conditions for Operation (LCOs), and 49 LCO Conditions
- Applicable in Modes 1 and 2
- New TS section 5.5.19 "Risk Informed Completion Time Program"
- Some Optional Variations from TSTF-505
- Obsolete one-time completion times will be removed from existing TS



### Optional Variations from TSTF-505

- Condition 3.3.2.Q, AFAS and SGBIS from BOP ESFAS, one train inoperable
- Condition 3.3.2.R, AFAS and SGBIS from LOOP, one or both train(s) inoperable
- Condition 3.3.2.S, SLIS and Turbine trip/FWIS on MSFIS, one train inoperable
- Condition 3.7.2.A, One MSIV actuator train inoperable
- <u>Condition 3.7.2.B</u>, Two MSIV actuator trains inoperable for different MSIVs when the inoperable actuator trains are <u>not</u> in the same separation group
- Condition 3.7.5.B, One ESW supply to turbine driven AFW pump inoperable
- Condition 3.7.9.A, One cooling tower train inoperable



### Optional Variations from TSTF-505

- Differences in Condition/Required Action (RA) wording
  - CEC TS are based on Revision 1 of NUREG-1431, "Standard Technical Specifications Westinghouse Plants"
- CEC plant-specific Conditions/RAs not in TSTF-505
- TSTF-505 Conditions/RAs not applicable to CEC
- Administrative changes
  - TS formatting changes
  - Changed some condition letters to use make use of previously Not Used conditions
- Cross-reference list for TSTF-505 markups to CEC site-specific TS RAs provided



# TS 3.3.2 – Engineered Safety Feature Actuation System (ESFAS) Instrumentation (Example Attachment 1 Variation)

- Condition not in TSTF-505
  - TS 3.3.2.Q One train inoperable, Restore train to OPERABLE status
    - Function 6.C-AFW Automatic Actuation Logic and Actuation Relays (Balance of Plant ESFAS)
    - Function 10.b-Steam Generator Blowdown and Sample Line Isolation Automatic Actuation Logic and Actuation Relays (BOP ESFAS)
  - 24-hour Completion Time (CT) front stop
  - Function is modeled in PRA
  - RICT added to RA consistent with TSTF-505 changes



# TS 3.7.2 – Main Steam Isolation Valves (MSIVs), Main Steam Isolation Valve Bypass Valves (MSIVBVs), and Main Steam Low Point Drain Isolation Valves (MSLPDIVs) (Example Attachment 1 Variation)

- Condition not in TSTF-505
  - TS 3.7.2.A One MSIV actuator train inoperable (specific to Callaway), Restore MSIV actuator train to OPERABLE status
  - 72-hour CT front stop
  - MSIV Actuators are not explicitly modeled in PRA
    - MSIV's are modeled; loss of the associated signal train will be used as a conservative surrogate for the MSIV actuators
  - RICT added to RA consistent with TSTF-505 changes



The PRA models associated with these submittals have been assessed against the ASME/ANS PRA Standard (RA-Sa-2009 and Part 5 Code Case) and RG 1.200, Revision 2, consistent with NRC RIS 2007-06.

All F&O closure reviews were performed in accordance with the process documented in Appendix X to NEI 05-04, NEI 07-12, and NEI 12-13 as accepted by the NRC (ML17079A427), as well as the requirements published in the ASME/ANS PRA Standard (RA-Sa-2009).



- Internal Events & Internal Flood PRA
  - Full scope peer reviewed to ASME/ANS RA-Sa-2009 in April 2019
  - Appendix X to NEI 05-04 finding closure reviews completed over several reviews, the final review being in June 2020
  - No open Finding F&Os

#### Fire PRA

- The Fire PRA was prepared using the methodology defined in NUREG/CR-6850, "Fire PRA Methodology for Nuclear Power Facilities", to support a transition to NFPA Standard 805, "Performance Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants"
- Full scope peer reviewed to ASME/ANS RA-Sa-2009 in October 2009
- Appendix X to NEI 07-12 finding closure review completed over two reviews, final review in June 2020
- No open Finding F&Os



#### Seismic PRA

- Full scope peer review conducted in June 2018 against the requirements of the Code Case for ASME/ANS RA-Sb-2013, as amended by the NRC on March 12, 2018.
- Appendix X to NEI 12-13 Finding closure review completed over several reviews, the final review being in June 2020
- No open Finding F&Os
- High Winds PRA and Other External Hazards Screening
  - The External Hazards Screening Assessment and the High Winds PRA were reviewed against the technical elements in Sections 6 and 7 of the ASME/ANS PRA Standard in April 2019
  - Appendix X to NEI 05-04 and 12-13 Finding closure review completed in Nov. 2019
  - No open Finding F&Os



#### Special Note

- As part of a PRA improvement update Callaway implemented the methodology provided in PWROG-18027-NP, for assessing the loss of room cooling in PRA modeling. During the peer review of the internal events PRA model a Finding F&O was generated related to implementation of this method.
- Subsequently, the PWROG-18027-NP method was chosen by the PWROG and NEI to pilot the Newly Developed Methods (NDM) peer review process established in NEI 17-07 and PWROG-19027 Rev. 0.
- Despite the assessment that this method did not necessarily meet the definition of a NDM,
   Callaway decided to suspend resolution of the associated F&O until the NDM peer review and closure of any F&Os on the method itself were completed using the process established in NEI 17-07 and the NDM requirements defined in PWROG-19027-NP.



- A peer review was conducted on the method provided in PWROG-18027-NP
  - Followed the guidance in NEI 17-07 Revision 2 and the refined NDM requirements defined in PWROG-19027 Rev.1
  - Based on the results of this review, all applicable NDM requirements are met and there are no open peer review Findings against the method in PWROG-18027-NP Rev. 0.
  - Documented in PWROG-19020-NP Rev. 1
- In June 2020, a focused scope peer review was conducted for the Callaway Energy Center. This review determined that all of the SRs that were examined, including the SR associated with the F&O related to implementation of the method in PWROG-18027-NP, satisfy Capability Category II, or higher, requirements. There were no new F&Os generated as a result of this review.



#### In conclusion:

- The method documented in PWROG-18027-NP Rev. 0 has been reviewed using the most current NDM requirements and peer review guidance
- There are no outstanding F&Os on the method
- Implementation of the peer reviewed method in the Callaway PRAs has also been reviewed with no open F&Os



### PRA Model Uncertainties and Assumptions

# Callaway followed the process defined in NUREG-1855, EPRI 1016737, and EPRI 1026511

- Assessment of potential sources key to respective applications and disposition/treatment for the application
- Identification of plant-specific sources and generic sources for all Hazards per EPRI 1016737
- Identification of Fire and Seismic PRA plant-specific sources and generic sources per Appendices of EPRI 1026511
- Consideration of generic Level 2 sources per EPRI 1026511 Appendix E as applicable to LERF
- Consideration of both parameter & completeness uncertainties



### **TSTF-439**

- Eliminates second Completion Times (limiting time from discovery of failure to meet an LCO) for Required Actions in favor of administrative controls.
- As stated in TSTF-505, Revision 2, it is necessary to adopt TSTF-439 in order to adopt TSTF-505 for those Required Actions that are affected by both travelers.
- Combined implementation of TSTF-439 and TSTF-505, in lieu of getting a TSTF-439 License Amendment before submitting TSTF-505 LAR.



### Potential Review Efficiencies

#### • LARs

 Both RICT and 50.69 license amendment requests are consistent with their applicable templates or model applications

#### PRA Models

- Same PRA models used for both LARs
- PRA technical adequacy and key sources of uncertainty similar for both applications
- All models have been recently peer reviewed
  - NRC observed most of these peer reviews
  - No open Findings
- TSTF-439 needed for TSTF-505
  - Streamlined approach where both are reviewed together



### Timeline for Submittals

- Two separate submittals will be made
  - 50.69 LAR is expected to be submitted in late 3rd Quarter 2020
  - RICT LAR is expected in 4th Quarter 2020
  - TSTF-439 will be submitted in conjunction with RICT
- Changes to the schedule will be communicated to the NRC Project Manager in a timely manner





## **Callaway** Energy Center

## Additional Information

### Example of TS with Second Completion Time

Distribution Systems - Operating 3.8.9

#### 3.8 ELECTRICAL POWER SYSTEMS

3.8.9 Distribution Systems - Operating

LCO 3.8.9 Train A and Train B AC, DC, and AC vital bus electrical power distribution

subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

#### ACTIONS

|    | CONDITION                                                  | Ri  | EQUIRED ACTION                                                         | COMPLETION<br>TIME                                           |
|----|------------------------------------------------------------|-----|------------------------------------------------------------------------|--------------------------------------------------------------|
| A. | One AC electrical power distribution subsystem inoperable. | A.1 | Restore AC electrical power distribution subsystem to OPERABLE status. | 8 hours  AND  16 hours from discovery of failure to meet LCO |
| B. | One AC vital bus subsystem inoperable.                     | B.1 | Restore AC vital bus subsystem to OPERABLE status.                     | 2 hours  AND  16 hours from discovery of failure to meet LCO |

(continued)

# Example of TS with Second Completion Time

| ACTIONS ( | (continued) |
|-----------|-------------|
| ACTIONS ( | (conunueu)  |

|    | CONDITION                                                                                    | RE                       | EQUIRED ACTION                                                         | COMPLETION<br>TIME                                           |
|----|----------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
| C. | One DC electrical power distribution subsystem inoperable.                                   | C.1                      | Restore DC electrical power distribution subsystem to OPERABLE status. | 2 hours  AND  16 hours from discovery of failure to meet LCO |
| D. | Required Action and associated Completion<br>Time not met.                                   | D.1<br><u>AND</u><br>D.2 | Be in MODE 3.  Be in MODE 5.                                           | 6 hours<br>36 hours                                          |
| E. | Two trains with inoperable distribution subsystems that result in a loss of safety function. | E.1                      | Enter LCO 3.0.3.                                                       | Immediately                                                  |

#### SURVEILLANCE REQUIREMENTS

|            | SURVEILLANCE                                                                                                                       | FREQUENCY                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| SR 3.8.9.1 | Verify correct breaker alignments and voltage to<br>required AC, DC, and AC vital bus electrical power<br>distribution subsystems. | In accordance<br>with the<br>Surveillance<br>Frequency<br>Control Program |