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FOREWORD

The work prepared here was performed at Oak Ridge National Laboratory
(ORNL) under sponsorship of the U.S. Nuclear Regulatory Commission (NRC)
Heavy-Section Steel Technology Program, which is directed by ORNL. The
program is conducted as part of the ORNL Pressure Vessel Technology
Program, of which C. Es Pugh is manager. The manager for the NRC is
Milton Vagins.

This report is designated Heavy-Section Steel Technology Program
Technical or Programmatic Manuscript 36. Prior reports in this series are
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1. A Guide for Material Comtrol and Data Control for the Heavy-
Section Steel Technology Program (prepared by the ORNL Inspection
Engineering Department), Cak Ridge National Laboratory, June 15, 1968.

2. C. L. Segaser, System Design Description of the Intermediate
Vessel Tests for the Heavy-Section Steel Technology Program, ORNL/TM-2849,
revised, July 1973.

3. HSST Intermediate Veseel "losure Analyeis, Technical
Report E-1253(b), Teledyne Materials Research Co., Waltham, Mass.,

Mar. 25, 1970.

4. C. L. Segaser, Feasibility Study, Irradiation of Heavy-Section
Steel Specimens in the South Test Facility of the Oak Ridge Research
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5. D. A. Canonico, Transition Temperature Considerations for
Thieck-Wall Nuclear Pressure Vessels, ORNL/TM-3114, October 1970.

6. F. J. Witt and R. G. Berggren, Sise Effects and Fnergy
Dieposition in Impact Specimen Teating of ASTM A533 Grade B Steel,
ORNL/TM-3030, August 1970.

7. G. D. Whitman and F. J. Witt, Heavy-Section Steel Technology
Ppogram, ORNL/TM-3055, November 1970.

8. D. A. Canonico and R. G. Berggren, Tenaile and Impact Properties
of Thick-Section Plate and Weldments, ORNL/TM-3211, January 1971.

9, J. G. Merkle, L. F. Kooistra, and R. W. Derby, Interpretations of
the Drop Weight Test in Terme of Strain Tolerance (Grose Strain) and
Fracture Mechanice, ORNL/TM-3247, June 1971,

10. J. G. Merkle, A Review of Some of the Fxisting Stress Intensity
Factor Solutions for Part-Through Surface Cracks, ORNL/TM-3983,

January 1973.

11. N. Krishnamurthy, Three-Dimensional Finite Flement Analyeis of
Thick-Walled Vessel-Noazzle Junctions with Curved Transitione, ORNL/TM-3315,
July 1971.

12. C. E. Childress, Manual for ASTM A533 Grade B Class 1 Steel
(HSST Plate 03) Provided to the Imtermational Atomie Energy Agency,
ORNL/TM-3193, March 1971.

13. G. C. Robinson, Discussion of SwRI Model Parametric Tests,
ORNL/TM-3313, June 1971.

14, F. J. Witt, The Equivalent Energy Method for Calculating
Elastic-Plastic Fracture (cancelled).

15. R. W. Derby and C. L. Segaser, Quality Asasurance Program Plan,
Intermediate Vessel Teat Facility (HSST Program), ORNL/TM-3373, May 1971.
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TENSILE PROPERTIES OF IRRADIATED NUCLEAR GRADE PRESSURE VESSEL
WELDS FOR THE THIRD HSST IRRADIATION SERIES*

J. J. McGowan
ABSTRACT

The Heavy Section Steel Technology (HSST) Program conducted
a series of experiments to investigate the effect of neutron
irradiation on the fracture toughness of nuclear pressure vessel
materials. Four welds of A 508 class 2 steel were examined in
this Third HSST Irradiation Series. The welds were fabricated
according to "early” (pre-1972) light-water reactor weld practice
(i.e., copper-coated electrodes). As part of this study, tensile
properties were measured after irradiation to 2 to 10 x 1022
neutrons/m? (F > 1 MeV) at temperatures between 250 and 290°C.
Strength properties of all four welds increased with exposure to
irradiation. Yield strength was more sensitive to irradiation
than was ultimate strength. Tensile ductility was not affected
significantly by exposure to irradiation.

INTRODUCTION

The Heavy Section Steel Technology (HSST) program is sponsored by the
Nuclear Regulatory Commission with one objective of gaining better insight
into the mechanisms that could potentially cause embrittlement of reactor
pressure vessels after neutron irradiation. To assess material behavior,
frradiations were conducted at Oak Ridge National Laboratory (ORNL) to pro-
duce a variety of irradiated material conditions representative of reactor
environments. The Third HSST Irradiation Series was conducted to examine
the effects of neutron irradiation on the fracture toughness of “"early”
(pre-1972) practice nuclear pressure vessel welds (i.e., welds made with
copper-coated electrodes). Tensile, fracture toughness, and Charpy impact
specimens were irradiated in the ORNL Bulk Shielding Reactor! at tempera-
tures near 288°C to a fast neutron fluence (F > 1 MeV) of 2 to 10 x 1022
neutrons/m? . Temperature control on the tensile specimens was only moder-
ately successful, with large variations of temperature (*24°C for some
specimens) over the length of exposure. The objective of the work reported
herein was to assess the irradiated tensile properties of four irradiated
weld materials in the HSST Third Series.

*Research sponsored by the Office of Nuclear Regulatory Research,
Division of Engineering Technology, U.S. Nuclear Regulatory Commission,
under Interagency Agreement DOE 40-543-75 with the U.S. Department of
Energy under Contract DE ACO5-840R21400 with Martin Marietta Energy
Systems, Inc.



EXPERIMENTAL

MATERIALS AND SPECIMENS

Four welds of A 508 class 2 base material (hereafter referred to as
64W, 65W, 66W, and 67W) were fabricated by use of early (pre-1972) prac-
tice. All welds were made by the submerged arc process with Linde 80 flux
and a single wire feed of 1/8-in. MnMoNi steel; the parameters used in the
fabrication are listed in Table 1 (ref. 2). The chemical compositions of
welds 64W, 65W, 66W, and 67W are given in Table 2. The analysis represents
the range of compositions determined from Charpy specimens and from weld
analyses supplied by vendors. All tensile specimens were oriented trans-
versely to the weld. Two types of miniature tensile specimens were used
in this study (Fig. 1). Specimen sizes and designs were primarily dictated
by the physical space available for specimen irradiation. The specimen
gage diameter was 4.52 mm; both short- (29.24-mm) and long-gage-length
(31.75-mm) specimens were tested.

TEST APPARATUS AND DATA ANALYSIS

The tests were conducted at room temperature and at 150 and 290°C.
Three testing systems were used: two separate 45-kN Instron and one
490-kN MTS testing machine. All unirradiated testing was performed with
the Instron systems, and the irradiated testing was performed with the
MTS system. The unirradiated specimens were tested at elevated tempera-
ture in a bath of water-soluble oil. The irradiated specimens were all
tested at room temperature and above in an air furnace. All testing was
performe! at a crosshead rate of 0.51 mm/min (0.02 in./min), and during

Table 1. Submerged arc weld parameters

Postweld heat treatment

HSST conditions

weld Volts Current

code (A) Temperature Time
(°c) (h)

64W 34 500 600 * 14 48

65W a a 607 = 14 80

66W a a 607 = 14 48

67W a a a a

ANot available.

Source: A. L. Lowe, Jr., "Description of Weld
Materials Furnished for Second and Third HSST
Irradiation Experiments,” BAW-1382, to be published
by Babcock and Wilcox, Lynchburg, Va.



Table 2. Mean chemical composition of submerged arc welds

Average composition?
(wt 2)

c P S Si Cr Ni Mo Cu

0.085 0.014 0.015 0.520 0.092 0.660 0.420 0.350

0.070 0.012 0.014 0.445 0.074 0.600 0.410 0.310
0.10 : 0.017 0.016 0.600 0.110 0.720 0.430 0.390

0.080 0.015 0.015 0.480 0.088 0.597 0.385 0.215

0.070 0.014 0.013 0.450 0.076 0.585 0.370 0.180
0.090 0.017 0.017 0.610 0.100 0.610 0.400 0.250

0.092 0.018 0.009 0.540 0.105 0.595 0.400 0.420

0.075 0.017 0.009 0.480 0.090 0.580 0.380 0.350
0.110 0.020 0.010 0.600 0.120 0.610 0.420 0.490

0.082 0.011 0.012 0.500 0.089 0.590 0.390 0.265

0.070 1.40 0.010 0.012 0.410 0.067 0.580 0.370 0.220

0.095 1.48 0.013 0.013 0.590 0.110 0.600 0.410 0.310

INumbers shown below each entry indicate range of composition measurements.

ORNL DWG 84C 173268

4.52
DIAMETER

'
L- GAGE LENGTH —cl

o TOTAL LENGTH ————

DIMENSIONS IN MILLIMETERS

GAGE TOTAL
LENGTH LENGTH
(mm) {mm)

LONG SPECIMEN 31.75 55
SHORT SPECIMEN 29 24 50

Fig. 1. Tensile specimen configurations used in Third HSST
Irradiation Series.

each test crosshead displacement versus load was recorded. The 0.2%
offset yield strength was measured from this trace. Errors In yield
strength from crosshead displacement (instead of extensometer movement)




were established at less than 3% by use of an extensometer at room tem—
perature. On completion of the tes:, neck diameter and final length were
measured for each specimen. Unirradiated specimens were measured with
vernier calipers: irradiated specimens were measured with a digital tool-
maker's microscope. The uniform stroin was determined from the plastic
displacement to maximum load on the load-versus-crosshead-motion trace.

RESULTS AND DISCUSSION

The tensile properties are summarized for both unirradiated materials
and irradiated materials in Tables 3 and 4, respectively. Preirradiation
strength and ductility values are similar for all four welds, with
weld 66W showing only s'ightly higher strength (10-15%Z) than the other
three welds.

Irradiation to ¢ fluence of 2 to 10 x 1022 neutrons/m?2 (F > 1 MeV)
at 250 to 290°C produced a pronounced effect on the strengths of all four
welds, as {llustrated in Figs. 2 through 5. On these figures second-
degree curves are shown for the unirradiated and irradiated strengths.
These curves were determined by a least-squares procedure, and the coef-
ficients for each material are listed in Table 5. Using these curve fits,
the yield and ultimate strengths were averaged over the temperature range
22 to 288°C (Table 6). As expected, weld 65W has the lowest yield and
ultimate strengths after irradiation, because it had the lowest copper
level (0.25%). Weld 66W had the highest yield and ultimate strengths after
irradiation, because it had the highest copper level (0.42%). The percent~-
age change in strength for weld 66W is deceptively small because it had a
relatively high unirradiated strength due to slightly higher C, Mn, and Si
levels. Welds 64W and 67W had intermediate levels of copper, resulting in
intermediate strength increases. Nickel content in the welds was near 0.6%
and did not affect the relative ordering of the tensile strengths. In
general, the yield strength for the welds was increased more than was the
ultimate strength.

As noted in Table 4, the controls on the irradiation fluence and irra-
diation temperature were inadequate because of improper capsule design.
Table 4 shows that these problems in design resulted in no significant
variation in tensile properties at the tarcet fluence.

Irradiation to a fluence of 2 to 10 x 1022 peutrons/m? (F > 1 MeV) at
252 to 290°C produced no significant effect on the tensile ductility, as
illustrated in Figs. 6 through 9. On these figures first-degree curves
are shown for the ductility in the irradiated and unirradiated conditions.
These curves were determined by a least-squares procedure; the coefficients
for each material are listed in Table 7. Using these curve fits, the total
elongation values over the temperature range 22 to 288°C were averaged.
These average values, listed in Table 8, reflect the small effect of irra-
diat'on on the ductility of all four materials.



Table 3. Tensile properties of unirradiated welds

te::::a- Yield Ultimate Uniform Reduction IOt'l_
Specimen seNe strength strength strain of area °t::gg
(oo (ma)  (wpa) (%) (%) P
64w107 27 467 583 9.9 65.8 19.5
112 27 469 581 9.6 64.5 18.8
125 151 426 539 9.0 65.5 17.2
13 151 418 533 9.9 67.4 18.9
14b 286 398 547 8.4 60.0 16.0
15 288 398 549 9.6 52.7 15.8
167 27 458 575 10.1 64.1 18.4
17b 151 407 519 9.0 66.7 17.4
187 286 398 533 8.6 51.5 14.4
65W10” 27 461 572 10.1 63.9 19.6
1’ 27 460 571 9.5 64 .4 17.2
12P 151 425 535 7.7 62.9 15.4
135 150 428 538 8.0 63.6 15.2
147 288 423 550 1.5 55.5 13.3
15P 288 414 548 7.8 57.3 14.3
167 27 451 571 9.5 67.2 17.6
17P 150 416 526 7.4 66.0 15.°
18P 288 398 550 9.3 61.1 16.9
66W1 27 533 639 8.4 63.3 17.1
2 150 507 599 7.2 64.9 14.7
6 287 496 610 6.8 46.3 12.7
7 27 534 639 6.8 63.4 14.8
8 149 506 595 6.2 63.5 13.5
10 288 500 607 6.4 47.0 11.7
67W1 27 445 569 8.2 65.8 16.2
2 27 461 581 8.5 67.7 17.2
3 150 424 538 6.5 67.9 14.3
5 149 429 543 6.5 63.9 13.7
6 288 431 565 7.3 61.0 13.9
7 288 433 567 7.7 55.1 13.8
8 27 479 600 11.4 66.1 20.2
10 148 433 544 7.3 64.6 15.0
11 288 427 554 7.3 57.7 12.8

e e et

-— —

aglongation for 31.75-mm gage length; length-to-diameter ratio of 7.

|

Pshort specimens; all others are long specimens.



Table 4. Tensile properties of irradiated welds

T Irradiation Test Yield  Ultimate Uniform Reduction ‘;::::_

Specimen (1022 aentroaslnz) temperature temperature strength strength strain of area tiond
°c) (°c) (MPa) (MPa) %) (%) (x)
641 4.5 273 + 11 288 519 640 7.5 39.0 11.9
4P 6.7 281 + 12 13 610 709 10.0 58.4 17.1
sh 6.7 282 ¢+ 5 288 527 656 8.3 40.4 4.0
6P 2.4 289 + 1 33 594 688 10.9 56.5 17.1
7P 2.4 290 ¢ 1 289 525 658 7.2 52.1 12.2
ab 6.4 273 ¢+ 1 149 524 626 7.5 56.5 14.8
65W3 3.8 281 ¢ 7 151 476 612 9.3 61.3 16.6
Y 7.6 279 + 13 28 582 676 11.2 63.0 20.2
shb 7.5 284 + 8 287 507 644 9.3 53.6 16.7
6P 2.0 288 + 3 288 504 627 8.2 62.1 14.7
7P 2.0 287 + 9 28 562 662 10.6 57.7 18.6
8h 6.0 268 + 6 150 493 592 9.1 62.4 17.1
9» 6.0 270 * & 288 475 601 8.0 49.5 15.0
66W3 6.4 284 + 24 149 599 684 6.7 67.4 13.4
4 5.6 284 * 24 149 603 692 6.8 52.4 13.3
5 5.2 279 + 13 287 573 683 7.1 50.8 12.8
9 4.0 279 + 13 3% 635 715 6.8 59.3 14.8
1k 8.7 286 + 12 290 580 683 6.0 42.2 11.2
12P 8.7 281 + 7 34 671 746 8.0 60.8 18.2
6 7W4 5.4 282 + 13 149 566 645 6.7 66.3 13.5
9 4.2 282 + 12 149 553 655 7.5 60.8 13.9
15P 9.5 261 + 3 288 519 632 7.1 60.7 13.0
16 9.5 252 + 2 288 511 627 7.1 52.7 12.8
17% 1.8 284 ¢+ 3 3% 613 691 8.6 61.4 15.4
185 1.8 236 + 1 288 529 655 8.0 59.7 13.3

ZElongation for 31.75-mm gage length; length-to-diameter ratio of 7.
bShort specimens; all others are long specimens.
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Fig. 2. Tensile strength versus temperature of irradiated and
unirradiated weld 64W.
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Fig. 3. Tensile strength versus temperature of irradiated and
unirradiated weld 65W.
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Fig. 4. Tensile strength versus temperature of irradiated and
unirradiated weld 66W.

ORNL-DWG 84C-17330

1400
O UNIRRADIATED YIELD
1200 0 UNIRRADIATED ULTIMATE
® IRRADIATED YIELD
- B RRADIATED ULTIMATE
a 1000
2
3
5 800
z
T
L
£ o00 -
400 o -0 °
200 A
<200  -100 0 100 200 300

TEMPERATURE (°C)

Fig. 5. Tensile strength versus temperature of {irradiated and
unirradiated weld 67W.



Table 5. Curve fit coefficients for yield and
ultimate strengths

Yield strength? Ultimate strength?
Material

% 2 2 %o | %

Unirradiated specimens

-0.552 0.00094 598 . 0.00090
-0.412 0.00075 586 . 0.00165
~0.326 0.00060 655 . 0.00163
~0.461 0.00108 600 . 0.00187

Irradiated specimens

64W 637 ~-1.150 0.00263 735 -1.202 0.00317
65W 605 —1.258 0.00305 696 -1.029 0.00271
66W 674 -0.653 0.00109 750 -0.609 0.00131
67W 632 -0.594 0.00070 709 -0.551 0.00106

ACoefficients of o = ¢y + ;T + T2, with o in

megapascals and T in degrees C.

Table 6. Average tensile strength?

oy, 1~ %,y
Material YU ‘(’:fé:) TN Ty %Y L TR

(MPa) (2)
64W 422 537 27 19
6 5W 427 501 18 542 590 9

66W 509 608 19 606 695 15
67W 434 561 29 552 655 19

Myhere Oy,u = average unirradiated yield strength from 22 to
288°C, oy 1 = average irradiated yield strength from 22 to 288°C,
oy,u * average unirradiated ultimate strength from 22 to 288°C, and
oy,1 = average irradiated ultimate strength from 22 to 288°C.
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Fig. 6. Total elongation versus temperature of irradiated and
unirradiated weld 64W.
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Fig. 7. Total elongation versus temperature of irradiated and
unirradiated weld 65W.
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Fig. 8. Total elongation versus temperature cf irradiated and
unirradiated weld 66W.
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Fig. 9. Total elongation versus temperature of irradiated and
unirradiated weld 67W.



Curve fit coefficients for total
elongation values

Unirradiated; ep y (%)% Irradiated; er,1 ()2

Material - -

%0 %] 20 ]

64W 19.48 0.0135 17 .60 0.0171
65W 18.01 0.0125 19.56 0.0148
66W 16.31 0.0144 16.69 0.0174
67w 17.78 0.0165 15.28 0.0082

Ahere €7 = O 1 T, with €7 in percent and T in
degrees C.

Average total elongation@

€T.U €T, 1 €T.1 €r,1

Material (%) (2) (%)

64W 1
65W 1
HHW 1¢

1

67W

U here €7 y = average unirradiated
total vlnnuati&n from 22 to 288°C and
€7 1 = average irradiated total elongation
from 22 to 288°C.

CONCLUSIONS

1

Irradiation to fluences in the range 2 to 10 x 1044 neutrons/m*
(F > 1 MeV) significantly strengthened all four weld materials; vyield
strength (18-29%Z) increases were greater than ultimate strength increases
(9-19%).

2. Welds 65W and 66! exhibited less strength increase than did
welds 64W and 67W. ‘hese differences may be associated with chemical
composition variations.

Tensile elongation was not affected significantly by irradiation
the materials examined.
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