

ornl

NUREG/CR-4086
ORNL/TM-9477

OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

Tensile Properties of Irradiated Nuclear Grade Pressure Vessel Welds for the Third HSST Irradiation Series

J. J. McGowan

Prepared for the
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Under Interagency Agreement DOE 40-543-75

8505160629 B50531
PDR NUREG
CR-4086 R PDR

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W., Washington, DC 20555
2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the *Code of Federal Regulations*, and *Nuclear Regulatory Commission Issuances*.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

Notice

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-4086
ORNL/TM-9477
Distribution
Category RF

METALS AND CERAMICS DIVISION

TENSILE PROPERTIES OF IRRADIATED NUCLEAR GRADE PRESSURE VESSEL
WELDS FOR THE THIRD HSST IRRADIATION SERIES

J. J. McGowan

Manuscript Completed - February 1985

Date Published - March 1985

Notice: This document contains information of a
preliminary nature. It is subject to revision
or correction and therefore does not represent
a final report.

Prepared for the
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555
Under Interagency Agreement DOE 40-543-75

NRC FIN. No. B0119

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

FOREWORD

The work prepared here was performed at Oak Ridge National Laboratory (ORNL) under sponsorship of the U.S. Nuclear Regulatory Commission (NRC) Heavy-Section Steel Technology Program, which is directed by ORNL. The program is conducted as part of the ORNL Pressure Vessel Technology Program, of which C. E. Pugh is manager. The manager for the NRC is Milton Vagins.

This report is designated Heavy-Section Steel Technology Program Technical or Programmatic Manuscript 36. Prior reports in this series are listed below:

1. *A Guide for Material Control and Data Control for the Heavy-Section Steel Technology Program* (prepared by the ORNL Inspection Engineering Department), Oak Ridge National Laboratory, June 15, 1968.
2. C. L. Segaser, *System Design Description of the Intermediate Vessel Tests for the Heavy-Section Steel Technology Program*, ORNL/TM-2849, revised, July 1973.
3. *HSST Intermediate Vessel Closure Analysis*, Technical Report E-1253(b), Teledyne Materials Research Co., Waltham, Mass., Mar. 25, 1970.
4. C. L. Segaser, *Feasibility Study, Irradiation of Heavy-Section Steel Specimens in the South Test Facility of the Oak Ridge Research Reactor*, ORNL/TM-3234, May 1971.
5. D. A. Canonico, *Transition Temperature Considerations for Thick-Wall Nuclear Pressure Vessels*, ORNL/TM-3114, October 1970.
6. F. J. Witt and R. G. Berggren, *Size Effects and Energy Disposition in Impact Specimen Testing of ASTM A533 Grade B Steel*, ORNL/TM-3030, August 1970.
7. G. D. Whitman and F. J. Witt, *Heavy-Section Steel Technology Program*, ORNL/TM-3055, November 1970.
8. D. A. Canonico and R. G. Berggren, *Tensile and Impact Properties of Thick-Section Plate and Weldments*, ORNL/TM-3211, January 1971.
9. J. G. Merkle, L. F. Kooistra, and R. W. Derby, *Interpretations of the Drop Weight Test in Terms of Strain Tolerance (Gross Strain) and Fracture Mechanics*, ORNL/TM-3247, June 1971.
10. J. G. Merkle, *A Review of Some of the Existing Stress Intensity Factor Solutions for Part-Through Surface Cracks*, ORNL/TM-3983, January 1973.
11. N. Krishnamurthy, *Three-Dimensional Finite Element Analysis of Thick-Walled Vessel-Nozzle Junctions with Curved Transitions*, ORNL/TM-3315, July 1971.
12. C. E. Childress, *Manual for ASTM A533 Grade B Class 1 Steel (HSST Plate 03) Provided to the International Atomic Energy Agency*, ORNL/TM-3193, March 1971.
13. G. C. Robinson, *Discussion of SwRI Model Parametric Tests*, ORNL/TM-3313, June 1971.
14. F. J. Witt, *The Equivalent Energy Method for Calculating Elastic-Plastic Fracture* (cancelled).
15. R. W. Derby and C. L. Segaser, *Quality Assurance Program Plan, Intermediate Vessel Test Facility (HSST Program)*, ORNL/TM-3373, May 1971.

16. C. W. Hunter and J. A. Williams, *Fracture and Tensile Behavior of Neutron-Irradiated A533-B Pressure Vessel Steel*, HEDL-TME-71-76, Hanford Engineering Development Laboratory, Richland, Wash., Feb. 6, 1971.
17. A. A. Abbatiello and R. W. Derby, *Notch Sharpening in a Large Tensile Specimen by Local Fatigue*, ORNL/TM-3925, November 1972.
18. S. A. Legge, *Effects on Fracture Mechanics Parameters of Displacement Measurement Geometry for Varying Specimen Sizes*, WCAP-7926, Westinghouse Electric Corp., Pittsburgh, June 1972.
19. F. J. Witt and T. R. Mager, *A Procedure for Determining Bounding Values on Fracture Toughness K_{IC} at Any Temperature*, ORNL/TM-3894, October 1972.
20. J. G. Merkle, *An Elastic-Plastic Thick-Walled Hollow Cylinder Analogy for Analyzing the Strains in the Plastic Zone Just Ahead of a Notch Tip*, ORNL/TM-4071, January 1973.
21. K. K. Klindt and D. A. Canonica, *Evaluation of Discontinuities in HSST Twelve-Inch-Thick Plate*, ORNL/TM-4155, June 1973.
22. S. A. Legge, *Analysis and Experimental Verification of the Thermal Behavior of a Four Inch Steel Section Undergoing Heating*, WCAP-8022, Westinghouse Electric Corp., Pittsburgh, December 1972.
23. R. W. McClung, K. K. Klindt, and K. V. Cook, "An Evaluation of the PVRC and EEI-TVA Programs for Pre- and In-Service Nondestructive Examination of Nuclear Pressure Vessels" (draft, June 1973), transmitted with cover letter from G. D. Whitman to Director, RRD, USAEC, July 1973.
24. G. C. Robinson, J. G. Merkle, and R. W. Derby, "Fracture Initiation Aspects of the Loss of Coolant Accident for Water Cooled Nuclear Reactor Pressure Vessels" (draft), transmitted from D. B. Trauger to H. J. C. Kouts, USAEC, Subject: Thermal Shock Report - HSST Program, September 1973.
25. W. K. Wilson and J. A. Begley, *Variable Thickness Study of the Edge Cracked Bend Specimen*, WCAP-8237, Westinghouse Electric Corp., Pittsburgh, November 1973.
26. J. A. Williams, *Some Comments Related to the Effect of Rate on the Fracture Toughness of Irradiated ASTM A533-B Steel Based on Yield Strength Behavior*, HEDL-SA 797, Hanford Engineering Development Laboratory, Richland, Wash., December 1974.
27. S. C. Grigory, *Heavy Section Steel Program Tests of 6-Inch-Thick Tensile Specimens*, Sixth Technical Summary Report, SwRI Project 03-2520, Apr. 19, 1974.
28. H. H. Bellucci, *Three-Dimensional Elastic-Plastic Stress and Strain Analyses for Fracture Mechanics: Complex Geometries*, Report 09177 (TR 75), MARC Analysis Research Corp., Palo Alto, Calif., November 1975.
29. Richard Smith, *Weld Repair of Heavy Section Steel Technology Program Vessel V-7*, EPRI NP-179, Electric Power Research Institute, Palo Alto, Calif.; ORNL/Sub/88242-76-1, prepared by W. D. Goins and D. L. Butler, Combustion Engineering, Inc., Chattanooga, Tenn., August 1976.

30. C. W. Smith, M. Jolles, and W. H. Peters, *Stress Intensities for Nozzle Cracks in Reactor Vessels*, VPI-E-76-26, Virginia Polytechnic Institute and State University, Blacksburg, Va.; ORNL/Sub/7015-1, November 1976.

31. C. W. Smith, W. H. Peters, W. T. Hardrath, and T. S. Fleischman, *Stress Intensity Distributions in Nozzle Corner Cracks of Complex Geometry*, VPI-E-79-2, Virginia Polytechnic Institute and State University, Blacksburg, Va.; ORNL/Sub/7015-2, NUREG/CR-0640, January 1979.

32. G. A. Clarke, *An Evaluation of the Unloading Compliance Procedure for J-Integral Testing in the Hot Cell, Final Report*, Westinghouse Electric Corp., Pittsburgh, ORNL/Sub-7394/1, NUREG/CR-1070, October 1979.

33. W. R. Corwin, *Assessment of Radiation Effects Relating to Reactor Pressure Vessel Cladding*, ORNL-6047, NUREG/CR-3671, July 1984.

34. H. A. Domian, *Vessel V-8 Repair and Preparation of Low Upper-Shelf Weldment*, ORNL/Sub/81-85813/1, NUREG/CR-2676, prepared by Babcock and Wilcox Company, Alliance, Ohio 44601, June 1982.

35. H. A. Domian, *Vessel V-7 and V-8 Repair Characterization of Insert Material*, ORNL/Sub/82-52845/1, NUREG/CR-3771, prepared by Babcock and Wilcox Co., Alliance, Ohio 44601, May 1984.

CONTENTS

FOREWORD	iii
ABSTRACT	1
INTRODUCTION	1
EXPERIMENTAL	2
MATERIALS AND SPECIMENS	2
TEST APPARATUS AND DATA ANALYSIS	2
RESULTS AND DISCUSSION	4
CONCLUSIONS	12
ACKNOWLEDGMENTS	13
REFERENCES	13

TENSILE PROPERTIES OF IRRADIATED NUCLEAR GRADE PRESSURE VESSEL
WELDS FOR THE THIRD HSST IRRADIATION SERIES*

J. J. McGowan

ABSTRACT

The Heavy Section Steel Technology (HSST) Program conducted a series of experiments to investigate the effect of neutron irradiation on the fracture toughness of nuclear pressure vessel materials. Four welds of A 508 class 2 steel were examined in this Third HSST Irradiation Series. The welds were fabricated according to "early" (pre-1972) light-water reactor weld practice (i.e., copper-coated electrodes). As part of this study, tensile properties were measured after irradiation to $2 \text{ to } 10 \times 10^{22}$ neutrons/m² ($E > 1 \text{ MeV}$) at temperatures between 250 and 290°C. Strength properties of all four welds increased with exposure to irradiation. Yield strength was more sensitive to irradiation than was ultimate strength. Tensile ductility was not affected significantly by exposure to irradiation.

INTRODUCTION

The Heavy Section Steel Technology (HSST) program is sponsored by the Nuclear Regulatory Commission with one objective of gaining better insight into the mechanisms that could potentially cause embrittlement of reactor pressure vessels after neutron irradiation. To assess material behavior, irradiations were conducted at Oak Ridge National Laboratory (ORNL) to produce a variety of irradiated material conditions representative of reactor environments. The Third HSST Irradiation Series was conducted to examine the effects of neutron irradiation on the fracture toughness of "early" (pre-1972) practice nuclear pressure vessel welds (i.e., welds made with copper-coated electrodes). Tensile, fracture toughness, and Charpy impact specimens were irradiated in the ORNL Bulk Shielding Reactor¹ at temperatures near 288°C to a fast neutron fluence ($E > 1 \text{ MeV}$) of $2 \text{ to } 10 \times 10^{22}$ neutrons/m². Temperature control on the tensile specimens was only moderately successful, with large variations of temperature ($\pm 24^\circ\text{C}$ for some specimens) over the length of exposure. The objective of the work reported herein was to assess the irradiated tensile properties of four irradiated weld materials in the HSST Third Series.

*Research sponsored by the Office of Nuclear Regulatory Research, Division of Engineering Technology, U.S. Nuclear Regulatory Commission, under Interagency Agreement DOE 40-543-75 with the U.S. Department of Energy under Contract DE AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

EXPERIMENTAL

MATERIALS AND SPECIMENS

Four welds of A 508 class 2 base material (hereafter referred to as 64W, 65W, 66W, and 67W) were fabricated by use of early (pre-1972) practice. All welds were made by the submerged arc process with Linde 80 flux and a single wire feed of 1/8-in. MnMoNi steel; the parameters used in the fabrication are listed in Table 1 (ref. 2). The chemical compositions of welds 64W, 65W, 66W, and 67W are given in Table 2. The analysis represents the range of compositions determined from Charpy specimens and from weld analyses supplied by vendors. All tensile specimens were oriented transversely to the weld. Two types of miniature tensile specimens were used in this study (Fig. 1). Specimen sizes and designs were primarily dictated by the physical space available for specimen irradiation. The specimen gage diameter was 4.52 mm; both short- (29.24-mm) and long-gage-length (31.75-mm) specimens were tested.

TEST APPARATUS AND DATA ANALYSIS

The tests were conducted at room temperature and at 150 and 290°C. Three testing systems were used: two separate 45-kN Instron and one 490-kN MTS testing machine. All unirradiated testing was performed with the Instron systems, and the irradiated testing was performed with the MTS system. The unirradiated specimens were tested at elevated temperature in a bath of water-soluble oil. The irradiated specimens were all tested at room temperature and above in an air furnace. All testing was performed at a crosshead rate of 0.51 mm/min (0.02 in./min), and during

Table 1. Submerged arc weld parameters

HSST weld code	Volts	Current (A)	Postweld heat treatment conditions	
			Temperature (°C)	Time (h)
64W	34	500	600 ± 14	48
65W	α	α	607 ± 14	80
66W	α	α	607 ± 14	48
67W	α	α	α	α

^aNot available.

Source: A. L. Lowe, Jr., "Description of Weld Materials Furnished for Second and Third HSST Irradiation Experiments," BAW-1382, to be published by Babcock and Wilcox, Lynchburg, Va.

Table 2. Mean chemical composition of submerged arc welds

Material	Average composition ^a (wt %)									
	C	Mn	P	S	Si	Cr	Ni	Mo	Cu	V
64W	0.085	1.59	0.014	0.015	0.520	0.092	0.660	0.420	0.350	0.007
	0.070	1.54	0.012	0.014	0.445	0.074	0.600	0.410	0.310	0.006
	0.10	1.64	0.017	0.016	0.600	0.110	0.720	0.430	0.390	0.008
65W	0.080	1.45	0.015	0.015	0.480	0.088	0.597	0.385	0.215	0.006
	0.070	1.42	0.014	0.013	0.450	0.076	0.585	0.370	0.180	0.005
	0.090	1.49	0.017	0.017	0.610	0.100	0.610	0.400	0.250	0.008
66W	0.092	1.63	0.018	0.009	0.540	0.105	0.595	0.400	0.420	0.009
	0.075	1.59	0.017	0.009	0.480	0.090	0.580	0.380	0.350	0.007
	0.110	1.67	0.020	0.010	0.600	0.120	0.610	0.420	0.490	0.012
67W	0.082	1.44	0.011	0.012	0.500	0.089	0.590	0.390	0.265	0.007
	0.070	1.40	0.010	0.012	0.410	0.067	0.580	0.370	0.220	0.005
	0.095	1.48	0.013	0.013	0.590	0.110	0.600	0.410	0.310	0.010

^aNumbers shown below each entry indicate range of composition measurements.

ORNL-DWG 84C-17326

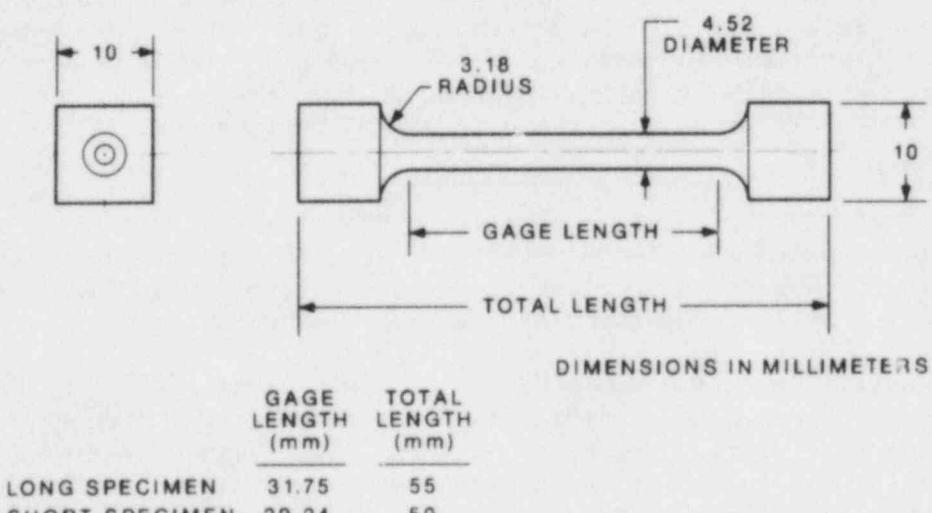


Fig. 1. Tensile specimen configurations used in Third HSST Irradiation Series.

each test crosshead displacement versus load was recorded. The 0.2% offset yield strength was measured from this trace. Errors in yield strength from crosshead displacement (instead of extensometer movement)

were established at less than 3% by use of an extensometer at room temperature. On completion of the test, neck diameter and final length were measured for each specimen. Unirradiated specimens were measured with vernier calipers; irradiated specimens were measured with a digital toolmaker's microscope. The uniform strain was determined from the plastic displacement to maximum load on the load-versus-crosshead-motion trace.

RESULTS AND DISCUSSION

The tensile properties are summarized for both unirradiated materials and irradiated materials in Tables 3 and 4, respectively. Preirradiation strength and ductility values are similar for all four welds, with weld 66W showing only slightly higher strength (10-15%) than the other three welds.

Irradiation to a fluence of $2 \text{ to } 10 \times 10^{22} \text{ neutrons/m}^2$ ($E > 1 \text{ MeV}$) at 250 to 290°C produced a pronounced effect on the strengths of all four welds, as illustrated in Figs. 2 through 5. On these figures second-degree curves are shown for the unirradiated and irradiated strengths. These curves were determined by a least-squares procedure, and the coefficients for each material are listed in Table 5. Using these curve fits, the yield and ultimate strengths were averaged over the temperature range 22 to 288°C (Table 6). As expected, weld 65W has the lowest yield and ultimate strengths after irradiation, because it had the lowest copper level (0.25%). Weld 66W had the highest yield and ultimate strengths after irradiation, because it had the highest copper level (0.42%). The percentage change in strength for weld 66W is deceptively small because it had a relatively high unirradiated strength due to slightly higher C, Mn, and Si levels. Welds 64W and 67W had intermediate levels of copper, resulting in intermediate strength increases. Nickel content in the welds was near 0.6% and did not affect the relative ordering of the tensile strengths. In general, the yield strength for the welds was increased more than was the ultimate strength.

As noted in Table 4, the controls on the irradiation fluence and irradiation temperature were inadequate because of improper capsule design. Table 4 shows that these problems in design resulted in no significant variation in tensile properties at the target fluence.

Irradiation to a fluence of $2 \text{ to } 10 \times 10^{22} \text{ neutrons/m}^2$ ($E > 1 \text{ MeV}$) at 252 to 290°C produced no significant effect on the tensile ductility, as illustrated in Figs. 6 through 9. On these figures first-degree curves are shown for the ductility in the irradiated and unirradiated conditions. These curves were determined by a least-squares procedure; the coefficients for each material are listed in Table 7. Using these curve fits, the total elongation values over the temperature range 22 to 288°C were averaged. These average values, listed in Table 8, reflect the small effect of irradiation on the ductility of all four materials.

Table 3. Tensile properties of unirradiated welds

Specimen	Test temperature (°C)	Yield strength (MPa)	Ultimate strength (MPa)	Uniform strain (%)	Reduction of area (%)	Total elongation ^a (%)
64W10 ^b	27	467	583	9.9	65.8	19.5
11 ^b	27	469	581	9.6	64.5	18.8
12 ^b	151	426	539	9.0	65.5	17.2
13	151	418	533	9.9	67.4	18.9
14 ^b	286	398	547	8.4	60.0	16.0
15 ^b	288	398	549	9.6	52.7	15.8
16 ^b	27	458	575	10.1	64.1	18.4
17 ^b	151	407	519	9.0	66.7	17.4
18 ^b	286	398	533	8.6	51.5	14.4
65W10 ^b	27	461	572	10.1	63.9	19.6
11 ^b	27	460	571	9.5	64.4	17.2
12 ^b	151	425	535	7.7	62.9	15.4
13 ^b	150	428	538	8.0	63.6	15.2
14 ^b	288	423	550	7.5	55.5	13.3
15 ^b	288	414	548	7.8	57.3	14.3
16 ^b	27	451	571	9.5	67.2	17.6
17 ^b	150	416	526	7.4	66.0	15.2
18 ^b	288	398	550	9.3	61.1	16.9
66W1	27	533	639	8.4	63.3	17.1
2	150	507	599	7.2	64.9	14.7
6	287	496	610	6.8	46.3	12.7
7	27	534	639	6.8	63.4	14.8
8	149	506	595	6.2	63.5	13.5
10	288	500	607	6.4	47.0	11.7
67W1	27	445	569	8.2	65.8	16.2
2	27	461	581	8.5	67.7	17.2
3	150	424	538	6.5	67.9	14.3
5	149	429	543	6.5	63.9	13.7
6	288	431	565	7.3	61.0	13.9
7	288	433	567	7.7	55.1	13.8
8	27	479	600	11.4	66.1	20.2
10	148	433	544	7.3	64.6	15.0
11	288	427	554	7.3	57.7	12.8

^aElongation for 31.75-mm gage length; length-to-diameter ratio of 7.^bShort specimens; all others are long specimens.

Table 4. Tensile properties of irradiated welds

Specimen	(10 ²² Fluence neutrons/m ²)	Irradiation temperature (°C)	Test temperature (°C)	Yield strength (MPa)	Ultimate strength (MPa)	Uniform strain (%)	Reduction of area (%)	Total elonga- tion ^a (%)
64W1	4.5	273 ± 11	288	519	640	7.5	39.0	11.9
4 ^b	6.7	281 ± 12	33	610	709	10.0	58.4	17.1
5 ^b	6.7	282 ± 5	288	527	656	8.3	40.4	14.0
6 ^b	2.4	289 ± 1	33	594	688	10.9	56.5	17.1
7 ^b	2.4	290 ± 1	289	525	658	7.2	52.1	12.2
8 ^b	6.4	273 ± 1	149	524	626	7.5	56.5	14.8
65W3	3.8	281 ± 7	151	476	612	9.3	61.3	16.6
4 ^b	7.6	279 ± 13	28	582	676	11.2	63.0	20.2
5 ^b	7.5	284 ± 8	287	507	644	9.3	53.6	16.7
6 ^b	2.0	288 ± 3	288	504	627	8.2	62.1	14.7
7 ^b	2.0	287 ± 9	28	562	662	10.6	57.7	18.6
8 ^b	6.0	268 ± 6	150	493	592	9.1	62.4	17.1
9 ^b	6.0	270 ± 4	288	475	601	8.0	49.5	15.0
66W3	6.4	284 ± 24	149	599	684	6.7	67.4	13.4
4	5.6	284 ± 24	149	603	692	6.8	52.4	13.3
5	5.2	279 ± 13	287	573	683	7.1	50.8	12.8
9	4.0	279 ± 13	34	635	715	6.8	59.3	14.8
11 ^b	8.7	286 ± 12	290	580	683	6.0	42.2	11.2
12 ^b	8.7	281 ± 7	34	671	746	8.0	60.8	18.2
67W4	5.4	282 ± 13	149	566	645	6.7	66.3	13.5
9	4.2	282 ± 12	149	553	655	7.5	60.8	13.9
15 ^b	9.5	261 ± 3	288	519	632	7.1	60.7	13.0
16 ^b	9.5	252 ± 2	288	511	627	7.1	52.7	12.8
17 ^b	1.8	284 ± 3	34	613	691	8.6	61.4	15.4
18 ^b	1.8	236 ± 1	288	529	655	8.0	59.7	13.3

^aElongation for 31.75-mm gage length; length-to-diameter ratio of 7.^bShort specimens; all others are long specimens.

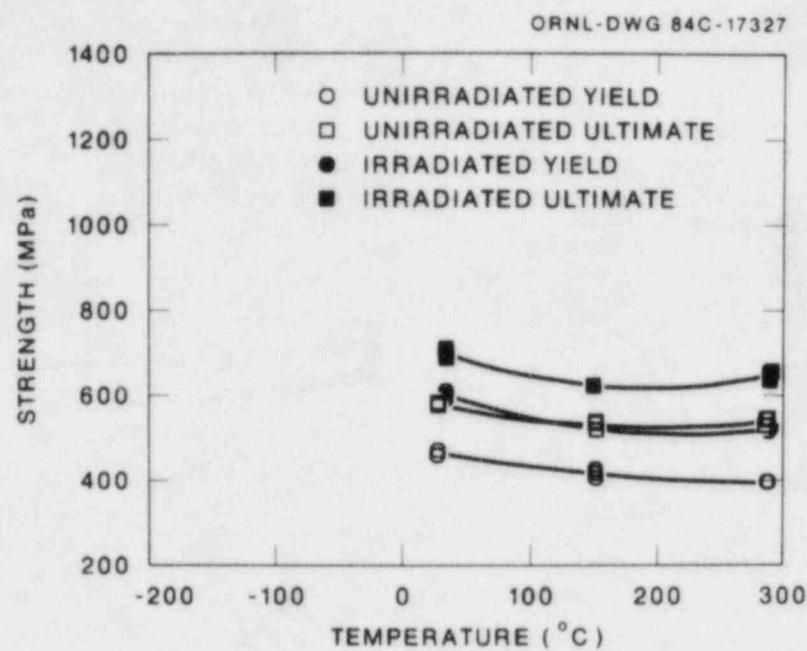


Fig. 2. Tensile strength versus temperature of irradiated and unirradiated weld 64W.

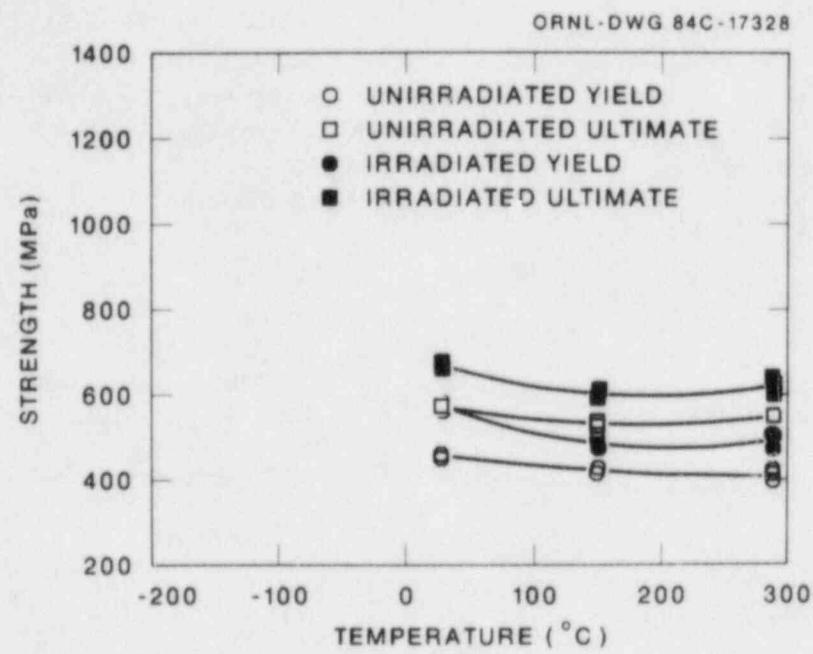


Fig. 3. Tensile strength versus temperature of irradiated and unirradiated weld 65W.

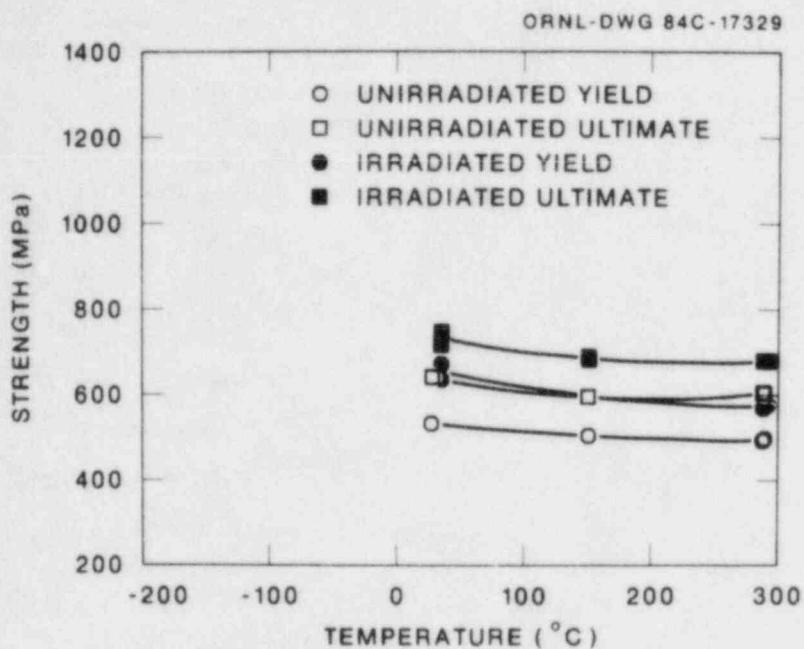


Fig. 4. Tensile strength versus temperature of irradiated and unirradiated weld 66W.

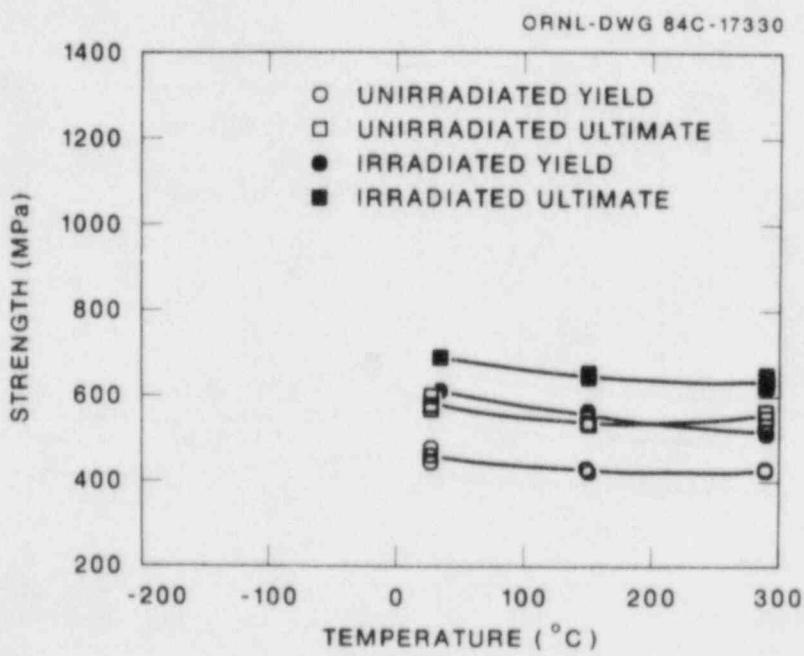


Fig. 5. Tensile strength versus temperature of irradiated and unirradiated weld 67W.

Table 5. Curve fit coefficients for yield and ultimate strengths

Material	Yield strength ^a			Ultimate strength ^a		
	c_0	c_1	c_2	c_0	c_1	c_2
Unirradiated specimens						
64W	479	-0.552	0.00094	598	-0.736	0.00090
65W	468	-0.412	0.00075	586	-0.603	0.00165
66W	542	-0.326	0.00060	655	-0.631	0.00163
67W	473	-0.461	0.00108	600	-0.671	0.00187
Irradiated specimens						
64W	637	-1.150	0.00263	735	-1.202	0.00317
65W	605	-1.258	0.00305	696	-1.029	0.00271
66W	674	-0.653	0.00109	750	-0.609	0.00131
67W	632	-0.594	0.00070	709	-0.551	0.00106

^aCoefficients of $\sigma = c_0 + c_1T + c_2T^2$, with σ in megapascals and T in degrees C.

Table 6. Average tensile strength^a

Material	$\sigma_{Y,U}$ (MPa)	$\sigma_{Y,I}$ (MPa)	$\frac{\sigma_{Y,I} - \sigma_{Y,U}}{\sigma_{Y,U}}\%$	$\sigma_{U,U}$ (MPa)	$\sigma_{U,I}$ (MPa)	$\frac{\sigma_{U,I} - \sigma_{U,U}}{\sigma_{U,U}}\%$
64W	422	537	27	541	644	19
65W	427	501	18	542	590	9
66W	509	608	19	606	695	15
67W	434	561	29	552	655	19

^aWhere $\sigma_{Y,U}$ = average unirradiated yield strength from 22 to 288°C, $\sigma_{Y,I}$ = average irradiated yield strength from 22 to 288°C, $\sigma_{U,U}$ = average unirradiated ultimate strength from 22 to 288°C, and $\sigma_{U,I}$ = average irradiated ultimate strength from 22 to 288°C.

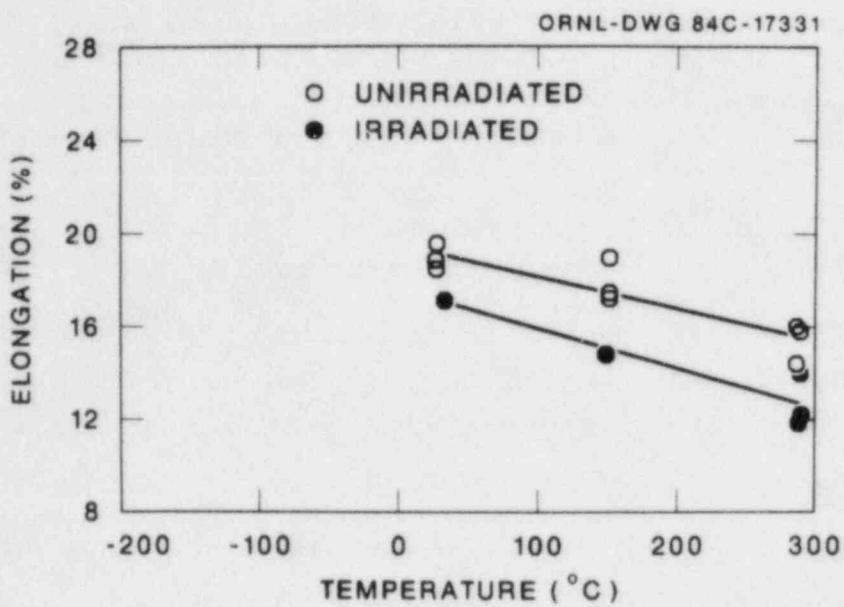


Fig. 6. Total elongation versus temperature of irradiated and unirradiated weld 64W.

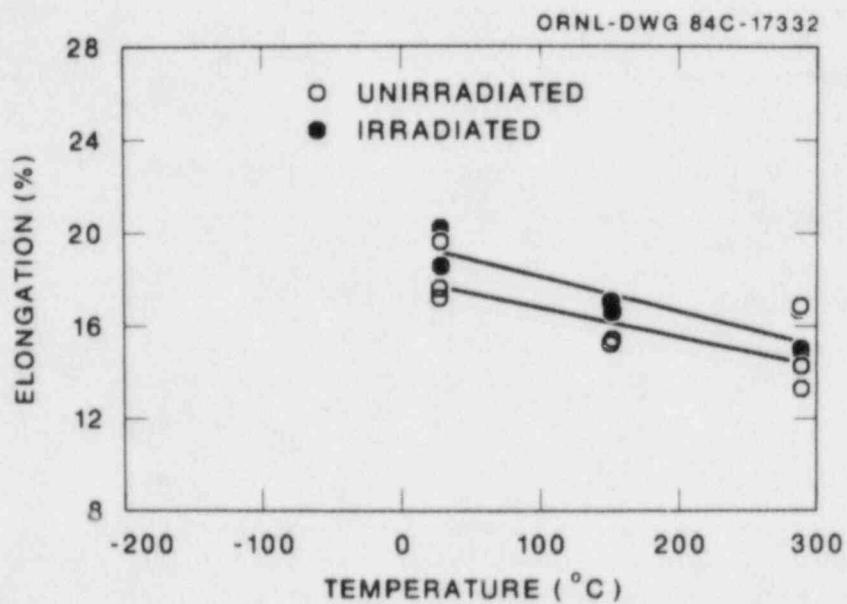


Fig. 7. Total elongation versus temperature of irradiated and unirradiated weld 65W.

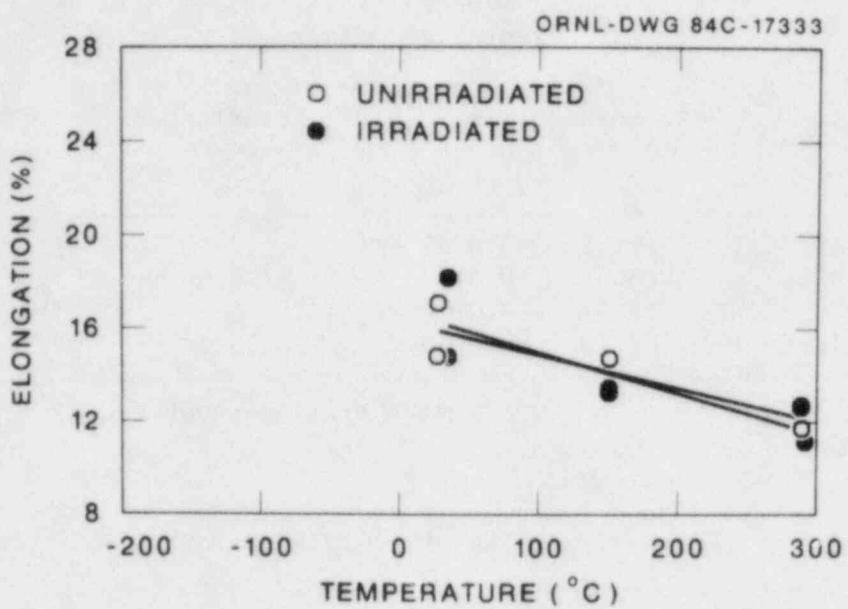


Fig. 8. Total elongation versus temperature of irradiated and unirradiated weld 66W.

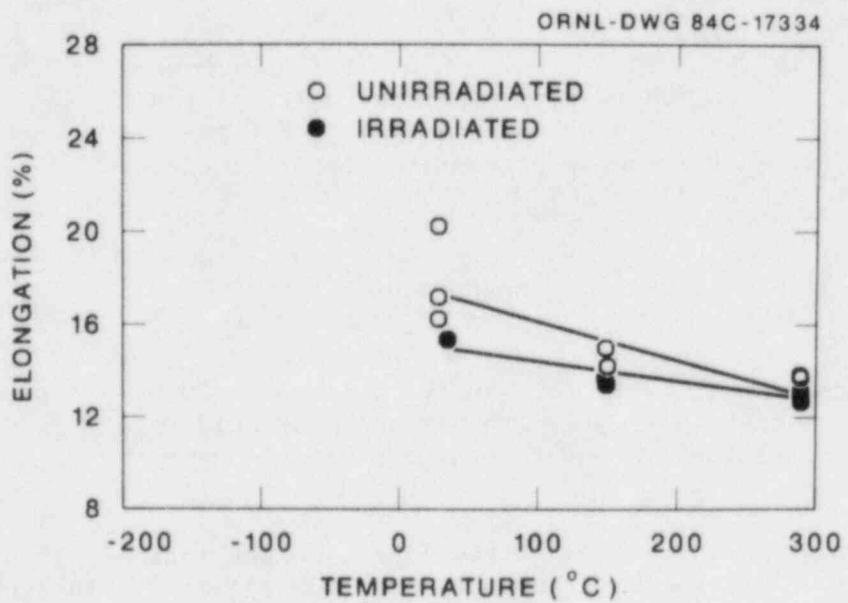


Fig. 9. Total elongation versus temperature of irradiated and unirradiated weld 67W.

Table 7. Curve fit coefficients for total elongation values

Material	Unirradiated; $\epsilon_{T,U}$ (%) ^a		Irradiated; $\epsilon_{T,I}$ (%) ^a	
	c_0	c_1	c_0	c_1
64W	19.48	-0.0135	17.60	-0.0171
65W	18.01	-0.0125	19.56	-0.0148
66W	16.31	-0.0144	16.69	-0.0174
67W	17.78	-0.0165	15.28	-0.0082

^aWhere $\epsilon_T = c_0 + c_1 T$, with ϵ_T in percent and T in degrees C.

Table 8. Average total elongation^a

Material	$\epsilon_{T,U}$ (%)	$\epsilon_{T,I}$ (%)	$\epsilon_{T,I} - \epsilon_{T,U}$ (%)
64W	17	15	-2
65W	16	17	1
66W	14	14	0
67W	15	14	-1

^aWhere $\epsilon_{T,U}$ = average unirradiated total elongation from 22 to 288°C and $\epsilon_{T,I}$ = average irradiated total elongation from 22 to 288°C.

CONCLUSIONS

1. Irradiation to fluences in the range 2 to 10×10^{22} neutrons/m² ($E > 1$ MeV) significantly strengthened all four weld materials; yield strength (18-29%) increases were greater than ultimate strength increases (9-19%).
2. Welds 65W and 66W exhibited less strength increase than did welds 64W and 67W. These differences may be associated with chemical composition variations.
3. Tensile elongation was not affected significantly by irradiation for any of the materials examined.

ACKNOWLEDGMENTS

The author thanks M. Vagins of the U.S. Nuclear Regulatory Commission for supporting this study. The assistance of the Electric Power Research Institute and Babcock and Wilcox Company in providing the weldments is appreciated. The author also thanks F. B. Kam and his co-workers for the dosimetry analyses, J. W. Woods and D. Heatherly for construction and operation of the irradiation capsules, and T. N. Jones for assisting in the tests at ORNL. The author thanks B. D. Keck for typing the draft, Irene Brogden and Sigfred Peterson for editing, and P. S. Rice for preparation of the final manuscript.

REFERENCES

1. R. G. Berggren et al., "Toughness Investigations of Irradiated Materials," pp. 27-49 in *Heavy-Section Steel Technology Program Quarterly Progress Report for July-September 1979*, NUREG/CR-1197, ORNL/NUREG/TM-370, April 1980.
2. A. L. Lowe, Jr., *Description of Weld Materials Furnished for Second and Third HSST Irradiation Experiments*, BAW-1832, to be published by Babcock and Wilcox, Lynchburg, Va.

NUREG/CR-4086
ORNL/TM-9477
Distribution
Category RF

INTERNAL DISTRIBUTION

1-2. Central Research Library	22. R. L. Klueh
3. Document Reference Section	23. E. H. Krieg, Jr.
4-5. Laboratory Records Department	24. A. P. Malinauskas
6. Laboratory Records, ORNL RC	25-29. J. J. McGowan
7. ORNL Patent Section	30. J. G. Merkle
8. B. R. Bass	31. M. K. Miller
9. R. G. Berggren	32. R. K. Nanstad
10. R. H. Bryan	33-35. C. E. Pugh
11. J. W. Bryson	36. P. L. Rittenhouse
12. R. D. Cheverton	37. G. C. Robinson
13. J. M. Corum	38. G. M. Slaughter
14. W. R. Corwin	39. R. W. Swindeman
15. D. M. Eissenberg	40. K. R. Thoms
16. I. F. Federer	41-43. P. T. Thornton
17. G. M. Goodwin	44. H. E. Trammell
18. H. W. Hoffman	45. J. M. Vitek
19. J. A. Horak	46. G. D. Whitman
20. S. K. Iskander	47. F. W. Wiffen
21. F. B. K. Kam	

EXTERNAL DISTRIBUTION

48-49. NUCLEAR REGULATORY COMMISSION, Division of Engineering Technology, Washington, DC 20555

C. Z. Serpan
M. Vagins

50. DOE, OAK RIDGE OPERATIONS OFFICE, P.O. Box E, Oak Ridge, TN 37831

Office of Assistant Manager for Energy Research and
Development

51-52. DOE, TECHNICAL INFORMATION CENTER, Office of Information Services,
P.O. Box 62, Oak Ridge, TN 37831

53-328. For Distribution Category RF (10-NTIS)

NRC FORM 335 <small>111-811</small> U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET		1. REPORT NUMBER (Assigned by DDCI) NUREG/CR-4086 ORNL/TM-9477				
4. TITLE AND SUBTITLE (Add Volume No., if appropriate) Tensile Properties of Irradiated Nuclear Grade Pressure Vessel Welds for the Third HSST Irradiation Series		2. (Leave blank)				
7. AUTHOR(S) J. J. McGowan		3. RECIPIENT'S ACCESSION NO.				
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Oak Ridge National Laboratory P.O. Box X Oak Ridge, Tennessee 37831		5. DATE REPORT COMPLETED <table border="0"> <tr> <td>MONTH</td> <td>YEAR</td> </tr> <tr> <td>February</td> <td>1985</td> </tr> </table>	MONTH	YEAR	February	1985
MONTH	YEAR					
February	1985					
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Division of Metals and Ceramics Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555		6. (Leave blank)				
13. TYPE OF REPORT Topical		7. (Leave blank)				
15. SUPPLEMENTARY NOTES		8. (Leave blank)				
16. ABSTRACT (200 words or less) <p>The Heavy Section Steel Technology (HSST) Program conducted a series of experiments to investigate the effect of neutron irradiation on the fracture toughness of nuclear pressure vessel materials. Four welds of A 508 class 2 steel were examined in this Third HSST Irradiation Series. The welds were fabricated according to "early" (pre-1972) light-water reactor weld practice (i.e., copper-coated electrodes). As part of this study, tensile properties were measured after irradiation to 2 to 10×10^{22} neutrons/m² ($E > 1$ MeV) at temperatures between 250 and 290°C. Strength properties of all four welds increased with exposure to irradiation. Yield strength was more sensitive to irradiation than was ultimate strength. Tensile ductility was not affected significantly by exposure to irradiation.</p>		10. PROJECT/TASK/WORK UNIT NO. R0119				
17. KEY WORDS AND DOCUMENT ANALYSIS		17a. DESCRIPTORS				
17b. IDENTIFIED OPEN ENDED TERMS						
18. AVAILABILITY STATEMENT Unlimited		19. SECURITY CLASS (This report) Unclassified				
		20. SECURITY CLASS (This page) Unclassified				
		21. NO. OF PAGES 5				
		22. PRICE S				

120555078877 1 IAN1RF
US NRC
ADM-DIV OF TIDC
POLICY & PUB MGT BR-PDR NUREG
W-501
WASHINGTON DC 20555