Thermal Modeling and Phenomena Identification and Ranking Tables (PIRTs)

Fuel/Cladding Performance Decay Heat Modeling & Uncertainty Thermal Modeling & Uncertainty

Aladar A. Csontos, Ph.D

January 22, 2020

NRC Workshop on Spent Fuel Performance Margins

✓ in f www.epri.com

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Benefits of Improved Thermal Models

- Occupational dose benefits:
 - Temporary shielding restrictions (blankets)
 - Time limits to keep mating device door open
- Dry storage operational benefits:
 - Storing hotter fuel sooner
 - More flexible SNF loadouts
 - Drying time limits and time to boil
 - Supplemental cooling requirements
 - Vent surveillance requirements
 - Fuel and canister degradation mechanisms
 - Risk informing aging management
- Reactor operations/safety benefits:
 - Reduced SFP temperatures/time-to-boil
- Accelerate decommissioning:
 - Pool to pad sooner (active to passive cooling)
- Informs repository loading footprint

ESCP Thermal Modeling Overview

Canister Integrity/Aging Management Subcommittee Chair: Jeremy Renshaw (EPRI)

> Fuel Assembly Subcommittee Chair: Mike Billone (ANL) / Vice-Chair: Sven Bader (Areva)

Thermal Modeling Subcommittee Chair: Al Csontos (EPRI) Vice-Chair: Sam Durbin (SNL)

International Subcommittee David Hambley (NNL) Maik Stuke (GRS), Woo-seok Choi (KAERI), Brady Hanson (PNNL)

www.epri.com

© 2020 Electric Power Research Institute, Inc. All rights reserved.

ESCP Steering Committee

<u> Chair: Hatice Akkurt (EPRI)</u>

Phase II Blind Benchmark to HBU Demo Cask Overview

- Blind thermal modeling benchmark to actual measurements:
 - HBU Demonstration Project
- Phase II Results:
 - Reasonable surface temperatures
 - Reasonable PCT axial distribution
 - Best-estimate PCT biased high due to limiting design licensing basis inputs and assumptions
- Since 2017, substantial R&D on SNF integrity:
 - Temperatures and pressures lower than originally thought
 - Cladding more robust and less susceptible to aging

PIRT Objectives, Scope, and Goals

- PIRT Product Objectives:
 - Provide an independent, objective, and technically defensible reference from a committee of recognized subject matter experts
 - Provide technical insights for developing margin assessments
- PIRT Scope:
 - Thermal & Decay Heat Modeling / Fuel Performance Nexus (PCT Limit)
- PIRT Panel Meetings:
 - Fuels/Cladding Performance Team: 10/14-17/19
 - Thermal and Decay Heat Modeling Teams: 10/22-24/19
- Schedule:
 - Draft Final PIRT Reports:
 - Final PIRT Reports:

March 2020 June 2020

© 2020 Electric Power Research Institute, Inc. All rights reserved.

NRC PIRT Process Steps

- 1. Define issue needing PIRT
- 2. Define specific objectives
- 3. Determine scenarios
- 4. Establish evaluation criteria (figures of merit)
- 5. Identify, compile, and review current data
- 6. Identify phenomena
- 7. Rank importance and provide rationale
- 8. Assess knowledge level (i.e., uncertainty)
- 9. Document results

Thinking Outside the Box

- Most panelists thought outside the box, but, within the operational and practical licensing constraints provided by the observers:
 - Guidance written in pencil and regulations written in pen
 - Input from observers for operational and practical considerations
 - Provided opportunities for reducing uncertainty and improving margins
- Generic recommendations:
 - Follow-on PIRT/workshop to clarify the definition of "gross rupture"
 - Hold a synthesis PIRT after the 3 PIRTs to address the issue of cumulative impact of overlapping bounding inputs, assumptions, and uncertainties through the process

Fuel/Cladding Performance: Phenomena

- Experts identified 16 degradation phenomena to be considered
- Reviewed these potential degradation mechanisms stand-alone
- Ranked each phenomena by
 - Credible/Non-credible
 - Knowledge
 - Confidence
 - Significance

Fuel/Cladding Degradation Phenomena

Low-temperature creep

Thermal creep

Diffusion-controlled cavity growth

Delayed hydride cracking

Thermal fatigue

Mechanical fatigue

Radiation embrittlement

Hydride reorientation / Ductile-to-brittle transition

PCI / Stress corrosion cracking

Annealing

H₂ migration

Mechanical overload

Oxidation of UO₂

Oxidation of the Cladding – ID

Oxidation of the Cladding – OD

Helium pressurization

Fuel/Cladding Performance: Key Takeaways

- Expert panel agrees there is no cliff-edge effect associated with the 400°C limit *"a continuum"* for fuel/cladding performance:
 - Onset of fuel failure is not abrupt
 - Exceeding 400°C does not mean that a large number of rods will fail simultaneously
- Identified knowledge gaps to go beyond the 400°C limit
- Beyond 400°C, there is a competition between phenomena (synergetic, competitive and aggravating effects) that should be further explored
- An opportunity exists for a graded approach
- Only 2 phenomena identified as having a medium significance:
 - Hydride reorientation with loss of ductility
 - Mechanical overload
- Only 1 phenomenon identified as having a high significance:
 - UO₂ oxidation in fuel with pre-existing failures (hairline cracks/pinholes)

Fuel/Cladding Performance: Opportunities

- Relax or eliminate the thermal cycling limits in ISG-11 Rev. 3:
 65°C and 10 cycles
- Average temperature on a percentage of cladding instead of PCT for a single point on a single rod
- Use of hoop stress analysis as a secondary justification when approaching the 400°C limit for HBU fuel
- Potential for graded approach
 - Different limits for different cladding materials
 - Possible different CoC criteria for intact vs. undamaged fuel

Decay Heat Modeling: Summary

- RG 3.54 R1, released in 1999, valid up to 45 GWD/MTU:
 - Significant overestimation, compared to decay heat
- RG 3.54 R2, released 2018, burnup range extended:
 - Improvement compared to R1 but still overestimation
- Cask Loader:
 - Extended Regulatory Guide significant overestimation compared to ORIGEN
 - Version 3 offers ORIGEN as alternative option
- ORIGEN:
 - Potential for very accurate estimation, provided very detailed modeling & specific cross section generation

- Parameters Important for Decay Heat Calculations
 - Operation History
 - Burnup (axial, radial, assembly average)
 - Number of cycles, discharge time
 - Assembly Design
 - Enrichment
 - Dimensions
 - Assembly Materials
 - UO₂ density
 - Cladding material
 - Burnable absorber; Control rod history
 - Reactor environment
 - Moderator density
 - Temperature (Fuel, clad, moderator)
 - Boron concentration (PWR)
 - Nuclear Data
 - Cross sections
 - Decay constants
 - Fission yields

Decay Heat PIRT: Key Take-aways

- Regulatory Guide 3.54 R1 and R2 overestimate decay heat
- Decay heat measurements cover a range for validation purposes
- When ORIGEN is used, decay heat can be estimated within few percentages, assuming:
 - User generates specific cross section libraries
 - Performs detailed modeling
 - The impact of pre-generated libraries is being evaluated

Opportunities

- Provide Thermal PIRT with several axial decay heat profiles, along with corresponding uncertainties
 - To determine sensitivity to axial decay heat profile variation
- Evaluation of impact of detailed vs. simplified analysis on accuracy and uncertainty
 - Generation of specific cross sections versus impact of using predefined libraries
- Performing decay heat measurements for higher burnup and shorter cooling times
 - Improve validation space

Thermal Modeling: Phenomena/Parameters Considered

Physics Eqns

External (ventilation

Flow, turbulence,

heat transfer

correlation

Internal thermal-fluid

Explicit (pin-by-pin

Subchannel code

(porous media)

air) convection

Boundary

modeling

CFD)

K-effective

- Geometry
 - General sizing and tolerances
 - Gap thickness
- Boundary Conds
 - Ambient air temp
 - Wind vector
 - Ground temperature and ground/pad thermal resistance
 - Atmospheric pressure
 - Insolation
 - Pool/cooling jacket temperature
 - Fluid pressurization (vacuum for short term operations)

- <u>Material Prop. and</u> Source Term
 - Solid properties (including temperature
 - dependence) Fluid properties
 - (equations of state)
 - Surface radiative properties
 - Decay heat
- Thermal radiation
 Gap heat transfer model
 - Contact conductance

- Numerical Soln
 - Space discretization (mesh)
 - Time discretization

- Other
 - Materials degradation
 - Phase change
 - Cask interactions
 - Individual modeler variability

Thermal Modeling: Opportunities

	Storage bolted	Storage vert vent	Storage horiz vent	Short term ops	Transport
Gap Thickness	x		Х		Х
Ambient Air Temperature	×	×	х	×	
Insolation	х	х	Х		
Pool/Cooling Jacket Temp				×	
Fluid Pressurization				×	
Fluid Properties				x	
Decay Heat	×	x	х	×	x
External (Ventilation Air) Convection: Flow/Turbulence/Heat Transfer		X	Х		
Porous Media	×	×		×	
Contact Conductance			Х		х
Mesh	×	×	х	×	x
Materials Degradation					х
Individual Modeler Variability	×	х	Х	×	х

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Thermal Modeling: Opportunities

- Prioritization of Opportunities for Reducing Uncertainty:
 - Decay Heat: accurate methods exist, but, may not be practical
 - Ambient Temperature: site/load specific possible with high confidence
 - Mesh Refinement: modified GCI graded approach
 - Short Term Operations: most operational limits driven by loading and/or drying temperatures
- Technical Specifications of the Future:
 - Cask Load Specific Calculations: Heat Load and/or Site Specific
 - Full Spectrum Temperature Limits: Temperature/cladding stress calcs and/or percentage of cladding surface area vs. PCT at a singular point
 - Sensors: Online Monitoring (Licensing vs. Inspection)

Thermal/Fuel Nexus: Possible Metrics Worth Exploring

Fuels PIRT:

- Average temperature on a percentage of cladding instead of PCT for a single point on a single rod
- Use of hoop stress analysis (similar for low burnup fuel) as a secondary justification when approaching the 400°C limit
- Potential for graded approach
 - Different limits for different cladding materials
 - Possible different CoC criteria for intact vs. undamaged fuel

Thermal Modeling PIRT:

- Average temperature on a percentage of cladding can be modeled and estimated similarly to PCT currently
- Hoop stress analysis:
 - Can provide additional input for the thermal/fuel performance nexus review
- Potential:
 - Sensors for real-time monitoring and alternative to conventional licensing approach
 - Graded approach for GCI

Thermal Modeling/Fuel Performance Regulatory Nexus

Near Term (2 Year): Vendor Amendments

PIRT/Gap Analysis:

- • Technical Gaps:
- Thermal Model Inputs
- Decay Heat Models
- - Fuel Performance Nexus
- • PIRT Reports Q2 2020
- • Examine approaches for speedier utility impacts
- Implement through vendor amendments and/or 72.48
- Coordination with Spent Fuel Performance Margins Effort

Mid Term (2-3 Years): ISG-11 R3 PCT Limits

Follow-on PIRTs:

- Additional topics as identified by the teams
- Provide defensible technical basis for guidance updates

Regulatory Vehicles:

- NRC Reg Guide or Topical Report for NRC Review
- Vendor amendments

Long Term: Topical Report

Topical Report for NRC Review:

 Establish generic approach for use of actual data vs. design licensing basis approach for thermal and other modeling

Summary

High Burnup Demo: An Opportunity

- Early value for cask Loaded in 2017
- Data used for blind benchmarking of models
- Licensing biases identified in thermal models

PIRTs

- Thermal/Decay Heat Modeling and Fuel/Cladding Performance
- Significantly reduced concerns with HBU fuel/cladding performance
- Opportunities exist in Thermal Modeling/Fuel Performance Nexus

Next Steps

- PIRT as a vehicle for regulatory considerations
- PIRT Reports expected publication Q2 2020
- Cooperation to NRC/NEI Spent Fuel Performance Margins Efforts

Together...Shaping the Future of Electricity

www.epri.com

© 2020 Electric Power Research Institute, Inc. All rights reserved.

