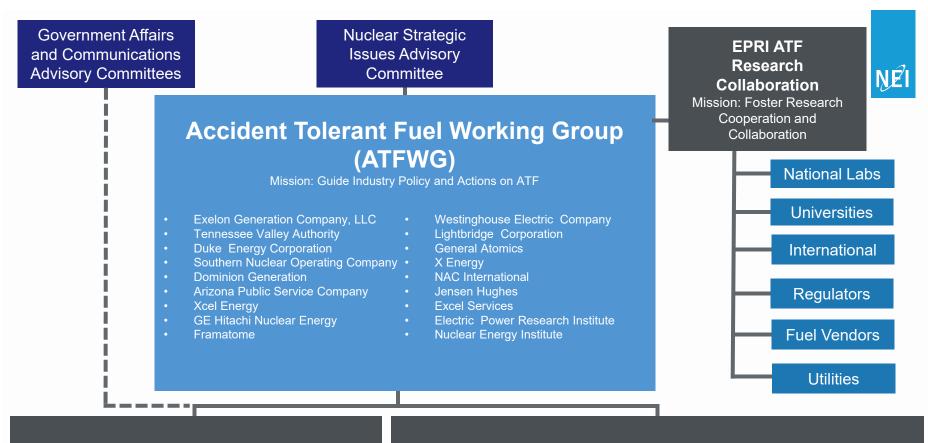
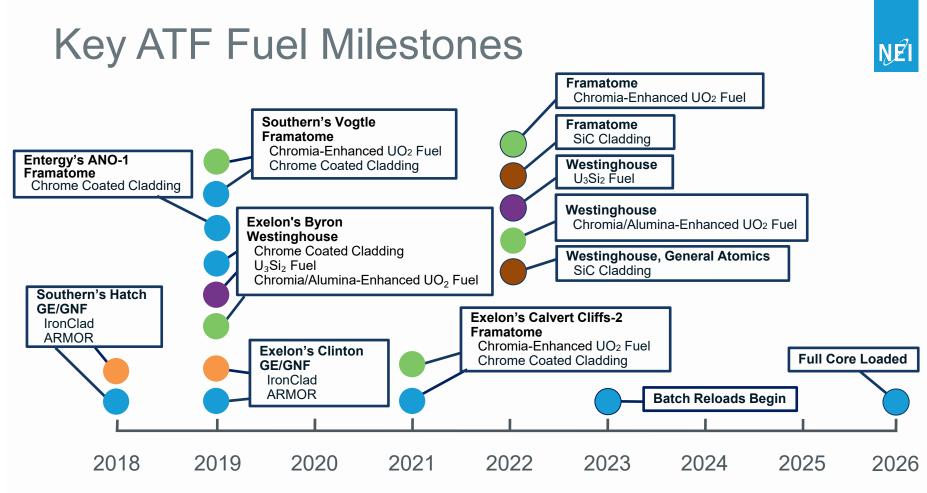
Fuel Burnup and Enrichment Appendix

NRC Project Plan

September 12nd, 2019


Ben Holtzman, NEI

©2019 Nuclear Energy Institute

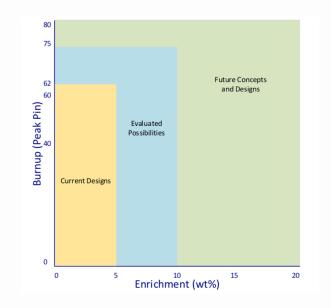

ATF External Affairs Task Force

Funding and Communications


ATF Fuel Licensing and Safety Benefits Task Force

Fuel Qualification to Deployment, and Realization of Regulatory Benefits & Enrichment

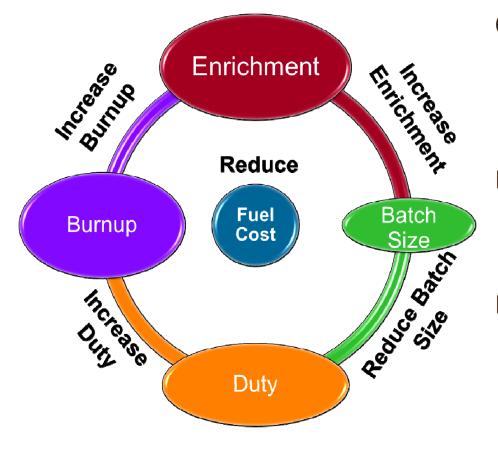
©2019 Nuclear Energy Institute 2


^{©2019} Nuclear Energy Institute 3

Realizing Increased Burnup

- Utilities and Vendors are engaged in discussions to accelerate the • licensing of batch loads of ATF with increased enrichment by 2023
 - Pilot Plants to demonstrate licensing pathway •

Pliot Plant Program			
	Today	2023	2026
Enrichment (wt.%)	<5%	>5%	~6-7.5%
Burnup (GWD/MTU)	62	~66-68	~66-68 (non-ATF) ~75 (ATF)



Dilat Dlant Dragram

©2019 Nuclear Energy Institute 5

NÊI

Fuel Burnup/Enrichment and ATF Impact

Coated Clad Fuel chemistry limits Lower Corrosion CRUD impact uncertain Cladding Balloon/Burst Size Improved Doped Pellets Fission Product distribution Fuel Fragmentation, Redistribution and Dispersion Improved Thermal Margins Support higher duty operation to higher burnup

Increased Burnup and Enrichment Value Overview,

60-year Operating Life

- Potential Fuel Savings
 - \$2.5B industry, \$1.46 M/year/reactor
- Potential Dry Cask Savings up to \$1B
 - 500 fewer dry casks

80-year Operating Life

- Potential Fuel Savings
 - \$9.4B industry, \$2.28 M/year/reactor
- Potential Dry Cask Savings up to \$3.5B
 - 1770 fewer dry casks

Other Benefits

- Longer fuel cycles for high power PWRs
 - Currently 20% can operate on 24 month fuel cycles
 - Viable for all PWRs
- All BWR can currently operate on 24 month fuel cycles
- Reduce fuel cycle environmental impact
- Pave the way for advanced reactor which typically require higher enrichment

1- 2018 Feasibility Study and Evaluation for informing Fuel Enrichment and Burnup Limits, 3002014625

© 2019 Electric Power Research Institute, Inc. All rights reserved

Infrastructure Changes

- Fuel enrichment and fabrication facility upgrades
- New UF₆ shipping canister system
- Fuel Assembly and UO₂ shipping container upgrades
- Site new fuel and spent fuel pool re-analysis
- New BWR fuel design (optional)
- New fuel mechanical design topicals
- New dry storage canister system

Multi-phase Implementation

- Pilot Plant Program Initial Reloads 2023
 - Infrastructure Changes to support 2-3 plants
 - Enrichment Limit
 - No Burst Burnup Limit
 - Modified assembly designs and licensing
 - Vendor specific submittals
- Full Burnup Credit by 2026
 - Infrastructure Changes to support fleet
 - Technical Challenges
 - Fuel Fragmentation Relocation and Dispersal
 - Decay Heat Models
 - Accident Source Term
 - Severe Accident Models

Key Technical Challenges

- Moderate Burnup Extension
 - Increase from 62 GWD/MTU to 67 GWD/MTU
 - No-burst criteria
- High Burnup Extension
 - Collaborations between EPRI, USNRC and USDOE as well as through OECD-NEA
 - Increase from 62 GWD/MTU to 75 GWD/MTU
 - Fuel fragmentation/relocation/dispersal issue (particularly, during LOCA)
 - Advanced Modeling and Simulation
 - Support Treat testing and extension to other conditions
 - ATR preconditioning/TREAT LOCA Test using nuclear heat source
 - Impact of partial dispersal
 - Testing for ATF coated cladding, additive pellets under consideration

Industry Initial Thoughts on Appendix

- Burnup and Enrichment have Distinct and Unique challenges
 - Clarity of topic
- Intent, Scope, and Schedule of PIRTs
 - In-reactor phenomena and transportation mentioned in appendix
 - Industry has suggestions for improvement on the PIRT process
- Industry expects to qualify for the categorical exclusion for the Generic Environmental Impact Statement

Technical Concerns on Appendix

ŊÉI

12

- Challenges for Transportation and Storage of Spent Fuel
 - The text indicates that there is a need for experimental confirmation for whether an unknown age-related phenomena impact the spent fuel during storage and transport after storage.
- The NRC appendix proposes changes to the criticality acceptance criteria.
 - Industry believes that the criticality uncertainty can accommodate the uncertainty associated with the benchmark size.
- There is inconsistency in the appendix for how to treat PRA updates.
 - Industry believes that any update associated from increased burnup and enrichment would be addressed through the normal PRA update process
- Task 1 does not specifically discuss options for no-burst or limited dispersal.

Questions

© 2018 NEL All rights reserved

©2019 Nuclear Energy Institute 13