

Agenda

- Introduction
- Purpose of meeting
- Scope of Project
- Qualitative Assessment Overview
- System Architecture
- Failure Modes and Effects
- Design Attributes
- Quality of the Design Process
- Operating Experience
- Conclusion

Purpose of Meeting

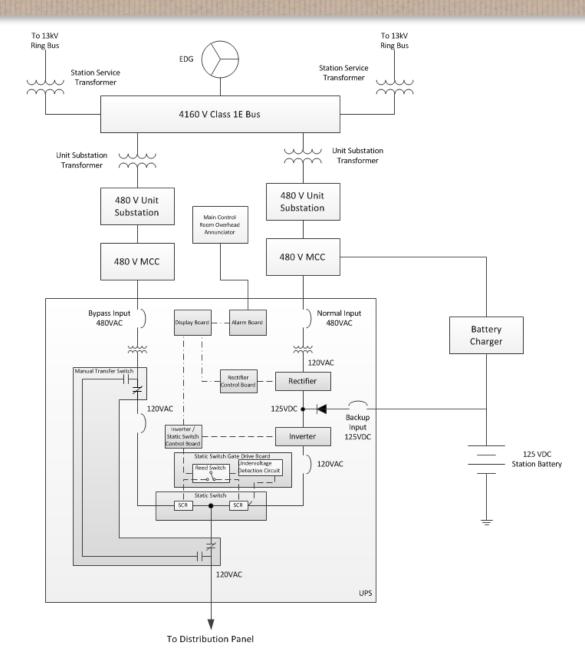
- Hope Creek plans to install Ametek NDPP Class 1E digital Uninterruptible Power Supply (UPS) systems under a 10 CFR 50.59 evaluation
- A qualitative assessment was prepared using the criteria described in Regulatory Information Summary (RIS) 2002-22 Supplement 1
- This meeting seeks to inform NRC staff of the results of the qualitative assessment
 - Application of RIS guidance
 - Technical approach to addressing design
 - Conclusion that the likelihood of failure is <u>sufficiently low</u>

Scope of Project

- Hope Creek has 8 safety related UPS systems in four safety channels
 - Two UPS systems per channel
 - One UPS for Bailey Logic system (Main Control Room Interface)
 - One UPS for Emergency Core Cooling System functions
 - Safety Function: Supply 120VAC power to downstream loads
- All 8 systems will be replaced with Ametek NDPP UPS systems
 - System replacement will be 1 channel (2 UPS's) per outage
 - First installation scheduled for Spring 2021

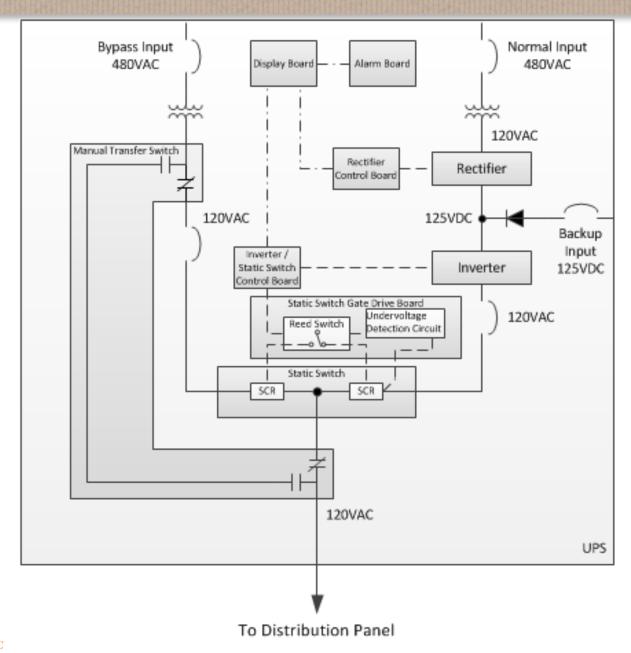
Qualitative Assessment Overview

- Application of guidance under RIS 2002-22, Supplement 1
- Qualitative assessment & failure analysis of new design
 - Review focused on digital elements of the new UPS
 - Develop application-specific Failure Modes and Effects Analysis (FMEA) for digital elements the UPS
 - Identification of design attributes that serve to prevent or limit failures
 - Assessment of software design development, life cycle and quality assurance
 - Factory visit and thread sample of design documents
 - Review of Operating Experience (OE) from non-safety installations
 - Assessment of nuclear design against non-nuclear industrial models provided by Ametek



System Architecture

- Double-Conversion UPS System
- Three inputs Normal 480 VAC, Bypass 480 VAC, Backup 125 VDC (Batteries)
- Single 120 VAC Output
- Major components
 - Rectifier
 - Inverter
 - Static Switch
 - Regulating transformer (no digital content)
- Normal 480 VAC feed transformed to 120 VAC then rectified to 125 VDC
- 125 VDC is diode auctioneered with emergency 125 VDC from batteries
- 125 VDC bus feeds inverter which converts to 120 VAC
- Upon loss of inverter static transfer switch swaps to alternate 480 VAC feed via regulating transformer


System Architecture

7

System Architecture

Failure Modes of New UPS Design

Single Random Hardware Failure

 Failure modes of the new digital UPS are bounded by failure analysis in the Hope Creek Updated Final Safety Analysis Report (UFSAR)

Loss of Power

- Effects of upstream power loss are identical to existing UPS
- Does not cause a failure of the safety function

Systematic Failure of All UPS's Due to a Design Defect

- Evaluates postulated failure modes of each of the four controllers (Alarm, Rectifier, Display, Inverter)
- Provides justification that failure modes have no effect on safety function, or are of sufficiently low likelihood
- Determination of low likelihood based on design attributes, quality, and operating experience per Section 3 of RIS 2002-22 Supplement 1
- Design attributes evaluated using supplemental guidance from EPRI 3002005326 – Methods for Assuring Safety and Dependability when Applying Digital Instrumentation and Control Systems

Failure Effects

Single Random Hardware Failure

- Failure effects evaluation assumes loss of 120VAC output
- No change to failure effects described in the UFSAR

Systematic Failure Due to a Design Defect

- Common Cause Failure (CCF) likelihood determined to be sufficiently low per results of qualitative assessment
- Worst case CCF requires unlikely sequence of events
 - Complete loss of UPS function from a CCF can only happen when the 4kV safety buses are de-energized
 - 13-second window during diesel start and load sequence after LOP
- CCF coping ability assessed despite 'sufficiently low' conclusion
 - Loss of output evaluated concurrent with a LOP (during 13-second diesel start time)
 - Recoverable via manual starting of EDGs

Design Attributes

Internal diversity

An analog circuit can force a transfer to bypass on a gross failure of the inverter

Limited concurrent triggers

 Loss of upstream AC on a Loss of Offsite Power is the only identified common trigger

Segmentation

- Internal communications provide functional segmentation between subsystems
- Safety function processor is isolated from internal communications complies with DI&C ISG-04 staff position

Design Attributes

Self-test and diagnostics

- Diagnostics cover initialization data, runtime checks of program memory and RAM, and timeouts for data link activity
- Redundant communications messages
- Watchdog timer monitors completion of inverter control function code

Diverse indication of failure

 Independent transducers monitor battery voltage, output voltage and output current, and provide alarms in the main control room

Extensively tested safety function processor

- Single loop operating system w/ fixed interval interrupt routine
- Invariant execution
- Programmed in Assembly, during testing register values are inspected to ensure correct execution

Quality of the Design Process

Sargent & Lundy Review

- S&L, on behalf of PSEG, performed reviews of the Ametek software development processes
- S&L concluded that Ametek has an effective V&V process
- Review of phase summary and discrepancy reports showed effective identification and correction of issues

NRC Inspection Report 99901427/2017-201 [ML17135A403]

- Included a review of Ametek's software development lifecycle
 - Later phases were in draft status
- Concluded lifecycle activities satisfied the regulatory requirements of Appendix B
- No findings were identified for digital I&C design control

Operating Experience

- Ametek has extensive industrial and non-1E nuclear operating history on the DPP line of products
 - Ametek service database was reviewed
 - Hope Creek and Salem operating history of the DPP inverters was reviewed
- Zero inverter failures identified that were attributed to a software defect
- Applicability to the NDPP
 - NDPP is an evolutionary development from the DPP industrial product line
 - Removal of external digital communications and parallel output functions
 - Addition of runtime memory diagnostics and serial link redundant messaging

Conclusion

- Conclusion is that the likelihood of systematic failure due to a design defect is sufficiently low
 - Evaluated per the criteria from Section 3 of RIS 2002-22, Supplement 1
- Supplemental guidance via preventive measures in EPRI 3002005326
 - Reduce the likelihood of a CCF caused by an operating system defect
 - Table A33-P3 Demonstrate that a defect will not be activated when the SSC is needed to perform its required function
 - Table A33-P1 Minimize potential for concurrent activating conditions, demonstrate an activated defect is self-announcing, and reduce defect potential through documented software quality.
 - Reduce the likelihood of a CCF caused by data communications
 - Table A39-P4 Reduce the likelihood of a communication interface design defect

Hope Creek Vital Bus Inverter Replacement

Questions?

