

Overview of Halden Reactor LOCA experiments (with emphasis on fuel fragmentation) and plans

Barbara Oberländer / Wolfgang Wiesenack IFE / OECD-HRP – Norway

Presentation at the NRC public meeting on fuel fragmentation, relocation and dispersal under Loss-of-Coolant Accident (LOCA) conditions March 13-14, 2014

HRP IFA-650 LOCA test series – Objectives –

Covered by this presentation:

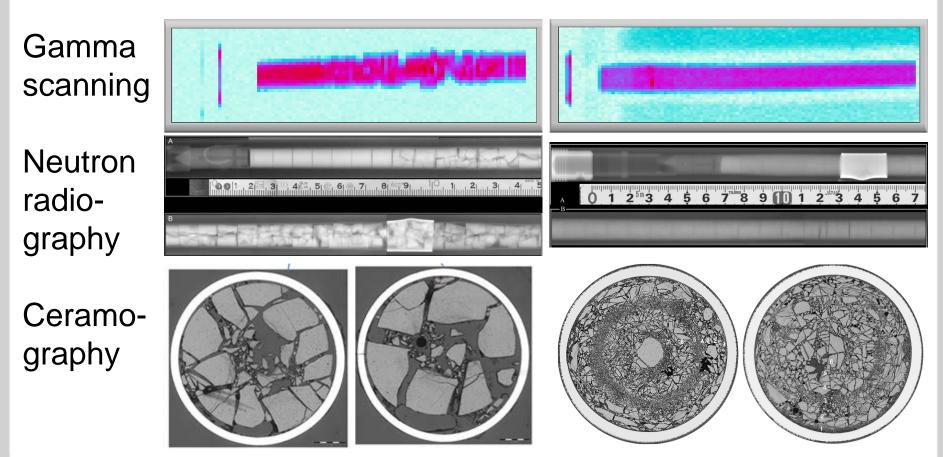
- Fuel fragmentation, relocation and dispersal
 - Tests have concentrated on these issues after IFA-650.4 which showed considerable fuel fragmentation and dispersal

Not addressed in this presentation:

- Cladding overheating and oxidation due to fuel relocation
- Secondary transient hydriding near the burst region
- Release of iodine and caesium

Tests carried out

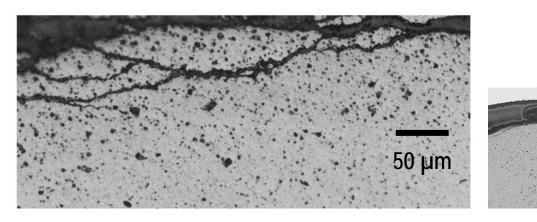
	1,2	3	4	5	6	7	8	9	10	11	12	13	14		
Target PCT (°C)	-	800	800	1100	850	1100		1100	850	1000	850	870	850		
Fuel type	king)	PWR	PWR	PWR	VVER	BWR		PWR	PWR	VVER	BWR	BWR	BWR		
Rod ident.	benchmarking)	V1-515/3	14D/7	V1-515/7	J13	AEB- 070-E4		14D/3	F08/3	J13/3	AEB 072-E4	AEB 072-4C	AEB 072-J9		
Span no.	ber	2-3	5-6	5-6		3	sh fuel	2-3	3		3				
Fuel length (cm)	code	48	48	48	48	47	fre	48	44	48	38	38	36		
Cycles	for	6	7	6	4	3	with	7	6	4	5	7	7		
Burnup (MWd/kgU)	ioning, fresh fuel (us	<mark>81.9</mark>	92.3	83.4	<mark>55.5</mark>	44.3	test	<mark>89.9</mark>	61.0	<u>56.0</u>	72.3	74.1	70.8		
Oxide thickness (µm)			18-27	10	65	~5	<10		7-8	20-30	~5	40	20		
Hydrogen, ppm			h fu∈	250	50	<mark>650</mark>	100	44	check-out	<mark>30</mark>	<u>150-220</u>	100	300	300	
Cladding			Zry-4/ 1.47%Sn		Zry-4/ 1.47%Sn	E110	LK3/L	stem	Zry-4/ 1.47%Sn	Zry-4	E110	LK3/L	LK3/L	LK3/L	
D _{out} /thickness (mm)		10.75/ 0.725	10.75/ 0.725	10.75/ 0.725	9.13/ 0.68	9.62/ 0.63	Sy	10.75/ 0.725		9.13/ 0.68	9.62/ 0.63	9.62/ 0.63	9.62/ 0.63		
Liner (µm)		150	100	150	No	Yes	Ī	100	No	No	Yes	Yes	Yes		
Heat treatment	Ō	SRA	SRA	SRA	stand.	stand.		SRA	SRA	stand.	stand.	stand.	stand.		
pressure (bar at RT)		40	40	40	30	6		40	40	30	20	20	20		


= important test parameters

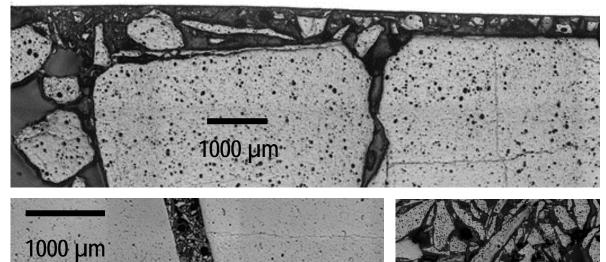
How fuel fragmentation is observed

Mainly coarse fragments

Mainly fine fragments



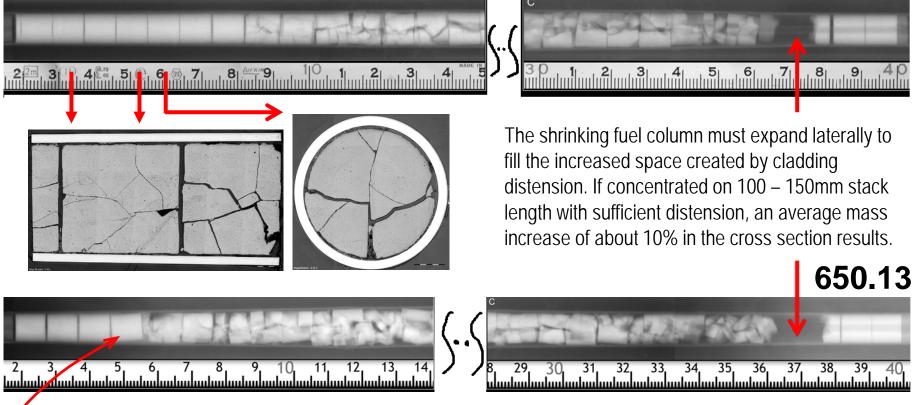
Neutron radiography details


burnup, MWd/kg	44.3	56	60	72.3	81.9	90
radio- graphy	- ALANA	N-THANK	Marthan The The	「日本」		
fragment size	coarse	coarse	coarse & some fine	coarse & fine	medium & fine	medium & fine

Rim fragmentation

Bu 55.5
 hbs 110 μm

Bu 61.0
 hbs 440 μm


Bu 72.3 hbs 1800 μm

100 µm

Cladding distension and fuel cracking

<u>650.12</u>

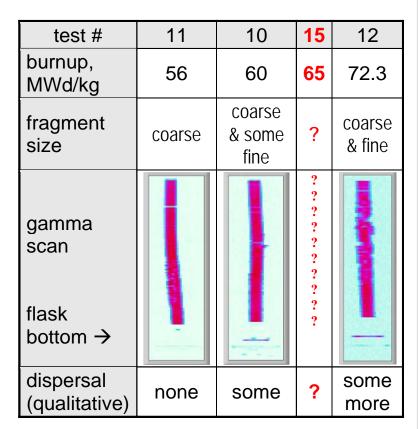
- Very similar behaviour seen in IFA-650.12/13 (BWR fuel, about 72 MWd/kg burnup))
- Local cladding strain must exceed about 5% to produce visible fuel cracking and to allow fragment movement
- Skewed, intact pellet at lower end of 650.13 adjacent to a fragmented pellet

Fuel fragmentation - summary

test #	2	7	6	11	10	12	13	3	5	9	4
burnup, MWd/kg	0	44.3	55.5	56	60	72.3	74.1	81.9	83	90	92
balloon strain, %	54	23	49	25	15	40	45	8	15	61	62
radio- graphy		大学の大学家を見		- KANARANA	の日本でたい」	that have a					
ceramo- graphy	(Chin)				S ARY	MAR PH	fragment size distribution only				
fragment size	coarse	coarse	coarse	coarse	coarse & some fine	coarse & fine	coarse (& fine?)	medium & fine	medium & fine	medium & fine	medium & fine

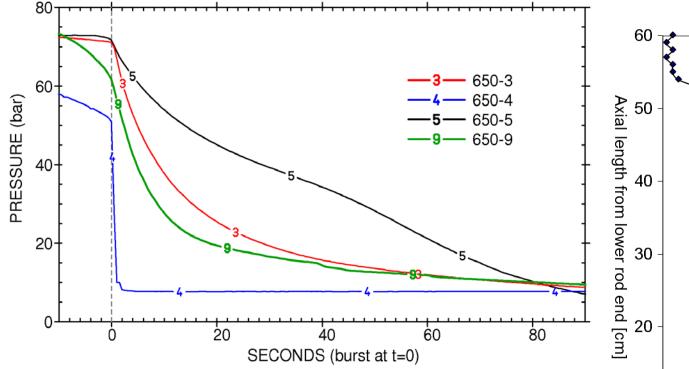
Fuel dispersal

test #	2	7	6	11	10	12	13	3	5	9	4
burnup, MWd/kg	0	44.3	55.5	56	60	72.3	74.1	81.9	83	90	92
balloon strain, %	54	23	49	25	15	40	45	8	15	61	62
ballon area, mm ²	270	8	?	1,5	38	1	10		7	224	434
fragment size	coarse	coarse	coarse	coarse	coarse & some fine	coarse & fine	coarse (& fine?)	medium & fine	medium & fine	medium & fine	medium & fine
gamma scan flask bottom →											
HBS width			_	_							
dispersal (qualitative)	none	none	none	none	some	some more	nearly none		much	much more	much more


Plans for HRP LOCA testing

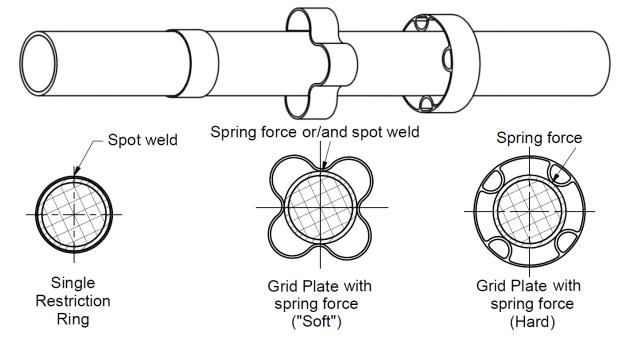
- Plans are defined as we go along. They are based on the results obtained so far and on input from
 - Halden Reactor Project (HRP) members
 - HRP Programme Group (technical steering group)
- A LOCA workshop, Lyon 2012, identified among others
 - Investigation of the effect of the spacer grid
 - Rod length (or design which keeps the fuel in contact with the cladding for a certain length to see the effect of gas flow)
 - Axial constraint

Next test


- The HRP LOCA tests have shown that fuel fragmentation and dispersal are, among others, influenced by burnup
- The burnup of the next test,
 65 MWd/kgU, will be between
 - test 10 which showed onset of fine fragmentation and
 - test 12 which showed more fine fragmentation and more dispersal
- PCT, pressure as for test 10

Pressure drop

IFA 650.5


axial position 470 mm axial position 184 mm Burst 10 -0 10,8 11,3 11,8 12,3 Diameter [mm]

- In some experiments, a slow pressure drop was observed
- The fuel maintained tight contact with the cladding along a certain length
- The cracking pattern depends on position

Test with spacer grid

- Determine the impact of a spacer element on axial gas transport, ballooning and fuel dispersal
- The function of the spacer is both to provide a mechanical constraint and to influence local cooling, in this way decreasing cladding distension

Acknowledgement

The OECD HRP LOCA test series IFA-650 is the result of the combined efforts of many contributors. The work of the following individuals is especially acknowledged:

Follow-up, evaluation and reporting

- Mikko Henrikki Pihlatie, Fortum, Finland
- Ville Lestinen, Fortum, Finland
- Mirkka Ek, Fortum, Finland
- Laura Kekkonen, VTT, Finland
- Radomír Jošek, NRI, Czech Republic
- Florian Bole du Chomont, EDF, France
- Alexandre Lavoil, EDF, France
- Olivier Bremond, EDF, France

Experiment preparation and execution

- Jon-Martin Karlsen (design, refabrication and instrumentation)
- Erik Kolstad (general preparation and guidance)
- Viktors Grismanovs, Boris Volkov (test execution)
- Roar Suther (loop system)

Post-irradiation examination

• B. C. Oberländer, H. K. Jenssen, M. Espeland, H. J. Kleemann, N. O. Solum, Juraj Balak

The efforts of the reactor crew in unloading the experiments, often under difficult conditions when the blow-down system was severely contaminated by ejected fuel, are gratefully acknowledged.

Special thanks go to VTT (Finland) and PSI (Switzerland) for supporting the test preparation and execution with pre-test calculations.

