EXHIBIT 1 AMEC DETAILED COST SHEETS FOR CORRECTIVE ACTION ALTERNATIVES

Interceptor TrenchAMEC EstimateMobilization/Demobilization1LS\$75,000\$75,0003.1/2 CY Excavator with operator and laborerAMEC EstimateExcavation60Days\$3,535\$212,1003.1/2 CY Excavator with operator and laborerCrew A-3B, RS Means, P481, irArticulated Truck & Loader60Days\$2,133\$127,980Articulated dump truck, front end loader, and crewCrew A-3B, RS Means, P481, irTrench Boxes/Sidewall Stabilization60Days\$500\$30,0007'x 16'x 8'RS Means 31 52 16.10 460080 mil HDPE Geomembrane8250SF\$3.31\$27,266GSE CurtainWall, 13 Panels including sealant and shippingGSE Verbal QuotePea Gravel1,200CY\$34\$40,800Well sorted and washed pea gravel drain filterRS Means 33 46 26.10Non-woven geotextile600SF\$5\$3,000Installed at base of trenchAMEC EstimateCompacted Bentonite300CF\$20\$6,000Tremie in Bentonite to create sealMati: Environmental Drilling SugG-inch ID Sch 40 PVC Well Screen31 5LF\$42\$13,230RS Means 33 21 13.10 8360Well Completion Materials3Ea\$1,000\$3,300Ft x 3ft, precast concrete w/ bilco cover installedColorado Precast(vault), Dalco(Pumping Equipment5\$12,6755 hp 4" submersible pumpRS Means 33 21 13.10 2000TransformerRS Means 33 21 13.10 2000Transformer1Ea\$17,500\$17,500\$17,480v liquid	Righland Uranium Project	Estimated	Trench	Dimensions	ח		•
Interceptor Trench - Conventional Method January 11, 2011 55 4 150 Construction Costs Quantity Unit Unit Status Comments/Description American Status Interceptor Trench Quantity Unit Site Status Site Status American Status American Status Arculated Truck & Loader 60 Days \$\$35,35 \$\$212,100 \$1/2 CY Excavator with pertor and laborer Crew B-120, RS MEANS Heaps Arculated Truck & Loader 60 Days \$\$21,335 \$212,100 \$1/2 CY Excavator with pertor and laborer Crew B-120, RS MEANS Heaps Trench Boors/Sidewall Stabilization 60 Days \$\$20,000 \$7 x 10% Articulated dum struck finder and variable geating and stipping GE Verbal Quice Pea Gravel 1,200 CY \$34 \$40,800 Well Schemanta AMEC Estimate Non-woven geotextile 600 SF \$5,000 Trench Benotinte to create seal Matt: Environmental Dulling Status Stothershile Purior 1,200 CY \$34,020 Yel Status AMEC Estimate Dum vauuk tink Cover					-1		
Interceptor Trench - Conventional Method No. of Pumping Weils Gransmitterion Costs Quantity Unit Unit Rate, Est Subtoral Comments/Description Intercedual Truck & Loader 00 Days \$\$22,133 \$\$127,200 Antice Subtoral Antice Subtoral Atticulation / Benchild 0 Days \$\$23,130 \$\$127,200 Antice Subtoral Crew # 320, RS MEANS Heav Atticulation / Benchild 60 Days \$\$23,33 \$\$127,200 Antice Subtoral Crew # 320, RS MEANS Heav Atticulation / Benchild 60 Days \$\$23,33 \$\$127,800 7 x 16 x 5' Crew # 320, RS MEANS Heav Atticulation / Benchild 600 Days \$\$21,33 \$127,800 7 x 16 x 5' Store				150	-1		
January 11, 2011 3	Interceptor Trench - Conventional Method				-1		
Construction Costs Quantity Unit With Omit Rate EL: Subtotal Comments/Description Intergeduc Trench -		3			-		
Interceptor Trench Image: Control of the state of the st	Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Excersion 60 Days \$2:12,100 2:12 CY Excavator with operator and laborer Crew B-12D, RS MEANS Heavy Articulated Truck & Loader 60 Days \$2:33 \$12:2980 Articulated trump truck, front end loader, and crew Crew A-3B, RS Means, P481, it Borni HDPE Geomembrane 8250 \$5:00 \$30,000 7: N for & 6' RS Means 31:62 (2 for 16:00) Pea Gravel 1.200 CY \$3:4 \$40,800 Well sorted and washed pea gravel drain filter RS Means 33:46:26:10 Non-woven geotextille 000 SF \$5:3 \$3:000 Tremte in Bentomite to create seal Matt: Environmental Drilling Sup Compacted Bentonite 600 SF \$5:00 \$3:000 Tremte in Bentomite to create seal Matt: Environmental Drilling Sup Well Completion Materials 3 Ea \$1:000 \$1:000 \$1:000 St 8:000 RS Means 32:11:10:200 RS Means 32:11:10:2000 Stomersible Pump 3 Ea \$1:000 \$1:000 \$1:000 \$1:0000 \$1:0000 \$1:0000 \$1:0000 \$1:00000 \$1:0000 \$1:0000	Interceptor Trench	1					
Articulated Truck & Loader 60 Days \$2,133 \$12,7980 Articulated dump truck, front end loader, and crew Crew A.38, RS Means, P481, it Trench BoxeS/Glevall Stabilization Crew A.38, RS Means, P481, it Trench BoxeS/Glevall Stabilization Crew A.38, RS Means, P481, it Trench BoxeS/Glevall Stabilization Crew A.38, RS Means, P481, it Trench BoxeS/Glevall 80 mil HDPE Geomembrane 8250 SF \$3,31 \$27,296 GSE CurtainVall, 13 Panels including sealant and shipping GSE Verbal Quote Non-woven geotextile 6000 SF \$5 \$3,000 Installed a base of trench AMEC Estimate Compacted Bentonite 300 CF \$20 \$6,000 \$15,12,320 Interview trench CREWE Estimate Well Completion Materials 3 Ea \$1,000 \$3,000 Interceptor Trench Subtotal Colorado Precast(vault), Daloof Puming Squidment LS \$5,000 \$17,500 \$17,500 \$17,700 277/480v liquid-filled transformer RS Means 32113,10 2000 Transformer 1 E3 \$10,000 \$10,000 \$10,000 AMEC Estimate 2 Inch Dachd Bo Polyettylene pipe 1 LS<	Mobilization/Demobilization	1	LS	\$75,000	\$75,000		AMEC Estimate
Articulated Truck & Loader 60 Days \$2,133 \$12,7980 Articulated dump truck, front end loader, and crew Crew A.38, RS Means, P481, in Trench Boxes/Sidewall Stabilization Corew A.38, RS Means, P481, in Trench Boxes/Sidewall Stabilization Crew A.38, RS Means, P481, in Trench Boxes/Sidewall Stabilization Crew A.38, RS Means, P481, in Trench Boxes/Sidewall Stabilization RS Means 3152, 16, 10 4000. 80 mil HDPE Geomembrane 8250 SF \$3, 300.000 7 x 16 x 8' RS Means 32, 52, 16, 10 4000. Non-woven geotextile 600 SF \$3, 200 Installed at base of trench AMEC Estimate Non-woven geotextile 600 SF \$2, 000 \$13, 200 Internoin Bentonite to create seal Mail: Environmental Drilling Sug Grinch DS ch do PVC Well Screen 315 LF \$42, \$13, 200 Tremis in Bentonite to create seal Mail: Environmental Drilling Sug Grinch DS ch do PVC Well Screen AMEC Estimate Well Completion Materials 3 Ea \$1,000 \$15,000 \$15,000 \$17,100 S10,000 S10,000 S10,200 Intransformer 3 Ea \$4,225 \$12,675 \$12,7760 \$17,7480v liquid-filled transformer RS Means 3,2113,10 2000	Excavation	60	Days	\$3,535	\$212,100	3-1/2 CY Excavator with operator and laborer	Crew B-12D, RS MEANS Heavy
S0 mil HDPE Geomembrane 8250 SF \$3.31 \$27.266 GSE CurtainWall, 13 Panels including sealant and shipping GSE Verbal Quote Pae Gravel 1,200 CY \$34 \$40,800 Well sorted and washed pea gravel drain filter RS Means 33 dE 10 Non-wove geotextile 600 SF \$5 \$3,000 Installed at base of trench AMEC Estimate Compacted Bentonite 300 CF \$20 \$6,000 Termie in Bentonite to create seal Matt: Environmental Driling Sug Ginch ID Sch 40 PVC Well Screen 315 LF \$42 \$13,230 RS Means 33 21 13.10 3800 Weil Completion Materials 3 Ea \$1,000 \$15,000 \$1 x 3t, precast concrete w/ blico cover installed Colorado Precast(vauit), Daloo(Jumping Equipment - - - - - Stomersible Pump 3 Ea \$4,225 \$12,875 \$ hy 4" submersible pump RS Means 33 21 13.10 2000 Transformer 1 Ea \$17,500 \$11,000 \$10,000 AMEC Estimate Controis, Teelensty and Level Alarms	Articulated Truck & Loader	60	Days	\$2,133			Crew A-3B, RS Means, P481, inc
Pag Gravel 1.200 CY \$34 \$40,800 Well sorted and washed pea gravel drain filter RS Means 346 26 10 Non-woven geotextile 600 SF \$5 \$3,000 Installed at base of trench AMEC Estimate Compacted Bentonite 300 CF \$20 \$30,000 Installed at base of trench AMEC Estimate Guild Completed Bentonite 315 LF \$42 \$13,230 RS Means 32,113,10 8360 Well Completed In Materials 3 Ea \$1,000 \$5,000 \$1 trains in Bentonite to create seal AMEC Estimate Pump valit with Cover 3 LS \$5,000 \$1 trains former RS Means 32,21 13,10 8360 Submersible Pump 3 Ea \$42,25 \$12,675 5 hp 4" submersible pump RS Means 32,21 13,10 2000 Transformer 1 Ea \$17,500 \$17,500 \$17,480v liquid-filled transformer RS Means 32,11 3,10 2000 Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 AMEC Estimate 2 inch 10 schd 80 Polyethylene pipe 0 LF<	Trench Boxes/Sidewall Stabilization	60	Days	\$500	\$30,000	7' x 16' x 8'	RS Means 31 52 16.10 4600
Non-wore geotextile 600 SF \$5 \$3.000 Installed at base of trench AMEC Estimate Compacted Bentonite 300 CF \$20 \$6.000 Tremie in Bentonite to create seal Mat: Environmental Drilling Sup Banch ID Sch 40 PVC Well Screen 315 LF \$42 \$13.230 RS Means 33 21 13.10 8360 Well Completion Materials 3 Ea \$1,000 \$5,000 \$ft x 3ft, precast concrete w/ bilco cover installed Colorado Precast(vault), Dalco(Pump vault with Cover 3 Ea \$1,000 \$ft x 3ft, precast concrete w/ bilco cover installed Colorado Precast(vault), Dalco(Pumping Equipment - \$553,376 St 12.675 5 h 4" submersible pump RS Means 33 21 13.10 2000 Submersible Pump 3 Ea \$12.675 5 h 4" submersible pump RS Means 33 21 13.10 2000 Transformer 1 Ea \$17.500 \$17.480v liquid-filled transformer RS Means 33 21 13.10 2200 Electrical breakers, switchgears, panels 1 LS \$10.000 \$10,000 AMEC Estimate Controst, Telemetry and Level Alarms 1 LS <td>80 mil HDPE Geomembrane</td> <td>8250</td> <td>SF</td> <td>\$3.31</td> <td>\$27,266</td> <td>GSE CurtainWall, 13 Panels including sealant and shipping</td> <td>GSE Verbal Quote</td>	80 mil HDPE Geomembrane	8250	SF	\$3.31	\$27,266	GSE CurtainWall, 13 Panels including sealant and shipping	GSE Verbal Quote
Compacted Bentonite 300 CF \$20 \$6000 Tremie in Bentonite to create seal Matt: Environmental Drilling Sup RS Means 32 11 3.108300 6-inch ID Sch 40 PVC Well Screen 315 LF \$42 \$13,230 RS Means 32 11 3.108300 Pump valit with Cover 3 Ea \$1,000 \$5,000 \$1 k 30.00 AMEC Estimate Pump valit with Cover 3 LS \$5,000 \$1 k 30.00 Stress Colorado Precast/(vault), Dalco/ Pumping Equipment \$553,376 Colorado Precast/(vault), Dalco/ Colorado Precast/(vault), Dalco/ Transformer 1 Ea \$4,225 \$12,675 5 hp 4" submersible pump RS Means 32 11 3.10 2000 Transformer 1 Ea \$10,000 \$10,000 AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 RS Means 31 11 3.25 2120 (r Sand Bedding 0 LF \$4.23 \$0 2/w x 4'd trench, 3/8cy excavator, including compaction and backfill RS Means 61030 815 1460 Power Line Extension 12,690 LF <td< td=""><td>Pea Gravel</td><td>1,200</td><td>CY</td><td>\$34</td><td>\$40,800</td><td>Well sorted and washed pea gravel drain filter</td><td>RS Means 33 46 26.10</td></td<>	Pea Gravel	1,200	CY	\$34	\$40,800	Well sorted and washed pea gravel drain filter	RS Means 33 46 26.10
Ginch ID Sch 40 PVC Well Screen 315 LF \$42 \$13,230 RS Means 33 21 13.10 8360 Well Completion Materials 3 Ea \$1,000 \$15,000 St 50,000	Non-woven geotextile	600			\$3,000	Installed at base of trench	AMEC Estimate
G-inch ID Sch 40 PVC Well Screen 315 LF \$42 \$13,230 RS Means 32 113 10 8360 Well Completion Materials 3 Ea \$10,00 \$3,000 \$15,000 \$10,000 Colorado Precast(vault), Dalco(Pumping Equipment I Ea \$47,225 \$12,675 \$16,94" submersible pump RS Means 32,113,10,2000 \$10,000 277/480v liquid-filled transformer RS Means 32,113,10,2000 AMEC Estimate Electrical breakers, switchgears, panels 1 LS \$10,000 \$10,000 AMEC Estimate AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 RS Means 33,11,3,25,2100 (rd) <		300	CF	\$20	\$6,000	Tremie in Bentonite to create seal	Matl: Environmental Drilling Supp
Pump vault with Cover 3 LS \$5,000 \$15,000 5 ft x 3ft, precast concrete w/ bilco cover installed Colorado Precast(vault), Dalco(Numping Equipment \$553,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stass,376 Stas	6-inch ID Sch 40 PVC Well Screen	315	LF	\$42	\$13,230		RS Means 33 21 13.10 8360
Interceptor Trench Subtotal\$553,376Pumping Equipment3Ea\$4,225\$12,6755 hp 4" submersible pumpRS Means 33 21 13.10 2000Transformer1Ea\$17,500\$17,500277/480v liquid-filled transformerRS Means 26 12 19.10 0100Electrical breakers, switchgears, panels1LS\$10,000\$10,000AMEC EstimateControls, Telemetry and Level Alarms1LS\$10,000\$10,000AMEC Estimate2 inch ID schd 80 Polyethylene pipe0LF\$2.00\$0RS Means 33 11 13.25 2120 (r8 inch depth pipe trench0LF\$4.23\$02'w x 4'd trench, 3/8cy excavator, including compaction and backfillRS Means G1030 807 1330Sand Bedding0LF\$4.23\$02'w x 4'd trench, 3/8cy excavator, including compaction and backfillRS Means G1030 807 1330Power Line Extension12,690LF\$15.00\$19,935Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500"RS Means 26 05 13.16 0800, 2ICommunications Line Extension12,690LF\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500"RS Means 26 05 19.55 1700, 2IPumping Equipment SubtotalEst. SubtotalComments/DescriptionEst. SubtotalComments/DescriptionConstruction Maagement10%% \$920,801\$92,08010% of Construction CostsAMEC EstimateContingency25%%\$920,801\$92,08010% of Construction CostsAMEC EstimateContinge	Well Completion Materials	3	Ea	\$1,000	\$3,000		AMEC Estimate
Pumping Equipment Image: Contingency Submersible Pump Statumersible Pump RS Means 33 21 13.10 2000 Submersible Pump 3 Ea \$4,225 \$12,675 6 hp 4" submersible pump RS Means 32 11 3.10 2000 Transformer 1 Ea \$17,500 \$17,500 \$77/480v liquid-filled transformer RS Means 32 61 21 9.10 0100 Electrical breakers, switchgears, panels 1 LS \$10,000 \$10,000 AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 RS Means 33 11 3.25 2120 (r 2 inch ID schd 80 Polyethylene pipe 0 LF \$4.23 \$0 2'w x 4'd trench, 3/8cy excavator, including compaction and backfill RS Means G1030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means 26 05 13.16 0800, 21 Communications Line Extension 12,690 LF \$10.00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft RS Means 26 05 19.55 1700, 21 Pumping Equipment Subtotal Communications Line Extension 12,690 LF \$1	Pump vault with Cover	3	LS	\$5,000		5 ft x 3ft, precast concrete w/ bilco cover installed	Colorado Precast(vault), Dalco(c
Submersible Pump 3 Ea \$4,225 \$12,675 5 hp 4" submersible pump RS Means 33 21 13.10 2000 Transformer 1 Ea \$17,500 \$17,500 \$17,7480v liquid-filled transformer RS Means 26 12 19.10 0100 Electrical breakers, switchgears, panels 1 LS \$10,000 \$10,000 AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 AMEC Estimate 2 inch ID schd 80 Polyethylene pipe 0 LF \$2.00 \$0 RS Means 33 11 13.25 2120 (rc 48 inch depth pipe trench 0 LF \$2.00 \$0 RS Means 61030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means 26 05 13.16 0800, 27 Power Line Extension 12,690 LF \$15.00 \$190,350 Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500 ft RS Means 26 05 13.16 0800, 27 Communications Line Extension 12,690 LF \$10,00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft RS Means 26 05 19.55 1700, 27 <	Interceptor Trench Subtota				\$553,376		
Transformer 1 Ea \$17,500 \$17,500 \$17,500 \$27/480v liquid-filled transformer RS Means 26 12 19 10 0100 Electrical breakers, switchgears, panels 1 LS \$10,000 \$10,000 AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 AMEC Estimate 2 inch ID schd 80 Polyethylene pipe 0 LF \$2.00 \$0 RS Means 33 11 13.25 2120 (rc 48 inch depth pipe trench 0 LF \$2.00 \$0 RS Means 61030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means 26 05 13.16 0800, 21 Power Line Extension 12.690 LF \$10.00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500' RS Means 26 05 19.55 1700, 21 Pumping Equipment Subtotal Si37,425 Design 10% % \$920,801 \$92,080 10% of Construction Costs AMEC Estimate Contruction Management 10% % \$920,801 \$92,080 10% of Co	Pumping Equipment						
Electrical breakers, switchgears, panels 1 LS \$10,000 \$10,000 AMEC Estimate Controls, Telemetry and Level Alarms 1 LS \$10,000 \$10,000 AMEC Estimate 2 inch ID schd 80 Polyethylene pipe 0 LF \$2.00 \$0 RS Means 33 11 13.25 2120 (rc 48 inch depth pipe trench 0 LF \$4.23 \$0 2'w x 4'd trench, 3/8cy excavator, including compaction and backfill RS Means G1030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means G1030 807 1330 Power Line Extension 12.690 LF \$10.00 \$190,350 Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500' RS Means 26 05 13.16 0800, 2t Communications Line Extension 12.690 LF \$10.00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft RS Means 26 05 19.55 1700, 2t Pumping Equipment Subtotal	Submersible Pump	3				5 hp 4" submersible pump	RS Means 33 21 13.10 2000
Controls, Telemetry and Level Alarms1LS\$10,000\$10,000AMEC Estimate2 inch ID schd 80 Polyethylene pipe0LF\$2.00\$0RS Means 33 11 13.25 2120 (rd48 inch depth pipe trench0LF\$4.23\$02'w x 4'd trench, 3/8cy excavator, including compaction and backfillRS Means G1030 807 1330Sand Bedding0LF\$3.00\$0Pipe bedding to 12" over pipeRS Means G1030 807 1330Power Line Extension12,690LF\$15.00\$190,350Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500'RS Means 26 05 13.16 0800, 20Communications Line Extension12,690LF\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ftRS Means 26 05 19.55 1700, 20Pumping Equipment Subtotal\$367,425Engineering/Support CostsQuantityUnitUnit Rate152,08010% of Construction CostsConstruction Management10%%\$92,08010% of Construction CostsAMEC EstimateContingencyQuantityUnitUnit RateEst. SubtotalComments/DescriptionContingency25%%\$92,08010% of Construction CostsAMEC EstimateContingency25%%\$92,080\$230,20025% of Construction CostsAMEC EstimateContingency25%%\$92,080\$230,20025% of Construction CostsAMEC EstimateContingency25%%\$92,080\$230,20025% of Co	Transformer	1	Ea			277/480v liquid-filled transformer	RS Means 26 12 19.10 0100
2 inch ID schd 80 Polyethylene pipe 0 LF \$2.00 \$0 RS Means 33 11 13.25 2120 (rd 48 inch depth pipe trench 0 LF \$4.23 \$0 2'w x 4'd trench, 3/8cy excavator, including compaction and backfill RS Means G1030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means G1030 807 1330 Power Line Extension 12,690 LF \$15.00 \$190,350 Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500 ft RS Means 26 05 13.16 0800, 21 Communications Line Extension 12,690 LF \$10.00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft RS Means 26 05 19.55 1700, 21 Pumping Equipment Subtotal \$367,425 \$367,425 \$367,425 \$300 of Construction Costs Engineering/Support Costs Quantity Unit Rate \$52,080 10% of Construction Costs AMEC Estimate Construction Management 10% \$920,801 \$920,801 \$920,801 \$920,801 \$920,801 Comments/Description AMEC Estimate Contingency 25% %	Electrical breakers, switchgears, panels	1	LS				AMEC Estimate
48 inch depth pipe trench 0 LF \$4.23 \$0 2'w x 4'd trench, 3/8cy excavator, including compaction and backfill RS Means G1030 807 1330 Sand Bedding 0 LF \$3.00 \$0 Pipe bedding to 12" over pipe RS Means G1030 807 1330 Power Line Extension 12,690 LF \$15.00 \$190,350 Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500' RS Means 26 05 13.16 0800, 20 Communications Line Extension 12,690 LF \$10.00 \$126,900 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft RS Means 26 05 19.55 17.00, 20 Pumping Equipment Subtotal		1					AMEC Estimate
Sand Bedding0LF\$3.00\$0Pipe bedding to 12" over pipeRS Means G1030 815 1460Power Line Extension12,690LF\$15.00\$190,350Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500'RS Means 26 05 13.16 0800, 24Communications Line Extension12,690LF\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ftRS Means 26 05 19.55 1700, 24Pumping Equipment Subtotal\$367,425\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ftRS Means 26 05 19.55 1700, 24Engineering/Support CostsQuantityUnitUnit RateEst. SubtotalComments/DescriptionDesign10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateConstruction Management10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateContingencyQuantityUnitUnit RateEst. SubtotalComments/DescriptionContingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency10%\$1335,162\$1335,162		0					RS Means 33 11 13.25 2120 (rou
Power Line Extension12,690LF\$15.00\$190,350Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500'RS Means 26 05 13.16 0800, 24Communications Line Extension12,690LF\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ftRS Means 26 05 19.55 1700, 24Pumping Equipment Subtotal\$367,425\$367,425\$367,425\$367,425Engineering/Support CostsQuantityUnitUnit RateEst. SubtotalComments/DescriptionDesign10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateConstruction Management10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateContingencyQuantityUnitUnit RateEst. SubtotalComments/Description\$184,160Contingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency51,335,162\$1,335,162\$1,335,162\$1,335,162\$1,335,162		÷					
Communications Line Extension12,690LF\$10.00\$126,900Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ftRS Means 26 05 19.55 1700, 20Pumping Equipment SubtotalUnitUnit Rate\$367,425State of Comments/DescriptionEngineering/Support CostsQuantityUnitUnit RateEst. SubtotalComments/DescriptionDesign10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateConstruction Management10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateContingencyQuantityUnitUnit RateEst. SubtotalComments/DescriptionAMEC EstimateContingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency25%%\$920,801\$230,20025% of Construction CostsAMEC Estimate		-				Pipe bedding to 12" over pipe	
Pumping Equipment SubtotalImage: Sign Age: Sign Age						Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500'	
Engineering/Support CostsQuantityUnitUnit RateEst. SubtotalComments/DescriptionDesign10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateConstruction Management10%%\$920,801\$92,08010% of Construction CostsAMEC EstimateEngineering/Support Subtotal%\$920,801\$92,08010% of Construction CostsAMEC EstimateContingencyQuantityUnitUnit RateEst. SubtotalComments/DescriptionComments/DescriptionContingency25%%\$920,801\$230,20025% of Construction CostsAMEC EstimateCapital Cost w/ Contingency444444Capital Cost w/ Contingency44444Contingency444444Capital Cost w/ Contingency44444Contingency44444Contingency44444Contingency44444Contingency44444Contingency44444Contingency44444Contingency44444Contingency44444Contingency4444Contingency4444Cont			ĿF	\$10.00		Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft	RS Means 26 05 19.55 1700, 26
Design 10% % \$920,801 \$92,080 10% of Construction Costs AMEC Estimate Construction Management 10% % \$920,801 \$92,080 10% of Construction Costs AMEC Estimate Engineering/Support Subtotal V \$920,801 \$92,080 10% of Construction Costs AMEC Estimate Contingency Quantity Unit Unit Rate Est. Subtotal Comments/Description AMEC Estimate Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Capital Cost w/ Contingency Image: Contingency Image: Contingency Image: Contingency Image: Contingency \$1,335,162							
Construction Management 10% % \$920,801 \$92,080 10% of Construction Costs AMEC Estimate Engineering/Support Subtotal Value \$184,160 Value Amec Estimate Contingency Quantity Unit Unit Rate Est. Subtotal Comments/Description AMEC Estimate Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Capital Cost w/ Contingency Image: Contingency Image: Contingency Image: Contingency Subtotal Subtotal Subtotal Capital Cost w/ Contingency Image: Contingency Subtotal Subtotal Subtotal Subtotal Subtotal Contingency Image: Contingency Image: Contingency Image: Contingency Subtotal Subtotal Subtotal Subtotal Subtotal Subtotal Subtotal Image: Contingency Image: Contingency Image: Contingency Subtotal Subtotal Subtotal Subtotal Subtotal Subtotal Subtotal <th< td=""><td>Engineering/Support Costs</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Engineering/Support Costs						
Engineering/Support Subtotal Image: Contingency Quantity Unit State State Comments/Description Image: Comments/Description Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Contingency							
Contingency Quantity Unit Unit Rate Est. Subtotal Comments/Description Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Capital Cost w/ Contingency			%	\$920,801		10% of Construction Costs	AMEC Estimate
Contingency 25% % \$920,801 \$230,200 25% of Construction Costs AMEC Estimate Capital Cost w/ Contingency \$1,335,162							
Capital Cost w/ Contingency \$1,335,162							
	Contingency	25%	%	\$920,801	\$230,200	25% of Construction Costs	AMEC Estimate
	Canital Cost w/ Contingency			· · · ·	\$1 235 169	· · · · · · · · · · · · · · · · · · ·	
		1	<u> </u>		<u> </u>		<u>`</u>

Notes: 1. RS Means indicates cost was obtained from RS Means Heavy Construction 2010 Cost Data 2. Assumes surplus excavated material can be reused onsite and no off-site disposal will be required.

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Monthly Electrical usage	97985	kw-Hr	\$0.15	\$14,698	Assumes pumps run 24 hours/day	AMEC Estimate
Maintenance Costs	5%	%	\$50,175.0	\$2,509	5% of Equipment Costs	AMEC Estimate
Annual Inspection	40	Hrs	\$100	\$4,000	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Water Quality Analyses	3	Ea	\$1,000	\$3,000	1 annual sample per well	AMEC Estimate
Annual Report	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtotal				\$30,206		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	10%	%	\$30,206	\$3,021	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency		•		\$33,227		·

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Equipment Capital Life	15	Years	\$32,675	\$2,178	Mechanical Equipment
Utilities Capital Life	50	Years	\$334,750	\$6,695	Water, electrical and communications lines
Barrier Capital Life	100	Years	\$553,376	\$5,534	Interceptor trench cost

Source Source £. .

Estimated	Barrier I	Dimensions			
D	W	L			
55	5	150			
No. of Well	s				
3					
Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
1	LS	\$150,000	\$150,000		AMEC Estimate
1	LS	\$100,000	\$100,000	Construct work platform & control points, regrade/restore surface	AMEC Estimate
9075	SF	\$100	\$907,500	1 part ZVI:4 parts sand within 20 ft of surface, upper 20' backfill with soil, spoils disposed on-site	WRS Compass Budget
165	LF	\$100	\$16,500	Including drilling and all well materials	AMEC Estimate
3	Ea	\$1,000	\$3,000		AMEC Estimate
3	LS	\$5,000	\$15,000	5 ft x 3ft, precast concrete w/ bilco cover installed	Colorado Precast(vault)
			\$1,192,000		
Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
10%	%	\$1,192,000	\$119,200	10% of Construction Costs	AMEC Estimate
10%	%	\$1,192,000	\$119,200	10% of Construction Costs	AMEC Estimate
			\$238,400		
Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
25%	%	\$1,192,000	\$298,000	25% of Construction Costs	AMEC Estimate
			\$1,728,400		
	D 55 No. of Well 3 Quantity 1 9075 165 3 3 Quantity 10% 10% Quantity	D W 55 5 No. of Wells 3 3 Unit 1 LS 9075 SF 165 LF 3 Ea 3 LS 9075 SF 165 LF 3 Ea 3 LS 0 Unit 10% % 10% % Quantity Unit	55 5 150 No. of Wells 3 3 Quantity Unit Unit Rate 1 LS \$150,000 1 LS \$150,000 1 LS \$100,000 9075 SF \$100 165 LF \$100 3 Ea \$1,000 3 LS \$5,000 Quantity Unit Unit Rate 10% % \$1,192,000 10% % \$1,192,000 Quantity Unit Unit Rate	D W L 55 5 150 No. of Wells 3 3 Quantity Unit Unit Rate Est. Subtotal 1 LS \$150,000 \$150,000 1 LS \$100,000 \$100,000 9075 SF \$100 \$907,500 165 LF \$100 \$16,500 3 Ea \$1,000 \$3,000 3 LS \$5,000 \$15,000 3 LS \$5,000 \$119,000 Quantity Unit Unit Rate Est. Subtotal 10% % \$1,192,000 \$119,200 10% % \$1,192,000 \$238,400 Quantity Unit Unit Rate Est. Subtotal 25% % \$1,192,000 \$298,000	D W L 55 5 150 No. of Wells Comments/Description 3 - Quantity Unit Unit Rate Est. Subtotal Comments/Description 1 LS \$150,000 \$150,000 Construct work platform & control points, regrade/restore surface 9075 SF \$100 \$907,500 1 part ZVI:4 parts sand within 20 ft of surface, upper 20' backfill with soil, spoils disposed on-site 165 LF \$100 \$16,500 Including drilling and all well materials 3 Ea \$1,000 \$3,000 \$1ts,000 3 LS \$5,000 \$1t s,000 \$1t s,000 Quantity Unit Unit Rate Est. Subtotal Comments/Description 10% % \$1,192,000 \$119,200 10% of Construction Costs 10% % \$1,192,000 \$119,200 10% of Construction Costs 10% % \$1,192,000 \$119,200 10% of Construction Costs 25% % \$1,192,000 \$238,4

Notes: 1. RS Means indicates cost was obtained from RS Means Heavy Construction 2010 Cost Data

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Quarterly Samples	12	Ea	\$1,000	\$12,000	1 quarterly sample per well	AMEC Estimate
Quarterly Sampling	160	Hrs	\$100	\$16,000	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Inspection	40	Hrs	\$100	\$4,000	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Water Quality Analyses	3	Ea	\$1,000	\$3,000	1 annual sample per well	AMEC Estimate
Annual Report	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtota	al			\$41,000		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	10%	%	\$41,000	\$4,100	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency				\$45,100		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
PRB Replacement Costs - New Wall	15	Years	\$1,169,000	\$77,933	Full replacement at 15 years, including 1 well in PRB
PRB Replacement Costs - Wall Destruction	15	Years	\$50,000	\$3,333	Destroy during replacement, additional cost to move ZVI to on-site disposal location
Well Capital Life	50	Years	\$23,000	\$460	Groundwater Wells outside PRB

	Source
etary Estimate, 20	008; increased for doubled thickness and 2010 rates
t), Dalco(cover) -	Installation
	Source
	Source

Source
Source

	Well Depth					
	50					
GW Pumping Wells	No. of Pum	ping We	lls			
January 11, 2011	9					Contribution of the second
Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Mobilization/Demobilization	1	LS	\$5,000	\$5,000		AMEC Estimate
Well Installation - 4 inch	450	Ft	\$100	\$45,000	Including drilling and all well materials	AMEC Estimate
Well Development	9	Ea	\$2,000	\$18,000		AMEC Estimate
Mechanical Conduit and Connection Piping	1	LS	\$10,000	\$10,000	Conduit for wiring to each well plus distribution piping from well to	RS Means 33 21 13.10 8360
Well Completion Materials	9	Ea	\$1,000	\$9,000		AMEC Estimate
Pump vault with Cover	9	LS	\$5,000	\$45,000	5 ft x 3ft, precast concrete w/ bilco cover installed	Colorado Precast(vault), Dalc
Submersible Pump	9	Ea	\$3,525	\$31,725	3 hp 4" submersible pump	RS Means 33 21 13.10 1900
Transformer	1	Ea	\$17,500	\$17,500	277/480v liquid-filled transformer	RS Means 26 12 19.10 0100
Electrical breakers, switchgears, panels	1	LS	\$10,000	\$10,000		AMEC Estimate
Controls, Telemetry and Level Alarms	1	LS	\$100,000	\$100,000	Includes cost of power and control extensions to each well.	AMEC Estimate
2 inch ID schd 80 Polyethylene pipe	4,500	LF	\$2.00	\$9,000		RS Means 33 11 13.25 2120
48 inch depth pipe trench	4,500	LF	\$4.23	\$19,035	2'w x 4'd trench, 3/8cy excavator, including compaction and backfill	RS Means G1030 807 1330
Sand Bedding	4,500	ĹF	\$3.00	\$13,500	Pipe bedding to 12" over pipe	RS Means G1030 815 1460
Power Line Extension	12,690	LF	\$15.00	\$190,350	Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handholes @ 500'	RS Means 26 05 13.16 0800,
Communications Line Extension	12,690	LF	\$10.00	\$126,900	Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with handholes @ 500 ft	RS Means 26 05 19.55 1700,
Pumping Equipment Subtotal				\$650,010		
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Design	10%	%	\$650,010	\$65,001	10% of Construction Costs	AMEC Estimate
Drilling Oversight/Construction Management	10%	%	\$650,010	\$65,001	10% of Construction Costs	AMEC Estimate
Engineering/Support Subtotal				\$130,002		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	25%	%	\$650,010	\$162,503	25% of Construction Costs	AMEC Estimate
Capital Cost w/ Contingency	Selection and			\$942,515		

Notes: 1. RS Means indicates cost was obtained from RS Means Heavy Construction 2010 Cost Data 2. All costs assume sandy soil.

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Monthly Electrical usage	176,373	kw-Hr	\$0.15	\$26,456	Assumes pumps run 24 hours/day	AMEC Estimate
Maintenance Costs	5%	%	\$168,225	\$8,411	5% of Equipment Costs	AMEC Estimate
Annual Water Quality Analyses	36	Ea	\$1,000	\$36,000	1 quarterly sample per well	AMEC Estimate
Annual Inspection and Sampling	80	Hrs	\$100	\$8,000	2 person crew, 4 days in field/travel	AMEC Estimate
Annual Report	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtotal				\$84,867		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	10%	%	\$84,867	\$8,487	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency				\$93,354		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Equipment Capital Life	15	Years	\$141,725	\$9,448	Mechanical Equipment
Utilities Capital Life	50	Years	\$376,285	\$7,526	Water, electrical and communications lines
Well Capital Life	50	Years	\$132,000	\$2,640	Groundwater Wells

	Source
0	
	cover) + Installation
0	
0	
1	
0 (ro	unded up)
)	
)	
	3 05 33.65 2350, 31 23 16.14 2200, 33 71 19.15 1050
0, 26	05 33.65 2350, 31 23 16.14 2200, 33 71 19.15 1050
	Source
Concerne a	Courses
	Source
1000	

	Source	
	Source	
Street Street		

	Well Depth	1]		
	50		particular of the second states of the second state			
ISRM with Injection Wells	No. of Inject	ction We	lls			
January 11, 2011	14					
Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Mobilization/Demobilization	1	LS	\$7,000	\$7,000		AME
Well Installation - 4 inch	700	Ft	\$100	\$70,000	Including drilling and all well materials	AME
Well Completion Materials	14	Ea	\$1,000	\$14,000		AME
Well Development	14	Ea	\$2,000	\$28,000		AME
Well Completion Materials	14	Ea	\$1,000	\$14,000		AME
Well Vault with Cover	14	LS	\$5,000	\$70,000	5 ft x 3 ft, precast concrete w/ bilco cover installed	Colo
Chemical Injection	1	LS	\$10,000	\$10,000	2 days, pumps, tanks, hoses, labor	AME
Chemical Purchase	54,000	lb	\$1.50	\$81,000	Newman Zone delivered	RNA
Pumping Equipment Subtotal				\$294,000		
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Design	10%	%	\$294,000	\$29,400	10% of Construction Costs	AME
Drilling Oversight/Construction Management	10%	%	\$294,000	\$29,400	10% of Construction Costs	AME
Engineering/Support Subtotal				\$58,800		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	25%	%	\$294,000	\$73,500	25% of Construction Costs	AME
Capital Cost w/ Contingency				\$426,300		

Notes: 1. RS Means indicates cost was obtained from RS Means Heavy Construction 2010 Cost Data 2. All costs assume sandy soil.

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source	
Quarterly Samples	28	Ea	\$1,000	\$28,000	1 quarterly sample of every other well	AMEC Estimate	
Quarterly Sampling	80	Hrs	\$100	\$8,000	2 person crew, 1 day in field/travel	AMEC Estimate	
Annual Inspection 40 Hrs \$		\$100	\$4,000	2 person crew, 2 days in field/travel	AMEC Estimate		
Annual Report	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate	
Chemical Reinjection	1	LS	\$98,000	\$98,000	Periodic reinjection of electron donor, annual injection due to sulfate concentrations	RNAS, Inc.	
Annual O&M Cost Subtota	I			\$144,000			
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source	
Contingency	10%	%	\$144,000	\$14,400	10% of annual costs	AMEC Estimate	
Annual O&M Cost w/ Contingency				\$158,400			

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Well Capital Life	50	Years	\$203,000	\$4,060	Groundwater Wells

Source					
IEC Estimate					
IEC Estimate					
IEC Estimate					
IEC Estimate					
IEC Estimate					
lorado Precast(vault), Dalco(cover) + Installation					
IEC Estimate					
IAS, Inc.					
Source					
IEC Estimate					
IEC Estimate					
Source					
IEC Estimate					

	Source	
C Estimate		

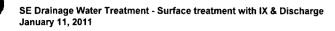
Direct Disposal in Highland Pit Lake January 11, 2011

Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source	
Mobilization/Demobilization	1	LS	\$5,000	\$5,000		AMEC Estimate	
Mechanical Conduit	1	LS	\$10,000	\$10,000	Conduit for wiring to Monitoring Equipment	RS Means 33 21 13.10 8360	
Controls, Telemetry and Level Alarms	1	LS	\$25,000	\$25,000	Includes cost of power and control extensions to monitoring equipment.	AMEC Estimate	
2 inch ID schd 80 Polyethylene pipe 9,500 LF		LF	\$2.00	\$19,000		RS Means 33 11 13.25 2120 (rounded up)	
48 inch depth pipe trench 9,500 LF		LF	\$4.23	\$40,185	2'w x 4'd trench, 3/8cy excavator, including compaction and backfill	RS Means G1030 807 1330	
Sand Bedding 9,500 LF \$3.00 \$28,500 Pipe bedding to		Pipe bedding to 12" over pipe	RS Means G1030 815 1460				
Subtotal \$127,685							
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source	
Design	10%	%	\$127,685	\$12,769	10% of Construction Costs	AMEC Estimate	
Construction Management	10%	%	\$127,685	\$12,769	10% of Construction Costs	AMEC Estimate	
Engineering/Support Subtotal				\$25,537			
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source	
Contingency	25%	%	\$127,685	\$31,921	25% of Construction Costs	AMEC Estimate	
Capital Cost w/ Contingency			· · ·	\$185,143			

Notes: 1. RS Means indicates cost was obtained from RS Means Heavy Construction 2010 Cost Data 2. All costs assume sandy soil.

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Monthly Electrical usage	1,000	kw-Hr	\$0.15	\$150	Assumes pumps from corrective action are sufficiently powered to reach pit lake	AMEC Estimate
Maintenance Costs	5%	%	\$54,000	\$2,700	5% of Equipment Costs	AMEC Estimate
Quarterly Samples	0	Ea	\$1,000	\$0	No sampling	AMEC Estimate
Quarterly Sampling	0	Hrs	\$100	\$0	No Sampling	AMEC Estimate
Annual Inspection	0	Hrs	\$100	\$0	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Report	0	Hrs	\$100	\$0	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtotal				\$2,850		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	10%	%	\$2,850	\$285	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency			1	\$3,135		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Equipment Capital Life	15	Years	\$30,000	\$2,000	Mechanical Equipment
Utilities Capital Life	50	Years	\$102,685	\$2,054	Water, electrical and communications lines


me of Material Requi Quantity 1 32,349 32,349	10% of Q laterials Width Length Depth	5 2,628,000 8.1 30 2.5 154,588 5% 2 310 310 310 10 32,349 Unit Rate	gpm gallons Ac-Ft in/yr ft/yr sq ft % ft ft ft ft ft cy Est. Subtotal	Comments/Description	
al Net Evaporation reqd to evaporate 11 Increase for Liner M ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	10% of Q laterials Width Length Depth ired Unit	8.1 30 2.5 154,588 5% 2 310 310 10 32,349 Unit Rate	Ac-Ft in/yr ft/yr sq ft % ft ft ft ft cy	Comments/Description	
reqd to evaporate 11 Increase for Liner M ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	laterials Width Length Depth ired Unit lump sum	30 2.5 154,588 5% 2 310 310 10 32,349 Unit Rate	in/yr ft/yr sq ft % ft ft ft cy	Comments/Description	
reqd to evaporate 11 Increase for Liner M ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	laterials Width Length Depth ired Unit lump sum	2.5 154,588 5% 2 310 310 10 32,349 Unit Rate	ft/yr sq ft % ft ft ft cy	Comments/Description	
Increase for Liner M ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	laterials Width Length Depth ired Unit lump sum	154,588 5% 2 310 310 10 32,349 Unit Rate	sq ft % ft ft ft cy	Comments/Description	
Increase for Liner M ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	laterials Width Length Depth ired Unit lump sum	5% 2 310 310 10 32,349 Unit Rate	% ft ft cy	Comments/Description	
ber of Ponds: ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	Width Length Depth ired Unit	2 310 310 10 32,349 Unit Rate	ft ft ft cy	Comments/Description	
ox Dims of Ponds: me of Material Requi Quantity 1 32,349 32,349	Length Depth ired Unit	310 310 10 32,349 Unit Rate	ft ft cy	Comments/Description	
ne of Material Requi Quantity 1 32,349 32,349	Length Depth ired Unit	310 10 32,349 Unit Rate	ft ft cy	Comments/Description	
me of Material Requi Quantity 1 32,349 32,349	Depth ired Unit	10 32,349 Unit Rate	ft cy	Comments/Description	
ne of Material Requi Quantity 1 32,349 32,349	Unit Unit	32,349 Unit Rate	су	Comments/Description	
Quantity 1 32,349 32,349	Unit lump sum	Unit Rate		Comments/Description	
1 32,349 32,349	lump sum		Est. Subtotal	Comments/Description	
32,349					
32,349					
32,349	CV	\$25,000	\$25,000		AMEC Estimate
32,349	~,	\$8.41	\$272,056		RS Means 31 23 16.42 0250 + 31 23
100	су	\$2.03	\$65,669		RS Means 31 23 23.17 0020
155	1,000 sf	\$400	\$61,835	Finish grading lagoon bottoms	RS Means 31 22 16.10 3500
32,349	су	\$0.50	\$16,175	Riding vibrating roller, 12" lifts, 4 passes	RS Means 31 23 23.23 5100
162,318	sq ft	\$1.60	\$259,708	Primay Liner 60 mil HDPE, installed	Material cost from Colorado Lining In
162,318	sq ft	\$1.20	\$194,781		Material cost and shipping from Kaul
162,318	sq ft	\$1.40	\$227,245	Leak Detection Liner, 40 mil HDPE, installed	Material cost from Colorado Lining In
162,318	sq ft	\$1.80	\$292,172	Bentonite mat seepage mitigation layer	Material cost and shipping from Kaul
6,012	су				RS Means 31 23 23.17
1	lump sum				
1	lump sum			Water level sensors, data logger and phone based comm syst	AMEC Estimate
	LF				RS Means 33 11 13.25 2120 (rounde
	LF				RS Means G1030 815 1460
	lf				
750	lf	\$10.00		Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with h	RS Means 26 05 19.55 1700, 26 05 3
Quantity	Unit			Comments/Description	
10%	%	\$1,760,865		10% of Construction Costs	AMEC Estimate
10%	%	\$1,760,865	\$176,087	10% of Construction Costs	AMEC Estimate
			\$352,173		
Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
25%	%	\$1,760,865	\$440,216		AMEC Estimate
			\$2.553.254		
	6,012 1 1 2,500 2,500 2,500 750 750 Quantity 10% 10% Quantity 25%	6,012 cy 1 lump sum 1 lump sum 2,500 LF 2,500 LF 2,500 LF 2,500 If 750 If 750 If 0% % 10% % Quantity Unit	6,012 cy \$34 1 lump sum \$25,000 1 lump sum \$75,000 2,500 LF \$2.00 2,500 LF \$4.23 2,500 LF \$3.00 750 If \$15.00 750 If \$10.00 Quantity 0% \$1,760,865 10% % \$1,760,865 0% \$1,760,865 0% \$1,760,865	6,012 cy \$34 \$204,400 1 lump sum \$25,000 \$25,000 1 lump sum \$75,000 \$75,000 2,500 LF \$2.00 \$5,000 2,500 LF \$4.23 \$10,575 2,500 LF \$3.00 \$7,500 2,500 LF \$3.00 \$7,500 750 If \$15.00 \$11,250 750 If \$10.00 \$7,500 750 If \$10.00 \$7,500 9 \$11,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% % \$1,760,865 \$176,087 10% With Rate Est. Subtotal	6,012 cy \$34 \$204,400 subgrade, compatible with Bentomat layer 1 lump sum \$25,000 \$25,000 2 inch pvc monitoring pipes above primary liner and Leak dete 1 lump sum \$75,000 \$75,000 Water level sensors, data logger and phone based comm syst 2,500 LF \$2.00 \$5,000 2/w x 4'd trench, 3/8cy excavator, including compaction and based comm syst 2,500 LF \$4.23 \$10,575 2'w x 4'd trench, 3/8cy excavator, including compaction and based comm syst 2,500 LF \$3.00 \$7,500 Pipe bedding to 12" over pipe 750 If \$15.00 \$11,250 Copper, XLP shielded 5kV 4/0 in 2" PVC 36" Deep with handh 750 If \$10.00 \$7,500 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with h 750 If \$10.00 \$7,500 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with h 750 If \$10.00 \$7,500 Sheathed copper cable #10, 3 wire, in 2" PVC 36" deep with h 750 If \$1,760,865 \$176,087 10% of Construction Costs 10%

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Monthly Electrical usage	36500	kw-Hr	\$0.15	\$5,475	Assumes 100 kw-Hr/day	AMEC Estimate
Maintenance Costs	5%	%	\$1,073,906	\$53,695	5% of Equipment Costs	AMEC Estimate
Annual Inspection	40	Hrs	\$100	\$4,000	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Report	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtotal				\$69,170		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	
Contingency	10%	%	\$69,170	\$6,917	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency				\$76,087		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Liner and Pond Capital Life	50	Years	\$1,644,040	\$32,881	
Piping Capital Life	50	Years	\$51,825	\$1,037	
Instrumentation Capital Life	15	Years	\$75,000	\$5,000	

Source
3 23.20 1020
The set AMEO, Contract station in the state
nternational, AMEC estimate of shipping, labor from Means
I Corp, Texdrain 200, labor estimated from Means
nternational, estimate of shipping, labor from Means
TCOIP, Demonial CE, labor estimated nom means
ed up)
33.65 2350, 31 23 16.14 2200, 33 71 19.15 1050
33.65 2350, 31 23 16.14 2200, 33 71 19.15 1050
Source
Source
Source

Source

	Pumping Rate		5	gpm		
	Polymer addition ra	ate @ 2ppm	0.12	lbs/day		
	Ferric Sulfate addit		0.24	lbs/day		
	Sulfuric Acid @ 93		5.59	lbs/day		
	Annual Vol to Treat		2,628,000	Gals		
			8.1	Ac-Ft		
Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Freatment system						
Bench Scale Treatment Study	1	lump sum	\$50,000	\$50,000	3rd Party Consultant, design, specs & plans	Toby Estimate
Mobilization/Demobilization	1	lump sum	\$10,000	\$10,000		
Freatment System Skid	1	lump sum	\$50,000	\$50,000		AMEC Estimate
Process Pumps and VFDs	2	ea	\$15,000	\$30,000		
nlet Flow Meter	1	ea	\$1,500	\$1,500	four, 50 gallon Polyethylene	Toby Estimate
Q Tank	5000	gal	\$3	\$15,000	5,000 gallon, double walled, steel	AMEC Estimate
Mixers	4	ea	\$250	\$1,000		AMEC Estimate
Additive Metering Equipment	4	lump sum	\$250	\$1,000		AMEC Estimate
nfluent Filtration	1	lump sum	\$75,000	\$75,000	Scaled from AES Full-Scale System	AMEC Estimate
on Exchange Vessels and Media	1	lump sum	\$200,000	\$200,000	Scaled from AES Full-Scale System	AMEC Estimate
X Storage	1	lump sum	\$7,500	\$7,500	Scaled from AES Full-Scale System	AMEC Estimate
Coagulation/Filtration Reagents and Metering	1	lump sum	\$58,000	\$58,000	Scaled from AES Full-Scale System	AMEC Estimate
Media Filters	1	lump sum	\$75,000	\$75,000	Scaled from AES Full-Scale System	AMEC Estimate
Backwash Tank	1	lump sum	\$25,000	\$25,000	Scaled from AES Full-Scale System	AMEC Estimate
Clarifier	1	lump sum	\$85,000	\$85,000	Scaled from AES Full-Scale System	AMEC Estimate
Solids Storage Tank/Thickener	1	lump sum	\$45,000	\$45,000	Scaled from AES Full-Scale System	AMEC Estimate
Filter Press	1	lump sum	\$105,000	\$105,000	Scaled from AES Full-Scale System	AMEC Estimate
Sludge Storage Container	2	lump sum	\$5,000	\$10,000	20-cy Roll-off container	Quote
Recycle System	1	lump sum	\$30,000	\$30,000	Scaled from AES Full-Scale System	AMEC Estimate
Effluent System	1	lump sum	\$30,000	\$30,000	Scaled from AES Full-Scale System	AMEC Estimate
Air Compressor System	1	lump sum	\$30,000	\$30,000	Scaled from AES Full-Scale System	AMEC Estimate
Electrical/Controls/HVAC	5%	%	\$874,000	\$43,700		AMEC Estimate
Aisc Process Piping/Valves	5%	%	\$874,000	\$43,700		AMEC Estimate
Unidentified Equipment	5%	%	\$874,000	\$43,700		AMEC Estimate
Equipment Installation	10%	%	\$874,000	\$87,400		AMEC Estimate
inch ID schd 80 Polyethylene pipe	2,500	LF	\$2.00	\$5,000		RS Means 33 11 13.25 2120
8 inch depth pipe trench	2,500	LF	\$4.23	\$10,575	2'w x 4'd trench, 3/8cy exc., incl. compact. & backfill	RS Means G1030 807 1330
Sand Bedding	2,500	LF	\$3.00	\$7,500	Pipe bedding to 12" over pipe	RS Means G1030 815 1460
Transformer & Elec Pannel	1	Lump Sum	\$30,000	\$30,000		AMEC Estimate
Power Line Extension	200	lf	\$15.00	\$3,000		AMEC Estimate
Communications Line Extension	200	lf	\$10.00	\$2,000		AMEC Estimate
Treatment System Subtotal				\$1,210,575		
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Design	10%	%	\$1,210,575	\$121,058	10% of Construction Costs	AMEC Estimate
Construction Management	10%	%	\$1,210,575	\$121,058	10% of Construction Costs	AMEC Estimate
Engineering/Support Subtotal				\$242,115		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	25%	%	\$1,210,575	\$302,644	25% of Construction Costs	AMEC Estimate
Capital Cost w/ Contingency				\$1,755,334		

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Monthly Electrical usage	292000	kw-Hr	\$0.15	\$43,800	Assumes 800 kw-Hr/day	AMEC Estimate
Maintenance Costs	3%	%	\$1,005,100	\$30,153	5% of Equipment Costs	AMEC Estimate
Full Time Operator	1	Annual Salary	\$60,000	\$60,000	1 Full-time employees	AMEC Estimate
IX Resin Regeneration	508	cf	\$60	\$30,480	Assumes one complete changeout per year	AES Estimate
IX Replacement	127	cf	\$167	\$21,209	Assumes replacement after 4 regenerations	AES Estimate
Polymer addition rate @ 2ppm	43.8	d	\$2.63	\$115	Includes freight to Douglas, WY	Beckart Environmental plus freight
Ferric Sulfate addition rate @ 4ppm	87.6	lb	\$0.10	\$9	Includes freight to Douglas, WY	Beckart Environmental plus freight
Sulfuric Acid @ 93 ppm	2040.4	lb .	\$0.25	\$510	Includes freight to Douglas, WY	BASF, cost plus freight
Sludge Sampling	1.0	Lump Sum	\$1,085.00	\$1,085		
NPDES Sampling	1.0	Lump Sum	\$25,000.00	\$25,000	Monthly compliance sampling	
Annual Inspection	40	Hrs	\$100	\$4,000		
Annual Report	60	Hrs	\$100	\$6,000		
Annual O&M Cost Subtotal				\$222,361		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	10%	%	\$222,361	\$22,236	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency				\$244,597		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost
Utilities	50	Years	\$58,075
Equipment Capital Life	25	Years	\$1,102,500

Highland Pit ISRM Alternatives January 11, 2011

				ative A	and the second se	ative B
				Treatment	and the second se	: Treatment
Construction Costs	Unit Price	Unit	Quantity	Cost	Quantity	Cost
Aobilization/Demobilization	\$50,000	LS	1	\$50,000	1.5	\$75,0
mprove access road						
Blade Road (20' wide)	\$6,000	mi	3.7	\$22,200	3.7	\$22,2
Place and compact 4" thick road base (3/4-inch rock)	\$62,000	mi	3.7	\$229,400	3.7	\$229,40
Create additional access road & turnaround	00.500			017.000	-	
Doze Road (20' wide)	\$8,500	mi	2	\$17,000	0	
Blade Road (20' wide)	\$6,000	mi	2	\$12,000		
Place and compact 4" thick road base (3/4-inch rock)	\$62,000 \$1,500	mi LS	2	\$124,000 \$1,500	0	
30 ft Diameter Turnaround	\$1,500	LO		\$1,500	0	1
5,000 gal mixing tank	\$2	gal	5,000	\$10,000	5,000	\$10,0
5,000 gal mixing tank	\$2	gal	15,000	\$30,000	10,000	\$20,0
5,000 gal methanol holding tanks	\$2	gal	15,000	\$30,000	7,500	\$20,0
5,000 gal macronutrient holding tank	\$2	gal	5,000	\$10,000	5,000	\$10,0
1,000 gallon diesel storage tank (AST)	\$2	gal	1,000	\$2,000	1000	\$2,0
Transfer Pumps & Generator	\$12,000	LS	1,000	\$12,000	1	\$12,0
Misc. Pump Station Parts	\$5,000	ea	2	\$12,000	1	\$5,0
Labor, Installation (2 laborers)	\$3,645	day	10	\$36,450	5	\$18,2
Labor, Operation at Tanks	\$1,430	day	34	\$48,620	56	\$80.0
Rentals	\$1,400	udy		¥10,020		φ00,0
Pump Rental, 1000 gpm	\$3,100	monthly	8	\$24,800	2	\$6,2
Fuel (diesel for pumps and boats)	\$3.50	gallon	6,400	\$22,400	5,500	\$19,2
6-inch Pipe, North withdrawal (3,200 LF, HDPE)	\$3,800	monthly	2	\$7,600	0	ψ10,2
6-inch Pipe, East withdrawal (10,600 LF, HDPE)	\$12,600	monthly	2	\$25,200	0	
10-inch Pipe (3,200 LF, aluminum)	\$7,775	monthly	2	\$15,550	0	
Mob/Demob/Install/Maintainance	\$49,500	LS	1	\$49,500	0	
Rail Spur rental	\$10,000	monthly	2	\$20,000	2	\$20,0
Meter for additives	\$2,000	ea	3	\$6,000	3	\$6,0
Floating Barge Facility						
Floating Barge	\$7,000	LS	0	\$0	1	\$7,0
Piping, 3" diameter, Class 150 PVC	\$4.31	lf	0	\$0	350	\$1,5
Installation, Removal	\$1,430	day	0	\$0	6	\$8,5
6-inch HDPE Pipe	\$6.50	lf	0	\$0	1400	\$9,1
Pipe Floats	\$300	ea	0	\$0	165	\$49,5
Boat Rental and Captain	\$400	day	0	\$0	56	\$22,4
Labor, Operation on Boat	\$1,430	day	0	\$0	56	\$80,0
Additives		-				
Molasses, including rail freight	\$0.95	gal	1,500,000	\$1,418,919	1,500,000	\$1,418,9
Methanol, including rail freight	\$1.17	gal	1,000,000	\$1,170,000	1,000,000	\$1,170,0
Ammonia (liquid 82-0-0), including rail freight	\$490	ton	563	\$276,073	563	\$276,0
o-Phosphate (liquid, 0-54-0), including rail freight	\$510	ton	450	\$229,736	450	\$229,7
Truck Delivery	\$60	1000 gal	2,656	\$159,368	2,656	\$159,3
Security						
Security Guards, 24 hrs/dy (2)	\$672	day	68	\$45,696	112	\$75,2
Spill Prevention, Rail Yard	\$20,000	LS	1	\$20,000	1	\$20,0
Sampling						
Mixing Samples	50	ea	6	\$300	6	\$3
Confirmation Samples	200	ea	6	\$1,200	6	\$1,2
Alternative Subtota				\$4,137,500		\$4,079,4
Engineering/Support Costs	Unit Price	Unit	Quantity	Cost	Quantity	Cost
Design	10%	LS		\$413,750		\$407,9
Construction Management	10%	LS		\$413,750		\$407,9
Engineering/Support Subtota				\$827,500		\$815,8
Contingency	Unit Price	Unit	Quantity	Cost	Quantity	Cost
Contingency	30%	LS		\$1,241,250		\$1,223,8

Highland Pit ISRM Alternatives - Backup Calculations and Assumptions

		Altern	ative A	Alterna	tive B	Macro	nutrients	
Volume Calculations	units	Molasses	Methanol	Molasses	Methanol	Ammonia	o-Phosphate	
Total Volume	gallons	1,500,000	1,000,000	1,500,000	1,000,000	86,679	69,302	
Operational Hours/Day	Hrs/Day	10	10	10	10	10	10	
Number of Days of Operation	days	34	34	56	56	34	34	
Dosing Rate (gpm)	gpm	75	50	45	30	1.77	1.42	
Gallons used per day	gallons	45,000	30,000	27,000	18,000	2,549	2,038	
Truck Size (gal)	gallons	5,000	7,500	5,000	7,500	5,	,000	
Number Truck trips per day	trips	3	3	3	3		1	
Number of Trucks needed per day	trucks	3	2	2	1		1	
Holding Tank Size (gal)	gallons	15,000	15,000	10,000	7,500	5,	000	

LAYOUT

Alternative A

Pump water from lake, add nutrients and carbon source, gravity feed back to lake

Mixing tank and materials holding tanks located near buildings on west side of lake.

Withdrawal points located on northern and eastern sides of lake. Road constructed to eastern withdrawal point.

Discharge point (gravity fed) on southern end of lake.

Alternative B

Pump additives into lake using a moveable floating platform with pump

Mixing tank and materials holding tanks located near buildings on west side of lake.

Water is pumped from the shore of the lake and additives are added to the pump inlet to mix/disperse additives at the discharge

System consists of a floating pipe with movable outlet to disperse additives.

Crew of 2 to observe mixing/deliveries near tanks and crew of 2 plus boat captain to observe additive injection

ASSUMPTIONS

Rail service will be available for delivery of equipment and supplies

A rail spur will be available for rental for the full duration of the project and will have enough capacity to receive the additives, as needed each day.

Mixing samples will be collected 1/day for the first 3 days, then once per week for up to 4 weeks.

Mixing samples will be analyzed for TOC

Confirmation samples will be analyzed for TOC, uranium, radium, selenium, iron, manganese, sulfate, and sulfide

1.5 hour drive from Douglas, WY to Highland Open Pit Lake, \$100/hr for truck and driver

1 ton of molasses = 185 gallons

1 ton of fertilizer = 154 gallons (13 lbs/gal)

Ammonia and o-phosphate are obtained from liquid fertilizer

Highland Pit Ex-Situ Treatment with IX January 11, 2011

Construction Costs	Quantity	Unit	Unit Rate	Est: Subtotal	Comments/Description	Source
Transferrent Duilding, and Otto Marth			<u>* 100 000</u>			450
Treatment Building and Site Work		lump sum	\$409,920	\$409,920		AES estimate
Inlet Headworks		lump sum	\$126,000	\$126,000		AES estimate
Influent Filtration	1	lump sum		\$367,472		AES estimate
Ion Exchange Vessels and Media	1	lump sum		\$1,331,620		AES estimate
IX Storate	1	lump sum	\$32,480	\$32,480		AES estimate
Coagulation/Filtration Reagents and Metering	1	lump sum	\$119,392	\$119,392		AES estimate
Media Filters	1	lump sum	\$366,800	\$366,800		AES estimate
Backwash Tank	1	lump sum	\$61,786	\$61,786		AES estimate
Clarifier	1	lump sum	\$169,104	\$169,104		AES estimate
Solids Storage Tank/Thickener	1	lump sum	\$91,840	\$91,840		AES estimate
Filter Press	1	lump sum	\$196,224	\$196,224		AES estimate
Recycle System	1	lump sum	\$29,570	\$29,570		AES estimate
Effluent System	1	lump sum	\$64,659	\$64,659		AES estimate
Air Compressor System	1	lump sum	\$38,360	\$38,360		AES estimate
Electrical/Controls/HVAC	1	lump sum	\$812,000	\$812,000		AES estimate
Misc Process Piping/Valves	1	lump sum	\$603,181	\$603,181		AES estimate
Unidentified Equipment	1	lump sum	\$603,181	\$603,181		AES estimate
Equipment Installation	10%	%	\$5,423,589	\$542,359		AES estimate
Power Line Extension	0	lf	\$15.00	\$0		AES estimate
Communications Line Extension	0	lf	\$10.00	\$0		AES estimate
Treatment System Subtotal				\$5,965,948	· · · · · · · · · · · · · · · · · · ·	
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Design	12%	%	\$5,965,948	\$715,914	12% of Construction Costs	AES estimate
Construction Management	10%	%	\$5,965,948	\$596,595	10% of Construction Costs	AES estimate
Geotechnical Study	1	lump sum	\$65,000	\$65,000		AES estimate
Bench- and Pilot-Scale Testing	1	lump sum	\$200,000	\$200,000		AES estimate
Engineering/Support Subtotal				\$1,577,509		1
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	25%	%	\$5,965,948	\$1,491,487	25% of Construction Costs	AMEC Estimate
Capital Cost w/ Contingency		3		\$9,034,943		

Notes: 1. Costs developed from Advanced Environmental Sciences capital cost estimate included in Attachment 1.

Annual O&M Costs	Quantity	Unit 👘	Unit Rate	Est. Subtotal	Comments/Description	Source
Monthly Electrical usage	972360	kw-Hr	\$0.15	\$145,854	111 kw	AES Estimate
IX Regen	6350	cf	\$56.55	\$359,093	Assume 127cy/vessel, 50 vessels/yr	AES Estimate
IX Replacement	1588	cf	\$167.00	\$265,113	Assume resin replacement ever 4 regens	AES Estimate
Chemicals	525600	Kgal	\$0.24	\$126,670	Combined cost for pH adjust, metal salt, and polyelectr.	AES Estimate
Maintenance Costs	3%	%	\$5,013,669	\$150,410	5% of Equipment Costs	AMEC Estimate
Full Time Operations Labor	4	Salary	\$60,000	\$240,000	4 Full-time employees	AES Estimate
Sludge Sampling, Handling, T&D	75	Tons	\$420	\$31,500	Assumes hazardous waste	AES Estimate
NPDES Sampling	1	LS	\$25,000	\$25,000		AES Estimate
Annual O&M Cost Subtotal				\$1,343,639		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	10%	%	\$1,343,639	\$134,364	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency				\$1,478,003		

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr	Comments/Description
Equipment Capital Life	25	Years	\$4,712,937	\$188,517	
Piping and Utilities Capital Life	50	Years	\$802,099	\$16,042	
Building Capital Life	100	Years	\$409,920	\$4,099	

Institutional Controls

January 11, 2011

Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Construction Costs						
Mobilization/Demobilization	1	LS	\$10,000	\$10,000		AMEC Estimate
Fencing	53,000	LF	\$23	\$1,219,000	Approximately 10 linear miles, 6-ft high with barbed wire	RSMeans 32 31 13.20 200
Livestock Gates	2	ea	\$1,500	\$3,000		RSMeans 32 31 13.20 5000
Construction Subtotal				\$1,232,000		
Engineering/Support Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Design	3%	%	\$1,232,000	\$36,960	3% of Construction Costs	AMEC Estimate
Construction Management	3%	%	\$1,232,000	\$36,960	3% of Construction Costs	AMEC Estimate
Engineering/Support Subtotal				\$73,920		
Contingency	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Contingency	5%	%	\$1,232,000	\$61,600	5% of Construction Costs	AMEC Estimate
Capital Cost w/ Contingency		- 15 - EA		\$1,367,520		

Annual O&M Costs	Quantity	Unit 😳	Unit Rate	Est. Subtotal	Comments/Description	Source
Fence Maintenance Costs	2%	%	\$1,232,000	\$24,640	2% of Construction Costs	AMEC Estimate

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr		Comments/Description
Equipment Capital Life	50	Years	\$1,232,000	\$24,640	Fencing	

_ _

.

	Number o	of Wells	Pit Lake			
Compliance Monitoring	Number	Depth	No. Samples			
January 11, 2011	4	55	1			
Replacement Construction Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Mobilization/Demobilization	1	LS	\$5,000	\$5,000		AMEC Estimate
Well Installation - 4 inch	220	LF	\$100	\$22,000	Including drilling and all well materials	AMEC Estimate
Well Completion Materials	4	Ea	\$1,000	\$4,000		AMEC Estimate
Well vault with Cover	4	LS	\$5,000	\$20,000	5 ft x 3ft, precast concrete w/ bilco cover installed	Colorado Precast(vault), Dalco(cover) + Installation
Replacement Construction Subtotal				\$51,000	Wells already installed, not paid as capital	

Estimated Replacement Costs	Quantity	Unit	Replac. Cost	Cost/Yr		Comments/Description	
Equipment Capital Life	50	Years	\$51,000	\$1,020	Wells		

-

- ----

Annual O&M Costs	Quantity	Unit	Unit Rate	Est. Subtotal	Comments/Description	Source
Maintenance Costs	5%	%	\$51,000	\$2,550	5% of Well Costs	AMEC Estimate
Annual Compliance Monitoring	40	Hrs	\$100	\$4,000	2 person crew, 2 days in field/travel	AMEC Estimate
Annual Water Quality Analyses	5	Ea	\$1,000	\$5,000	1 annual sample per well	AMEC Estimate
Annual Compliance Reporting	60	Hrs	\$100	\$6,000	Letter report transmitting data.	AMEC Estimate
Annual O&M Cost Subtotal				\$17,550		
Contingency	Quantity	Unit	Unit Rate	Est: Subtotal	Comments/Description	Source
Contingency	10%	%	\$17,550	\$1,755	10% of annual costs	AMEC Estimate
Annual O&M Cost w/ Contingency	•			\$19,305	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Southeast Drainage Groundwater Monitoring Data

Well Number	Sample Date	Arsenic (As)	As	Cadmium (Cd)	Cd	Chloride (Cl)	CI	Chromium (Cr)	Cr	Gross Alpha- Rn222 & U	GA	Lead (Pb)	Pb	Nickel (Ni)	Ni	Ra226 + Ra228		Selenium (Se)	Se	Sulfate (SO4) SO	Thorium 230 04 (Th230)	Th23 0	Uranium (U-Nat)	υ
BBL-1	07/25/06	0.00067	U	0.000099	U	3.4		0.0004		1		0.000047	U	0.0023		1.2	U	0.00051		92.6	0.2	U	0.0003	U
BBL-1	11/20/06					3.4				1	U									85.2				
BBL-1	03/14/07	0.00067	U	0.000099	U	3.2		0.00029		1		0.000047	U	0.00098		1.2	U	0.0005	U	97.4	0.2	U	0.0003	U
BBL-1	06/04/07					3.4				1	U					1.2	U			84.9	0.2	U	0.0003	U
BBL-1	08/14/07	0.0007	U	0.000099	U	3.3		0.00042	U	1	U	0.00016		0.0021		1.2	U	0.00053	U	88.1	0.2	U	0.0003	U
BBL-1	11/05/07	0.0007	U	0.000099	U	3.1		0.00042	U	1		0.000053		0.0018		1.2	U	0.00056		85.7	0.2	U	0.0003	U
BBL-1	03/13/08	0.0007	U	0.000099	U	3.4		0.0006	U	1	U	0.000063		0.003	<u> </u>	1.2	U	0.0007		95.2	0.2	U	0.0003	U
BBL-1	05/12/08	0.0007	U	0.000099	U	3.2		0.0006	U	1.2		0.000069		0.0005	U	1.2	U	0.00035	U	99.6	0.2	U	0.0003	U
BBL-1	08/22/08	0.00095	U	0.00021	U	4.1		0.00068	U	0.8		0.00005	U	0.0005	U	1.63	U	0.0003	U	89.1	0.2	U	0.0003	U
BBL-1	12/12/08	0.00095	U	0.00021	U	8.3		0.00068	U	1.4		0.00005	U	0.0005	U	2.71		0.0003	U	88.7	0.2	U	0.0003	U
BBL-1	03/04/09	0.00095	U	0.00021	U	3.1		0.00068	U	1		0.000057		0.0005	U	2.76	L	0.00099	U	91.3	0.2	U	0.0003	U
BBL-1	05/28/09	0.00095	U	0.0002	U	3.4		0.0006	U	0.7		0.00005	U	0.0005	U	1.45	U	0.00099	U	101	0.2	U	0.0003	U
BBL-1 BBL-1	08/20/09	0.00095	U	0.0002	U	3.2		0.0006	U	0.9		0.000064		0.0005	U	1.65	U	0.00099	U	88.8	0.2	U	0.0003	U
BBL-1 BBL-1	11/17/09 03/15/10	0.00095	U U	0.0002	U	3.2		0.0006	U	0.9		0.00005	U	0.0005	U	1.73	U	0.00099	U	99.3	0.1	U	0.0003	U
BBL-1	05/18/10	0.00095	U	0.0002	U	3.1		0.0006	U	0.9	11	0.00007		0.0005	U	1.44		0.00099	U	86.3	0.1	U	0.0003	U
BBL-1	08/17/10	0.00095	U	0.0002	UU	3.2		0.0006	UU	0.4	U	0.00005		0.0005	U	1.8	U	0.00099	UU	86.7 80.6	0.2	U	0.0003	UU
BBL-1	10/12/10	0.00095	U	0.0002	U	2.0		0.0006	U	0.7		0.000091		0.0005	0	1.62	U	0.00025	U	93.1	0.1	U	0.0003	U
DDL-I	min	0.00095	U	0.0002	U	2.9		0.0008	U	0.7		0.000081	U	0.00071	U	1.20	U	0.00025	U	93.1 80.6	0.2	U	0.0003	U
	max	0.00095	U	0.00021	U	8.3		0.00029	U	1.4	U	0.00016	U	0.003	0	2.76	U	0.00025	U	101	0.1	U	0.0003	U
	mean	0.00087	U	0.00017094	U	3.8		0.000578		0.9		0.00007		0.00100688		1.68		0.00065125		90.9	0.2	U	0.0003	U
	median	0.00095	U	0.0002	U	3.2		0.0006	U	1		0.000055		0.0005	U	1.44		0.000545	U	89.0	0.2	U	0.0003	U
	n	16		16		18		16		18		16		16		17		16		18	17	- U	17	
	%ND	100		100		10		88		56		38		63		76		81		10	100		100	
BBL-2	07/25/06	0.0034	U	0,0005	U	145		0.0023		1	U	0.000047	U	0.0213		1.2	U	0.0106		1740	0.2	U	0.0624	+
BBL-2	11/20/06					133				1	Ū		-				-			1560	0.0			+
BBL-2	03/14/07	0.0019		0.00028		104		0.00046		1	Ū	0.0013		0.0322		1.2	U	0.0387		1460	0.2	U	0.0554	1
BBL-2	06/04/07					109				2.1						1.7	U			1400	0.2	U	0.0594	1
BBL-2	08/14/07	0.0017		0.000099	U	118		0.00043		1.3		0.0014		0.0173		1.2	U	0.0357		1330	0.2	U	0.0595	
BBL-2	11/05/07	0.0043		0.00016		104		0.00042	U	1	U	0.002		0.0188		1.2	U	0.0489		1380	0.2	U	0.0629	
BBL-2	03/13/08	0.0015		0.00015		97.7		0.0006	U	1		0.0003		0.0739		1	U	0.0501		1420	0.2	U	0.0567	
BBL-2	05/12/08	0.0007	U	0.00016		90.1		0.0006	U	1.9		0.0011		0.0137		1.2		0.0449		1350	0.2	U	0.0589	
BBL-2	08/21/08	0.00095	U	0.00021	U	114		0.00068	U	0.6	U	0.0019		0.014		1.61	U	0.0512		1610	0.2	U	0.0529	
BBL-2	12/12/08	0.00095	U	0.00021	U	82.7		0.00068	U	1.2		0.0021		0.0113		1.8		0.0538		1260	0.2	U	0.0528	
BBL-2	03/04/09	0.00095	U	0.00021	U	70.3		0.00068	U	1.1		0.0018		0.0116		1.97		0.0596		1180	0.1	U	0.0479	
BBL-2	05/28/09	0.00095	U	0.0002	U	71.9		0.0006	U	0.6		0.0016		0.0098		1.35	U	0.0553		1400	0.2	U	0.0481	
BBL-2	08/20/09	0.00095	U	0.0002	U	70.8		0.0006	U	0.8	U	0.0014		0.0105		1.4	U	0.0598		1280	0.2	U	0.0509	
BBL-2	11/17/09	0.00095	U	0.0002	U	72.3		0.0006	U	0.7	U	0.0023		0.0085		1.66	U	0.0777		1060	0.1	U	0.0468	
BBL-2	03/15/10	0.00095	U	0.0002	U	64.5		0.0006	U	0.6		0.00036		0.0069		1.53		0.0596		998	0.2	U	0.0482	
BBL-2	05/25/10	0.00095	U	0.0002	U	66.8		0.0006	U	0.4	U	0.00043		0.0072		1.67	U	0.0713		1020	0.2	U	0.0491	
BBL-2	08/17/10	0.00095	U	0.0002	U	64.7		0.0006	U	0.7	U	0.00026		0.0098		1.34		0.0722		941	0.2	U	0.0532	
BBL-2	10/12/10	0.00095	U	0.0002	U	60.4		0.0006	U	0.8		0.00022	L	0.0091	ļ	1.5		0.0718		1010	0.2	U	0.045	
	min	0.0007	U	0.000099	U	60.4		0.00042	U	0.4	U	0.000047	U	0.0069	ļ	1	U	0.0106		941	0.1	U	0.045	
	max	0.0043	U	0.00028	L	145		0.0023		2.1		0.0023		0.0739		1.97		0.0777		1740	0.2	U	0.0629	
	mean	0.00142	U	0.00018613	U	84.6		0.000688	U	1.0		0.001220		0.01895	ļ	1.46		0.0562625		1245	0.2	U	0.05255	
n	median	0.00095	U	0.0002	U	86.4		0.0006	U	1	U	0.00135		0.01145		1.40	U	0.05455	-	1340	0.2	U	0.0529	
	n	16		16	-	18		16		18		16		16		17		16		18	17		17	
	%ND	75		75				81		50		6		0		65		0	1		100	1	0	1

							A BARRE		Gross Alpha-	100											Thorium	100	
Well	Sample	Arsenic		Cadmium		Chloride	Chromium		Rn222 &				Nickel		Ra226 +		Selenium		Sulfate		230		Uranium
Number	Date	(As)	As	(Cd)	Cd	(CI)	CI (Cr)	Cr	A show the part of the second	GA	Lead (Pb)	Pb	(Ni)	Ni	Ra228		(Se)	Se	(SO4)	S04	(Th230)	Th230	(U-Nat)
BL-3	07/26/06	0.0034	U	0.0005	U	196	0.0025		2.2		0.000047	U	0.0093		2.8		0.0025	U	1800		0.2	U	0.0513
BL-3	11/20/06					210			2.2										1670				
BL-3	03/14/07	0.002		0.000099	U	206	0.00045		1.6		0.000047	U	0.0205		3.1		0.0017		1890		0.2	U	0.051
BL-3	06/04/07					227			2.9						4.2				1660		0.2	U	0.0508
BL-3	08/14/07	0.002		0.000099		222	0.00042	U	3.1		0.00046		0.0068		3.9		0.0025		1650		0.2	U	0.0482
BL-3	11/05/07	0.0026		0.000099		224	0.00042	U	1.8		0.00016		0.0078		8.9		0.0035		1860		0.2	U	0.0525
BL-3	03/13/08	0.0025		0.000099		240	0.0006	U	2.3		0.00012		0.0533		4.1		0.0031		1890		0.2	U	0.0476
BL-3	05/12/08	0.0019		0.000099		245	0.0006	U	3.1		0.0001		0.0034		5.2		0.00035	U	1770		0.2	U	0.0517
BL-3	08/22/08	0.0019		0.00021	U	307	0.00068	U	2.6		0.00008		0.0032		4.21		0.0003	U	2190		0.2	U	0.0473
BL-3	12/15/08	0.0019		0.00021	U	202	0.00068	U	3.1		0.00005	U	0.0028		7.24		0.0003	U	1760		0.2	U	0.0499
BL-3	03/04/09	0.0022		0.00021	U	222	0.00068	U	2.1		0.00005	U	0.0037		5.81		0.00099	U	1680		0.1	U	0.0476
BL-3	05/28/09	0.0016		0.0002	U	229	0.0006	U	2.1		0.00014		0.0051		4.59		0.00099	U	1900		0.1	U	0.0495
BL-3	08/18/09	0.0018		0.0002	U	235	0.0006	U	1.1		0.00005	U	0.0033		5.2		0.00099	U	1820		0.2	U	0.05
BL-3	11/17/09	0.0019		0.0002	U	251	0.0006	U	2.2		0.00005	U	0.0049		5		0.00099	U	1690		0.1	U	0.0547
BL-3	03/16/10	0.0016		0.0002	U	232	0.0006	U	3.3		0.00011		0.0027		5.3		0.00099	U	1680		0.2	U	0.0485
BL-3	05/25/10	0.0016		0.0002	U	254	0.0006	U	0.7		0.00016		0.0026		4.77		0.00099	U	1940		0.1	U	0.0589
BL-3	08/17/10	0.0016		0.0002	U	241	0.0006	U	1		0.00012		0.002		5.44		0.00025	U	1550		0.1	U	0.0548
BL-3	10/12/10	0.0015		0.0002	U	241	0.0006	U	1.3		0.00011		0.0032		5.9		0.00025	U	1680		0.2	U	0.0496
	min	0.0015		0.000099	U	196	0.00042	U	0.7		0.000047	U	0.002		2.8		0.00025	U	1550		0.1	U	0.0473
	max	0.0034	U	0.0005	U	307	0.0025		3.3		0.00046		0.0533		8.9		0.0035		2190		0.2	U	0.0589
	mean	0.00197	U	0.000189	U	241	0.0007		2.1		0.000142		0.0100063		5.45		0.001265		1800		0.2	U	0.05106
	median	0.0019	U	0.0002	U	231	0.0006	U	2.2		0.000105		0.00355		5.00		0.00099	U	1765		0.2	U	0.05
	n	16		16		18	16		18		16		16		17		16		18		17		17
	%ND	6.25		100			88		0		38		0		0		75				100		0
BL-4	07/26/06	0.0034	U	0.0005	U	175	0.0029		1	U	0.0004		0.0083		1.2	U	0.0148		1500		0.2	U	0.0662
BL-4	11/20/06					167			1	U									1460				
BL-4	03/14/07	0.00067	U	0.000099	U	151	0.00058		1	U	0.00019		0.0198		1.2	U	0.0046		1490		0.2	U	0.0494
BL-4	06/04/07					160			1	U					1.2	U			1180		0.2	U	0.0411
BL-4	08/14/07	0.0007		0.000099		156	0.00042	U	1	U	0.00072		0.0106		1.2	U	0.0025		1160		0.2	U	0.0396
BL-4	11/05/07	0.0007		0.000099	U	152	0.00042	U	1	U	0.0002		0.0125		1.2	U	0.0032		1360		0.2	U	0.0451
BL-4	03/24/08	0.0007		0.000099	U	175	0.0006	U	1.3		0.00011		0.0095		1	U	0.0014		1340		0.2	U	0.0365
BL-4	05/12/08	0.0007		0.000099		175	0.0006	U	1.7		0.00019		0.0079		1.1	U	0.0012		1370		0.2	U	0.0383
BL-4	08/22/08	0.00095	U	0.00021	U	213	0.00068	U	0.6	U	0.00015		0.0076		1.51	U	0.0012		1220		0.2	U	0.0381
BL-4	12/15/08	0.00095	U	0.00021	U	123	0.00068	U	1.7		0.00005	U	0.0112		1.77		0.0012		1210		0.2	U	0.0394
BL-4	03/04/09	0.00095	U	0.00021	U	170	0.00068	U	0.9		0.00017		0.0102		1.74		0.0011		1300		0.2	U	0.0343
BL-4	06/18/09	0.00095	U	0.0002	U	283	0.0006	U	0.7	U	0.00014		0.0072		1.71	U	0.0013		1500		0.1	U	0.0367
BL-4	08/18/09	0.00095	U	0.0002	U	174	0.0006	U	0.8	U	0.000078		0.0082		1.4		0.0023		1450		0.2	U	0.0414
BL-4	11/17/09	0.00095	U	0.0002	U	178	0.0006	U	1.1		0.000098		0.0092		1.65	U	0.0019		1290		0.2	U	0.0379
BL-4	03/17/10	0.00095	U	0.0002	υ	135	0.0006	U	2.1		0.00024		0.0019		1.17		0.00099	U	1180		0.3		0.0373
BL-4	05/26/10	0.00095	U	0.0002	U	213	0.0006	U	0.4	U	0.00016		0.0011		1.43	U	0.00099	U	1130		0.1	U	0.0408
BL-4	08/18/10	0.00095	U	0.0002	U	177	0.0006	U	0.7	U	0.000088		0.00071		1.39		0.0015		1430		0.1	U	0.0458
BL-4	10/13/10	0.00095	U	0.0002	U	157	0.0006	U	0.7	U	0.00011		0.0013		1.69		0.001		1310		0.1	U	0.0389
	min	0.00067		0.000099		123	0.00042	U	0.4	U	0.00005	U	0.00071		1	U	0.00099	U	1130		0.1	U	0.0343
	max	0.0034	U	0.0005	U	283	0.0029		2.1		0.00072		0.0198		1.77		0.0148		1500		0.3		0.0662
	mean	0.00102		0.000189	U	180	0.000725		1.1		0.000205		0.0074763		1.42		0.002348		1305		0.2	U	0.040663
	median	0.00095	U	0.0002	U	172	0.0006	U	1	U	0.000155		0.00825		1.39	U	0.00135		1325		0.2	U	0.0394
	n	16		16		18	16		18		16		16		17		16		18		17		17
	%ND	100		100			88		67		6		0		65		13				94		0

Well	Sample Date	Arsenic (As)	As	Cadmium (Cd)	Cd	Chloride (Cl)	Chromium CI (Cr)	Cr	Gross Alpha- Rn222 & U	GA	Lead (Pb)	Pb	Nickel (Ni)	Ni	Ra226 + Ra228		Selenium (Se)	Se	Sulfate (SO4)	SO4	Thorium 230 (Th230)	Th230	Uranium (U-Nat)
MFG-1	02/24/05	0.00531		0.0005	U	300	0.00109		1	U	0.001	U	0.0139		1.5	U	0.001	U	2020		0.2	U	0.362
MFG-1	05/27/05					300			1.9						1.9	U			2090		0.2	U	
MFG-1	10/03/05	0.002	U	0.001	U	300	0.002	U			0.002	U	0.0132				0.002	U	2560				0.372
MFG-1	12/19/05					280													2300				
MFG-1	03/14/06	0.00148		0.0005	U	300	0.001	U	1	U	0.001	U	0.0118		2.3	U	0.001	U	2370		0.2		0.358
MFG-1	06/22/06					326									-				2320				
MFG-1	08/18/06	0.00067	U	0.00027		310	0.00089		1	U	0.00061		0.0344		3.3		0.0017		2240		0.2	U	0.146
MFG-1	11/22/06					313													2020				
MFG-1	03/22/07	0.0007		0.00027		363	0.00052		1.6		0.00079		0.0286		2.5		0.0022		2370		0.2	U	0.298
MFG-1	05/30/07					337													1940				
MFG-1	08/15/07	0.0007	U	0.00025		341	0.00051		1.9		0.0025		0.0256		2.9		0.0039		2040		0.2	U	0.133
MFG-1	11/06/07					341									-				2110				
MFG-1	03/17/08	0.0007	U	0.00023		364	0.0006	U	2		0.00034		0.0234		2		0.0018		2270		0.2	U	0.355
MFG-1	04/30/08	0.0007	U	0.00019		330	0.0006	U	2.3		0.00052		0.0105		1.9		0.00035	U	2240		0.2	U	0.395
MFG-1	08/21/08	0.00095	U	0.00021	U	417	0.00068	U	0.6	U	0.00054		0.0091		3.59		0.0003	U	2540		0.2	U	0.344
MFG-1	12/11/08	0.00095	U	0.00021		356	0.00068	U	2.5		0.00066		0.0082		3.68		0.00069		1890		0.2	U	0.364
MFG-1	02/23/09	0.00095	U	0.00021	U	326	0.00068	U	1.4		0.00089		0.0078		2.68		0.0029		2040		0.2	U	0.358
MFG-1	06/16/09	0.00095	U	0.0002	U	411	0.0006	U	1.1		0.0013		0.0076		3.44		0.0085		2520		0.1	U	0.362
MFG-1	08/19/09	0.00095	U	0.00021		386	0.0006	U	0.8		0.00046		0.0079		2.56		0.0138		1860		0.2	U	0.352
MFG-1	11/16/09	0.00095	U	0.0002	U	443	0.0006	U	0.7	U	0.00053		0.0071		4.1		0.0052		2050		0.2	U	0.388
MFG-1	03/03/10	0.00095	U	0.0002	U	327	0.0006	U	1.5		0.0003		0.007		2.53		0.0036		2100		0.2	U	0.358
MFG-1	06/08/10	0.00095	U	0.0002	U	367	0.0006	U	0.7		0.00029		0.007		4.26		0.0031		2120		0.1	U	0.367
MFG-1	08/19/10	0.00095	U	0.00053		359	0.0006	U	0.7	U	0.00051		0.0111		4.14		0.0146		2160		0.1	U	0.371
MFG-1	10/11/10	0.00095	U	0.00021		334	0.0006	U	1.2		0.00039		0.0085		3.57		0.0019		2150		0.1	U	0.367
	min	0.00067	U	0.00019	U	280	0.00051	U	0.6	U	0.00029	U	0.007		1.5	U		U	1860		0.1	U	0.133
	max	0.00531		0.001		443	0.002		2.5		0.0025		0.0344		4.26		0.0146		2560		0.2		0.395
	mean	0.00121		0.00031		343	0.000747		1.3		0.00081		0.0135		2.94		0.0038		2180		0.2	U	0.336
	median	0.00095	U	0.00021		335.5	0.0006		1.15		0.00058		0.0098		2.79		0.0021		2135		0.2	U	0.36
	n %ND	18 83		18 50		24	18 78		18 33		18 17		18		18 17		18		24 0		18 94		18 0
	%ND	03		50		U	10		33		17		U		11		20		U		94		U
TT-4	02/17/09	0.00095	U	0.00021	U	21	0.00068	U	1.5		0.00043		0.00092		1.57	U	0.00099	U	545		0.1	U	0.0269
TT-4	05/27/09	0.00095	U	0.0002	U	23.6	0.0006	U	1.2		0.00005	U	0.00065		1.38	U	0.00099	U	656		0.1	U	0.0284
TT-4	08/18/09	0.00095	U	0.0002	U	24	0.0006	U	0.7	U	0.00005	U	0.0005	U	1.4	U	0.00099	U	548		0.2	U	0.029
TT-4	11/18/09	0.00095	U	0.0002	U	21.7	0.0006	U	0.8		0.00005	U	0.00088		1.69	U	0.00099	U	539		0.1	U	0.0264
TT-4	03/18/10	0.00095	U	0.0002	U	19.9	0.0006	U	1.3		0.00013		0.0015		1.4	U	0.00099	U	509		0.2	U	0.0303
TT-4	05/26/10	0.00095	U	0.0002	U	66.3	0.0006	U	0.5	U	0.000084		0.0012		1.39	U	0.00099	U	592		0.2	U	0.0326
TT-4	08/10/10	0.00095	U	0.0002	U	21	0.0006	U	0.6	U	0.0001		0.001		1.13	U	0.00025	U	535		0.2	U	0.034
TT-4	10/20/10	0.00095	U	0.0002	U	19.3	0.0006	U	0.7	U	0.00012		0.0011		1.6	U	0.00025	U	476		0.2	U	0.0309
	min	0.00095	U	0.0002	U	19.3	0.0006	U	0.5	U	0.00005	U	0.0005	U	1.13	U	0.00025	U	476		0.1	U	0.0264
	max	0.00095	U	0.00021	U	66.3	0.00068	U	1.5		0.00043		0.0015		1.69	U	0.00099	U	656		0.2	U	0.034
	mean	0.00095	U	0.00020	U	30.2	0.000616	U	0.93		0.00015		0.000975		1.438	U	0.000768	U	553		0.2	U	0.02989
	median	0.00095	U	0.0002	U	21.4	0.0006	U	0.75		0.000092		0.00096		1.4	U	0.00099	U	542		0.2	U	0.02965
	n	8		8		8	8		8		8		8		8		8		8		8		8
	%ND	100		100		0	100		50		38		13		100		100		0		100		0

Well Number	Sample Date	Arsenic (As)	As	and the second second second	Cd		Chromium CI (Cr)	Cr	Gross Alpha- Rn222 & U	GA	Lead (Pb)	Pb	Nickel (Ni)	Ni	Ra226 + Ra228		Selenium (Se)	Se	Sulfate (SO4)	SO4	Thorium 230 (Th230)	Th230	Uranium (U-Nat) U
TT-5	02/17/09	0.002		0.00021	U	7.5	0.00068	U	0.6	U	0.00016		0.0005	U	1.63	U		U	281		0.2	U	0.0093
TT-5	05/27/09	0.0025		0.0002	U	23.2	0.0006	U	0.8		0.00005	U	0.00071		1.42	U	0.00099	U	760		0.2	U	0.0246
TT-5	08/18/09	0.0021		0.0002	U	18.1	0.0006	U	0.7	U	0.00005	U	0.0005	U	1.52	U		U	613		0.2	U	0.0163
TT-5	11/19/09	0.0021		0.0002	U	9.5	0.0006	U	1		0.00005	U	0.0005	U	1.78	U		U	396		0.1	U	0.0135
TT-5	03/17/10	0.0022		0.0002	U	12	0.0006	U	0.9		0.00013		0.0009		1.74	U		U	397		0.1	U	0.0143
TT-5	05/26/10	0.0021		0.0002	U	29.9	0.0006	U	0.5	U	0.00029		0.00091		1.28	U		U	756		0.2	U	0.0363
TT-5	08/11/10	0.002		0.0002	U	17.1	0.0006	U	0.6	U	0.00014		0.00099		1.16	U	0.00025	U	539		0.2	U	0.0227
TT-5	10/20/10	0.0021		0.0002	U	9.1	0.0006	U	0.7	U	0.000052		0.00074		2.01		0.00025	U	365		0.1	U	0.0157
	min	0.002		0.0002	U	7.5	0.0006	U	0.5	U	0.00005	U	0.0005	U	1.16	U		U	281		0.1	U	0.0093
	max	0.0025		0.00021	U	29.9	0.00068	U	1		0.00029		0.00099		2.01		0.00099	U	760		0.2	U	0.0363
	mean	0.00216		0.00020	U	16.4	0.000616		0.7		0.00013		0.000724		1.57		0.000768		515		0.2	U	0.01983
	median	0.0021		0.0002	U	14.6	0.0006	U	0.7	U	0.000091		0.000725		1.58	U	0.00099	U	468		0.2	U	0.016
	n %ND	8		8		8	8		8		8		8		8		8		8		8		8
	%ND	U		100		U	100		63		38		38		88		100		0		100		0
TT-6	02/17/09	0.0046		0.00021	U	28.9	0.00068	U	0.6	U	0.0001		0.0012		1.79	U	0.00099	U	984		0.2	U	0.0199
TT-6	05/27/09	0.0035		0.0002	U	14.7	0.0006	U	0.5		0.00005	U	0.00067		1.27	U	0.00099	U	612		0.2	U	0.015
TT-6	08/17/09	0.0036		0.0002	U	23.3	0.0006	U	0.7	U	0.00005	U	0.0005	U	1.46	U	0.00099	U	729		0.1	U	0.0146
TT-6	11/19/09	0.0043		0.0002	U	32.8	0.0006	U	1.2		0.00005	U	0.00095		1.81	U	0.00099	U	885		0.1	U	0.017
TT-6	03/17/10	0.0039		0.0002	U	22.3	0.0006	U	0.8		0.000053		0.0011		1.21	U	0.00099	U	784		0.2	U	0.0211
TT-6	05/26/10	0.0037		0.0002	U	16.6	0.0006	U	0.5	U	0.000067		0.0007		1.27	U	0.00099	U	573		0.2	U	0.015
TT-6	08/11/10	0.0037		0.0002	U	16.9	0.0006	U	0.6	U	0.000076		0.0011		1.17	U	0.00025	U	498		0.1	U	0.0136
TT-6	10/20/10	0.0048		0.0002	U	22.2	0.0006	U	0.9		0.000052		0.0014		1.16	U	0.00025	U	703		0.1	U	0.0174
	min	0.0035		0.0002	U	14.7	0.0006	U	0.5	U	0.00005	U	0.0005	U	1.16	U	0.00025	U	498		0.1	U	0.0136
	max	0.0048		0.00021	U	32.8	0.00068	U	1.2		0.0001		0.0014		1.81	U	0.00099	U	984		0.2	U	0.0211
	mean	0.00404		0.00020	U	22.5	0.000616		0.8		0.00006		0.000952		1.41				725		0.2	U	0.01683
	median	0.0038		0.0002	U	22.3	0.0006	U	0.65		0.000053		0.001025		1.27	U	0.00099	U	716		0.15	U	0.016
	n	8		8		8	8		8		8		8		8		8		8		8		8
	%ND	0		100		0	100		50		50		13		100		100		0		100		0
TT-7	02/17/09	0.00095	U	0.00021	U	97.7	0.00068	U	0.7		0.00067		0.0019		1.67	υ	0.0025		964		0.1	U	0.0442
TT-7	06/18/09	0.00095	U	0.0002	U	103	0.0006	U	1.7		0.00014		0.0016		2.35		0.0016		1160		0.1	U	0.0524
TT-7	08/17/09	0.00095	U	0.0002	U	73.6	0.0006	U	2.8		0.00005	U	0.0013		1.3	U	0.00099	U	1000		0.1	U	0.0463
TT-7	11/19/09	0.00095	U	0.0002	U	72.7	0.0006	U	1		0.0003		0.0014		1.6	U	0.00099		991		0.1	U	0.0405
TT-7	03/16/10	0.00095	U	0.0002	U	54.5	0.0006	U	2		0.0011		0.0047		1.49	U	0.0019		841		0.1	U	0.0402
TT-7	05/25/10	0.00095	U	0.0002	U	62.4	0.0006	U	0.7		0.00039		0.0026		1.16	U	0.0019		1020		0.2	Ū	0.0518
TT-7	08/11/10	0.00095	U	0.0002	U	53.5	0.0006	U	0.6	U	0.00025		0.0017		1.18	U	0.00025	U	770		0.08	Ū	0.0483
TT-7	10/22/10	0.00095	U	0.0002	U	53.4	0.001	U	0.7	U	0.000063		0.0051		1.31	U	0.0007		780		0.1	Ū	0.0495
	min	0.00095	U	0.0002	U	53.4	0.0006	U	0.6	U	0.00005	U	0.0013		1.16	U	0.00025	U	770		0.08	Ū	0.0402
	max	0.00095	U	0.00021	U	103	0.001	U	2.8		0.0011		0.0051		2.35	-and	0.0025	10000	1160		0.2	U	0.0524
	mean	0.00095	U	0.00020	U	72.7	0.000688	U	1.4		0.00041		0.00267		1.56		0.001358		946		0.12	U	0.04658
	median	0.00095	U	0.0002	U	67.6	0.0006		0.85		0.000275		0.0018		1.4		0.001295		977.5		0.1	U	0.0473
	n	8		8		8	8		8		8		8		8		8		8		8	1944	8
	%ND	100		100		0	100		25		13		0		88		25		0		100		0

la de la la desta de la defensión de la desta de la desta de la demarca de marca de la desta de la desta de la

Well	Sample Date	Arsenic (As)	As (Cd)	Cd	Chloride (Cl)	Cl (Cr)	Cr	Gross Alpha- Rn222 & U	GA	Lead (Pb) Pb	Nickel (Ni)	Ni	Ra226 + Ra228	Selenium (Se)	Se	Sulfate (SO4)	SO4	Thorium 230 (Th230)	Th230	Uranium (U-Nat) U
TT-8	02/16/09	0.0017	0.00021	U	267	0.00068	U	2.2		0.00024	0.0262		4.03	0.004		1760		0.1	U	0.117
TT-8	05/28/09	0.0013	0.0002	U	259	0.0006	U	1.3		0.00006	0.0235		2.88	0.0019		1920		0.2	U	0.114
TT-8	08/20/09	0.0012	0.0002	U	382	0.0006	U	1.1		0.00013	0.0273		2.78	0.0021		1810		0.2	U	0.116
TT-8	11/19/09	0.0013	0.0002	U	258	0.0006	U	1		0.00012	0.028		3.8	0.0022		1950		0.1	U	0.127
TT-8	03/15/10	0.0015	0.0002	U	242	0.0006	U	2.6		0.00019	0.0277		3.81	0.0017		1770		0.2	U	0.113
TT-8	05/18/10	0.0014	0.0002	U	228	0.0006	U	0.6		0.00019	0.0283		3.25	0.0018		1590		0.2	U	0.117
TT-8	08/11/10	0.0016	0.0002	U	230	0.0006	U	0.7		0.00019	0.0279		2.48	0.0017		1590		0.2	U	0.117
TT-8	10/22/10	0.0016	0.0002	U	217	0.0006	U	1.9	U	0.00024	0.0292		3.94	0.0017		1470		0.2	U	0.118
	min	0.0012	0.0002	U	217	0.0006	U	0.6		0.00006	0.0235		2.48	0.0017		1470		0.1	U	0.113
	max	0.0017	0.00021	U	382	0.00068	U	2.6		0.00024	0.0292		4.03	0.004		1950		0.2	U	0.127
	mean	0.00145	0.00020	U	268	0.000616	U	1.5		0.00017	0.02708		3.35	0.00228		1728		0.2	U	0.1179
	median	0.00145	0.0002	U	250	0.0006	U	1.2		0.00019	0.0278		3.53	0.00185		1765		0.2	U	0.117
	n	8	8		8	8		8		8	8		8	8		8		8		8
	%ND	0	100		0	100		13		0	0		0	0		0		100		0

Vell Name	Sample Date	Alkalinity, Bicarbona te	Alkalinity, Carbonate	Calcium (Ca)	Chloride (Cl)	Alpha- Rn222 & U	Magnesiu m (Mg)	Potassium (K)	Ra226 + Ra228	Selenium (Se)	Sodium (Na)	Sulfate (SO4)	TDS	Thorium 230 (Th230)	Uranium (U-Nat)	pH-Field	Conductivi ty-Field	Temp (degC)
Creek 1 Creek 1	8/19/2008 5/27/2009	11.4 60.3	51.4 26.1	43.5 79.1	8.1 11.2	0.8 1.1	37 61.5	11.2 7.48	1.74 U 1.41 U	0.0003 U 0.00099 U	199 342	681 1080	976 1550	0.2 U 0.2 U	0.0097	10.18 9.05	1418 2090	23.1 20.4
Creek 1 Creek 1	8/17/2009 5/25/2010	30.4 166 76	36.9 5.4	86 158 179	18.9 15.7 26.8	0.5 U 0.5 U 0.7	77 82.9 119	12.4 9.42 16	1.7 U 1.14 U 1.28 U	0.00099 U 0.00099 U 0.00025 U	430 374 653	1220 1360 2070	2030 2140 3150	0.3 U 0.2 U 2.6 U	0.0188 0.0301 0.006	9.57 8.08 7.11	2780 4130 3920	20.2 14.3 22.3
Creek 1	8/10/2010 min max	11.4	9.9 5.4 51.4	43.5	8.1	0.7 0.5 U 1.1	37	7.48	1.14 U 1.74 U	0.00025 U 0.00099 U	199	681 2070	976 3150	0.2 U 2.6 U	0.006	7.11 10.18	1418	14.3
	mean	68.82	25.94 26.1	109.12	16.14 15.7	0.72	75.48	11.3 11.2	1.454 U 1.41 U	0.000704 U 0.00099 U	399.6 374	1282.2 1220	1969.2 2030	0.7 U 0.2 U	0.02026	8.798 9.05	2867.6 2780	20.06 20.4
	n %ND	5	5	5	5	5 40	5	5 0	5 100	5 100	5	5 0	5	5 100	5 0	5 0	5 0	5
Creek 2	8/19/2008	468	0.46 U	39.9	23.1	1.1	31	16.7	1.8 U	0.00052 J	179	141	772	0.2 U	0.0324	7.83	1174	23.7
Creek 2 Creek 2	5/27/2009 5/25/2010	391 451	0.46 U 0.46 U	270	86.2 11.9	0.9 U 0.7	62.6 43.1	9.94	2.6 1.35 U	0.00099 U 0.00099 U	353 228 179	1130 554 141	2150 1250 772	0.6 U 0.2 U 0.2 U	0.0735 0.0886 0.0324	7.5 7.58 7.5	2730 1747 1174	23.3 17.1 17.1
	min max mean		0.46 U 0.46 U 0.46 U	39.9 270 147.6333	11.9 86.2 40.4	0.9 U 1.1 0.9	31 62.6 45.56667	3.49 16.7 10.04333	1.35 U 2.6 1.916667 U	0.00099 U 0.00052 0.000833	353	1130 608.3333	2150 1390.667	0.6 U 0.333333 U	0.0886	7.83	2730 1883.667	23.7 21.36667
	median		0.46 U 3	133	23.1	0.9	43.1	9.94	1.8 U	0.00099 U 3	228	554	1250	0.2 U 3	0.0735	7.58	1747	23.3
	%ND	to an	100	0	0	33.33333	0	0	66.66667	66.66667	0	0	0	100	0	0	0	0
Creek 3 Creek 3	8/19/2008 5/27/2009	390 260	62.1 16	29.7 72.7	37.1 24.2	1.8 0.9 U	40.3 48.5	13.4 3.72	1.53 U 1.3 U	0.00032 J 0.00099 U	420 345	678 824	1470 1340	0.2 U 0.3 U	0.05	8.83 8.5	2.08 1922	22.9 20.1
Creek 3 Creek 3	8/17/2009 5/25/2010	293 413	99.5 3.7	19.4 127	64.2 83.8	1 0.5 U	45.8 54.4	15.1 4.79	2.6 U 1.84 U	0.00099 U 0.00099 U	376 327	702 769	1440 1530	0.3 U 0.1 U	0.0241	9.13 8.22	2140 2110	21.2 17.7
Creek 3	8/10/2010 min	244	117 3.7	19.4 19.4	44.5	2 0.5 U	49.2 40.3 54.4	17 3.72 17	1.28 U 1.28 U 2.6 U	0.00032 J 0.00099 U 0.00032	425 327 425	725 678 824	1620 1340 1620	0.2 U 0.1 U 0.3 U	0.0197 0.0197 0.0676	9.37 8.22 9.37	2250 2.08 2250	22.6 17.7 22.9
	max mean median	320	117 59.66 62.1	127 53.64 29.7	83.8 50.76 44.5	2 1.24	47.64	10.802	1.71 U 1.53 U	0.00032 0.000722 0.00099 U	378.6	739.6	1480	0.22 U 0.2 U	0.03948	8.81 8.83	1684.816 2110	20.9
	%ND	5	5	5	5	5 40	5	5	5 100	5 60	5	5	5	5 100	5 0	5 0	5 0	5
Creek 4	8/19/2008	176	0.46 U	157	98.8	1.2	101	9.68	1.5 U	0.0003 U	367	1380	2170	0.2 U	0.004	7.39	2.68	22.7
Creek 4 Creek 4	5/27/2009 8/17/2009	269 149	0.46 U 0.46 U	132 128	44.1 82.6	1.1 0.5 U	62.1 75.9	4.74	1.3 U 3.1 U	0.00099 U 0.00099 U	303 265	905 1110 770	1540 1630 1560	0.5 U 0.2 U 0.2 U	0.0251 0.0074 0.0627	7.51 7.95 8.08	2070 2230 2130	20 19.6 19.4
Creek 4 Creek 4	5/25/2010 8/10/2010	387 105 105	0.46 U 0.46 U 0.46 U	139 145 128	31.8 80.2 31.8	0.5 U 0.8 0.5 U	60.3 92.3 60.3	4.81 9.43 4.74	1.25 U 1.29 U 1.25 U	0.00099 U 0.00025 U 0.00025 U	307 360 265	1280 770	2110	0.2 U 0.1 U 0.1 U	0.0046	7.9	2630	21.3
	max	387	0.46 U 0.46 U	157 140.2	98.8	1.2	101 78.32	9.68	3.1 U 1.688 U	0.00099 U 0.000704 U	367 320.4	1380 1089	2170 1802	0.5 U 0.24 U	0.0627	8.08 7.766	2630 1812.536	22.7 20.6
	median	176	0.46 U 5	139 5	80.2 5	0.8 5	75.9 5	5.64 5	1.3 U 5	0.00099 U 5	307 5	1110 5	1630 5	0.2 U 5	0.0074	7.9 5	2130 5	20 5
	%ND		100	0	0	40	0	0	100	100	0	0	0	100	0	0	0	0
Creek 5 Creek 5	8/19/2008 5/27/2009	260 281	0.46 U 0.46 U	31.3 221	8 81.8	1 0.9 U	19.2 88.5 80.6	6.67 6.4 5.46	1.52 U 1.87 U 1.25 U	0.0003 U 0.00099 U 0.00099 U	146 328 293	263 1180 1010	604 2130 1850	0.2 U 0.4 U 0.2 U	0.0044 0.0288 0.0478	7.67 8.05 7.85	920 2650 2330	22.3 25 19.3
Creek 5	5/25/2010 min max	and the second s	0.46 U 0.46 U 0.46 U	195 31.3 221	126 8 126	0.5 U 0.5 U 1	19.2 88.5	5.46 5.46 6.67	1.25 U 1.25 U 1.87 U	0.0003 U 0.0009 U	146 328	263 1180	604 2130	0.2 U 0.4 U	0.0044	7.67	920 2650	19.3
	mean	296	0.46 U 0.46 U	149.1	71.93333	0.8 0.9 U	62.76667 80.6	6.176667 6.4	1.546667 U 1.52 U	0.00076 U 0.00099 U	255.6667 293	817.6667 1010	1528 1850	0.266667 U 0.2 U	0.027	7.856667 7.85	1966.667 2330	22.2 22.3
			3 100	3	3	3 66.66667	3	3 0	3 100	3 100	3	3	3	3 100	3	3 0	3 0	3
Creek 6	8/19/2008	242	6.4	51.8	31.6	1.4	30	8.74	1.51 U	0.0003 U	163	376	792	0.2 U	0.0053	8.27 8.38	1155 1382	23.7
Creek 6 Creek 6	5/27/2009 8/17/2009	255 262	8.6 2.2	66.3 48.2	36.4 44.1 40.1	0.9 U 0.5 U	36.3 42.6 37	5.91 7.39 5.68	1.41 U 2.59 U 1.14 U	0.00099 U 0.00099 U 0.00099 U	215 226 194	442 444 419	927 1040 923	1.7 U 0.1 U 0.2 U	0.0163 0.0061 0.0119	8.38 8.17 8.2	1382 1589 1359	21 22.4 15.7
Creek 6 Creek 6	5/25/2010 8/10/2010	278 270 242	0.46 U 5.6 0.46 U	64.3 45.3 45.3	40.1 42.6 31.6	0.5 U 1.3 0.5 U	37 39.5 30	5.68 7.17 5.68	1.14 U 1.18 U 1.14 U	0.00099 U 0.00025 U 0.00025 U	194 229 163	419 430 376	923 998 792	0.2 U 0.2 U 0.1 U	0.0051	8.2 8.17	1466	22.5
	mir max mear	278	8.6 4.652	66.3 55.18	44.1	1.4	42.6	8.74 6.978	2.59 U 1.566 U	0.00099 U 0.000704 U	229	444	1040 936	1.7 U 0.48 U	0.0163	8.38 8.244	1589 1390.2	23.7 21.06
****	mediar	262	5.6	51.8	40.1	0.9 U	37	7.17	1.41 U	0.00099 U	215	430	927	0.2 U 5	0.0061	8.2 5	1382	22.4 5

Well	Well	Sample	As (mg/l)	Cd (mg/l)	Cl (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra 226 (pCi/L)	Ra228 (pCi/L)	Ra226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
Groundw	ater Protec	tion										(r /	u /	()/	((((()	(
Standard	ls:		0.05	0.01		0.1	15	0.05	0.1					5	0.05				0.55	0.03
Backfill M	Monitor				Sector Secon	State State		diam'r	12111	A Promotion	CONTRACTOR OF	The second					Contractor of			
170		3/6/2009			39.9		8.7				7.73	7.8	2	9.8	<0.00099	104	475	855	0.2	0.526
		8/13/2009			79.1		9.8				7.47	8.2	0.9	9.1	<0.00099	107	511	831	0.2	0.561
		11/9/2009									7.06	an and an a set of								
		2/11/2010			47.8		9.7				7.37	7.8	3.6	11.4	<0.00099	113	527	853	0.2	0.595
		8/16/2010			46.6		8.6		1		7.23	6.9	1.6	8.5	<0.00025	100	460	855	0.1	0.584
me	an/median				53.4		9.2				7.37	7.7	2.0	9.7	< 0.00099	106	493	849	0.175	0.567
		3/2/2009	< 0.00095	< 0.00021	30.5	< 0.00068	0.8	0.00031	0.0022	0.04	6.58	0.46	1.4	1.86	< 0.00099	106	484	857	< 0.2	0.001
171	TDM XXXVI	5/18/2009			63.9					0.04	6.28					99.1	559	854		
		8/13/2009	< 0.00095	< 0.0002	33.9	< 0.0006	0.9	0.000072	0.0012	0.064	6.24	0.34	1.2	1.54	<0.00099	107	598	860	< 0.2	0.0011
		11/9/2009			34.1					0.04	6.48					105	497	858		
		2/12/2010	< 0.00095	< 0.0002	60.5	< 0.0006	1.1	0.00005	0.00062	< 0.04	6.46	0.2	2	2.2	< 0.00099	108	544	833	< 0.2	0.0011
		5/14/2010			33.7					< 0.04	6.96					105	494	885		
		8/18/2010	< 0.00095	< 0.0002	37	< 0.0006	0.3	0.0024	0.0012	0.058	6.88	0.22	1.2	1.42	< 0.00025	98	552	869	<0.1	0.0012
		11/1/2010			34.7					< 0.04	6.71					99.9	477	850		
me	an/median		< 0.00095	< 0.0002	39.5	< 0.0006	0.8	0.00071	0.0013	0.04	6.53	0.31	1.5	1.76	<0.00099	104	521	858	< 0.2	0.001
		2/23/2009	< 0.00095	< 0.00021	92.4	< 0.00068	2.3	0.00018	< 0.0005	< 0.04	7.09	0.81	1.5	2.3	< 0.00099	90.3	406	884	< 0.2	0.0029
173	TDM XXXX	5/18/2009			114					< 0.04	7.55					91.7	462	891		
		8/10/2009	< 0.00095	< 0.0002	126	< 0.0006	0.8	0.000064	< 0.0005	< 0.04	7.61	0.49	1.2	1.69	< 0.00099	90.2	438	890	< 0.2	0.0029
		11/11/2009			98.1					< 0.04	7.63					97.7	419	883		
	1	2/12/2010	< 0.00095	< 0.0002	93.7	<0,0006	1.1	0.00005	< 0.0005	< 0.04	7.31	0.42	2.2	2.62	<0.00099	91.5	452	869	<0.1	0.0031
	1 1	5/10/2010			109					< 0.04	7.36					94.2	410	901		
		8/18/2010	< 0.00095	< 0.0002	102	< 0.0006	0.8	0.001	< 0.0005	< 0.04	7.01	0.47	1.3	1.77	<0.00025	85.1	454	884	< 0.1	0.0032
		11/3/2010			83.4					< 0.04	7.39					85.9	392	870		
me	an/median		< 0.00095	< 0.0002	100	< 0.0006	1.3	0.00032	<0.0005	< 0.04	7.38	0.55	1.6	2.1	< 0.00099	90.7	429	884	< 0.2	0.0030
	T	3/13/2009	Drv																	
180	TDM XLVI	5/20/2009																		
		8/31/2009																		
		11/20/2009																		
	1	3/3/2010																		
	1	5/14/2010																		
	1 1	8/20/2010																		
		11/5/2010																		

Well Number	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	Cl (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra 226 (pCi/L)	Ra228 (pCi/L)	Ra226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
Groundw Standard	ater Prote	tion	0.05	0.01		0.1	15	0.05	0.1					5	0.05				0.55	0.03
OBSS Mo			0.05	0.01		0.1	10	0.05	0.1					0	0.05				0.55	0.03
0000 110		2/18/2009	< 0.00095	< 0.00021	81.9	< 0.00068	1.4	< 0.00005	< 0.0005	< 0.04	7.22	0.97	5.3	6.27	<0.00099	109	731	1470	<0.2	0.0137
116	TDM XI	5/19/2009		-0.00021	78.1	40.00000	1.4	-0.00000	40.0000	< 0.04	7.21	0.57	0.0	0.21	~0.00035	98.7	840	1510	-0.2	0.0137
110		8/31/2009		<0.0002	78.1	< 0.0006	2.1	< 0.00005	< 0.0005	< 0.04	7.15	1.4	4.7	6.1	< 0.00099	106	720	1530	< 0.1	0.015
		11/3/2009		-0.0002	68.1	-0.0000	E . 1	-0.00000	40.0000	< 0.04	7.13	1.4	4.7	0.1	-0.00033	100	723	1510	-0.1	0.013
		2/6/2010		< 0.0002	75.6	<0.0006	2.4	< 0.00005	< 0.0005	< 0.04	7.01	1.9	4.2	6.1	< 0.00099	106	860	1500	< 0,1	0.0148
		4/29/2010			66.6				0.0000	< 0.04	7.22	1.0	1.2	0.1	-0.00000	109	733	1490	-0.1	0.0140
		7/30/2010		<0.0002	69.6	<0.0006	1.7	<0.00005	<0.0005	< 0.04	7.32	0.91	2.8	3.71	<0.00025	113	739	1550	0.2	0.0156
		10/30/2010			85.3			2		< 0.04	7.24					97.2	751	1560		
mea	an/median		< 0.00095	< 0.0002	76.9	<0.0006	1.9	< 0.00005	< 0.0005	<0.04	7.22	1.3	4.3	5.5	< 0.00099	106	736	1515	<0.1	0.015
		4/1/2009	< 0.00095	< 0.00021	2.3	< 0.00068	1.4	0.00025	0.003	< 0.04		< 0.25	<1.4	<1.65	< 0.00099	102	36	463	< 0.1	0.0048
128	TDM XXX	6/17/2009	9		6.6					< 0.04	7.27					104	179	469		
		8/25/2009	< 0.00095	< 0.0002	9.3	< 0.0006	0.7	0.00023	0.0027	< 0.04	6.90	<0.18	<1.1	<1.28	<0.00099	93.3	150	466	< 0.2	0.0042
		11/6/2009)		7.5					< 0.04	7.10					106	177	462		
		2/8/2010	< 0.00095	< 0.0002	7	< 0.0006	0.8	0.0019	0.0043	< 0.04	7.09	0.42	<1.2	<1.62	< 0.00099	103	161	462	< 0.2	0.005
		5/3/2010)		6.8					0.049	7.47					95.9	123	434		
		8/2/2010	< 0.00095	< 0.0002	7.1	< 0.0006	0.7	0.002	0.0044	< 0.04	7.14	<0.17	<1	<1.17	<0.00025	99.7	134	453	< 0.2	0.0041
		11/1/2010)		6.8					< 0.04	7.55					91.3	128	444		
mea	an/median		< 0.00095	< 0.0002	6.9	< 0.0006	0.9	0.00110	0.0036	<0.04	7.14	<0.18	<1.4	<1.28	< 0.00099	99	142	462	< 0.2	0.0045
		2/19/2009	< 0.00095	< 0.00021	52	0.00068	1.5	0.000056	0.0059	0.04	7.11	0.17	1.7	<1.87	0.0017	166	597	1140	< 0.2	0.0012
129	TDM XXX	5/21/2009	9		35.1					14.5	7.12					187	1160	1880		
		9/1/2009	< 0.00095	< 0.0002	61.7	0.0007	0.7	0.000076	0.0118	2.8	6.92	0.17	<1.1	<1.27	0.272	183	964	1670	< 0.2	0.0024
		11/9/2009			65.1					0.5	7.30					168	737	1420		
		2/10/2010		< 0.0002	64	0.0006	0.8	0.00009	0.003	0.047	6.96	0.45	<1.1	<1.55	0.0016	164	547	967	<0.2	0.0011
		5/3/2010			42.8					4.3	7.29					166	491	1090		
		8/2/2010		< 0.0002	20	0.0006	0.7	0.00013	0.0216	5.2	6.79	0.23	<0.96	<1.19	0.864	195	1200	1880	<0.1	0.0044
		11/1/2010			42.8					0.38	7.10					174	946	1710		
mea	an/median		< 0.00095	< 0.0002	47.4	0.0006	0.9	0.00009	0.0106	1.7	7.11	0.34	<1.1	<1.27	0.285	175	830	1470	< 0.2	0.0023
		3/13/2009																		
148	TDM XXXII	6/17/2009																		
		8/24/2009																		
		11/17/2009																		
		3/3/2010																		
		5/14/2010																		
		8/20/2010																		
		11/5/2010																		
150*		5/17/2002			29.5		H					0.5	Same Constant		0.00112		512	1130		1.35
		10/11/2002		< 0.01	16.48	< 0.05		< 0.05	< 0.02	< 0.1	6.7	0.4	and a survey		0.001	157.5	413.2	871.99		0.0003
	an/median	10111100	< 0.001	< 0.01	23.0	< 0.05		< 0.05	< 0.02	< 0.1	6.7	0.5			0.0011	158	463	1001		0.6752
152*		10/11/2002		< 0.01	120.8	< 0.05		< 0.05	0.02	0.79	7.3	0.9			0.001855	130.6		2784.73		0.02
mea	an/median		< 0.001	<0.01	120.8	< 0.05		< 0.05	0.02	0.79	7.3	0.9			0.001855	130.6		2784.73		0.02

Well Number	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	Cl (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra226 (pCi/L)	Ra 228 (pCi/L)	Ra226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
Groundw Standard	ater Protec s:	tion	0.05	0.01		0.1	15	0.05	0.1					5	0.05				0.55	0.03
TDSS Ba	ckground	The Contraction of	a contraction of				Same in	a harden al se	La Lines	N. Constant	de de Colorad	that a second						Sector Sector		Party Review de
		3/2/2009	/2/2009 <0.00095 <0.00	< 0.00021	16.2	<0.00068	<0.8	< 0.00005	< 0.0005	< 0.04	7.49	0.17	< 0.96	<1.13	< 0.00099	219	581	1150	< 0.2	0.0009
134	RM-4	5/18/2009			20.5					< 0.04	7.41					197	675	1160		
		8/10/2009	< 0.00095	< 0.0002	18.6	< 0.0006	<0.7	< 0.00005	< 0.0005	< 0.04	7.55	0.43	<1.2	<1.63	< 0.00099	191	648	1130	< 0.1	0.001
		11/6/2009			19.5					< 0.04	7.54					213	611	1170		
		2/11/2010	< 0.00095	< 0.0002	16.8	<0.0006	1.3	< 0.00005	<0.0005	< 0.04	7.32	0.2	2.1	<2.3	< 0.00099	218	653	1130	< 0.1	0.001
	1 [5/4/2010			17.7					< 0.04	7.30					217	551	1130		
		8/16/2010	< 0.00095	< 0.0002	18.1	< 0.0006	<0.7	< 0.001	< 0.0005	< 0.04	7.56	0.41	1	1.41	< 0.00025	199	521	1180	< 0.1	0.0013
	[[11/1/2010			20.6					< 0.04	7.39					197	576	1150		
mea	an/median		< 0.00095	< 0.0002	18.4	< 0.0006	<0.7	< 0.00005	< 0.0005	<0.04	7.45	0.30	<1.2	<1.63	< 0.00099	206	596	1150	< 0,1	0.001
		2/18/2009	< 0.00095	< 0.00021	8.2	<0.00068	1.3	< 0.00005	< 0.0005	< 0.04	7.77	0.98	1.5	2.48	< 0.00099	110	296	575	<0.1	< 0.0003
172	EM-5	5/19/2009			10.2					< 0.04	7.79					112	326	582		
		8/12/2009	< 0.00095	< 0.0002	175	< 0.0006	1.6	< 0.00005	< 0.0005	< 0.04	7.82	0.67	1.6	2.27	< 0.00099	123	386	564	< 0.2	< 0.0003
		11/11/2009			6.1					< 0.04	7.62	0101			0.00000	118	292	572		
	1	2/15/2010	< 0.00095	<0.0002	7	<0.0006	1.1	< 0.00005	< 0.0005	< 0.04	7.59	0.6	2	2.6	< 0.00099	118	327	574	< 0.09	< 0.0003
	l ł	5/10/2010			8.7					< 0.04	7.55	0.0	-	2.0		119	287	596	.0,00	
		8/13/2010	< 0.00095	<0.0002	9.1	<0.0006	1.3	< 0.00005	<0.0005	< 0.04	7.89	0.92	1.2	2.12	<0.00025	118	315	604	<0.1	0.0003
		11/2/2010			8.2			۷		< 0.04	7.54					109	284	577		
	an/median	11/2/2010	< 0.00095	< 0.0002	8.5	< 0.0006	1.3	< 0.00005	< 0.0005	<0.04	7.70	0.79	1.6	2.37	< 0.00099	116	306	576	-0.4	< 0.0003
mea	an/median	2/18/2009					1.3												< 0.1	
474			< 0.00095	< 0.00021	5.4	<0.00068	1	0.00005	<0.0005	< 0.04	7.86	0.29	1.2	1.49	< 0.00099	76.4	100	306	<0.2	< 0.0003
174	TDM XL	5/19/2009	0.00005	0.0000	6.3	0.0000		0.000000	0.0005	< 0.04	7.81	0.17				71.2	106	311		
		9/2/2009	< 0.00095	< 0.0002	5.3	<0.0006	1	0.000066	< 0.0005	< 0.04	7.82	0.17	1.3	<1.47	< 0.00099	64	108	311	<0.2	< 0.0003
	and the second second second	11/12/2009			5					< 0.04	7.75					73.5	105	311		
		2/15/2010	< 0.00095	< 0.0002	4.6	<0.0006	0.9	< 0.00005	<0.0005	< 0.04	7.51	0.29	1.2	<1.49	< 0.00099	68	91.5	309	<0.2	< 0.0003
	h	4/30/2010			4.6					<0.04	7.62					65.9	94.2	307		
		8/13/2010	<0.00095	<0.0002	5.8	<0.0006	0.6	<0.00005 2	<0.0005	<0.04	8.08	0.16	0.9	<1.06	<0.00025	73.6	106	318	<0.1	<0.0003
		11/2/2010			5.3					< 0.04	7.83					67.2	94.8	312		
mea	an/median		< 0.00095	< 0.0002	5.3	< 0.0006	0.9	< 0.00005	< 0.0005	<0.04	7.82	0.23	1.2	<1.49	< 0.00099	70	103	311	< 0.2	< 0.0003
		3/5/2009	< 0.00095	< 0.00021	11.1	< 0.00068	1	0.00005	< 0.0005	< 0.04	8.11	0.21	<1.1	<1.31	< 0.00099	112	188	418	< 0.2	< 0.0003
182	TOM XLVII	5/21/2009			12					< 0.04	7.94					117	203	426		
	I I	8/11/2009	< 0.00095	< 0.0002	97.3	< 0.0006	0.7	0.000091	< 0.0005	< 0.04	8.11	0.23	<1.3	<1.53	< 0.00099	129	203	426	< 0.2	< 0.0003
	l f	11/5/2009			12.2					< 0.04	7,93					114	206	437		
		2/16/2010	< 0.00095	< 0.0002	8.9	< 0.0006	0.6	0.000093	< 0.0005	< 0.04	7.93	0.46	1.7	2.16	< 0.00099	121	189	426	< 0.1	< 0.0003
		5/4/2010			13.1					< 0.04	7,79					114	176	422		
		8/13/2010	< 0.00095	< 0.0002	12.6	< 0.0006	0.6	0.000094	0.00084	< 0.04	7.71	0.39	<1.4	<1.79	< 0.00025	113	204	432	< 0.2	< 0.0003
	l F	11/4/2010			12.5		-11-			< 0.04	8.01					90	186	422	212	
me	n/median		< 0.00095	< 0.0002	12.4	< 0.0006	0.7	0.00008	< 0.0005	<0.04	7.94	0.32	<1.3	<1.53	< 0.00099	113	196	426	< 0.2	< 0.0003

Well Number	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	CI (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra 226 (pCi/L)	Ra228 (pCi/L)	Ra226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
	ater Protec	tion										u /	. ,	<u>, , , , , , , , , , , , , , , , , , , </u>						
tandard	andards:			0.01		0.1	15	0.05	0.1					6	0.05				0.55	0.03
DSS Co	mpliance N	Ionitor Wel	Casto and State	20127 20 C 100				A state of the	C. The Plant of the	Cont. Physics	and the second	Con Con Land	a Villa Carl					and a state of the		
		2/19/2009	< 0.00095	< 0.00021	14.2	0.001	3.7	0.00005	0.0029	0.31	7,19	0,17	0,94	1.11	0.0038	90.6	630	819	0.2	0.015
125	TDM XXVI	5/22/2009			13					1.1		1000				78.3	374	768		
		8/24/2009	< 0.00095	< 0.0002	12.6	0.0006	2.1	0.00019	0.0015	1	7.03	0.8	2.8	3.6	0.0103	77.2	356	757	0.7	0.0173
		11/11/2009			10.2					1.2	7.22					86.8	333	765		
		2/8/2010	< 0.00095	< 0.0002	12.3	0.0006	2.8	0.000076	0.002	1.4	7.12	1.2	1.8	3	0.0142	81.9	403	754	0.5	0.016
	1	5/3/2010			10.8					1.5	7.27					84	322	799		
		8/2/2010	< 0.00095	< 0.0002	11.7	0.0006	4.1	0.00005	0.0015	1.6	7.29	0.77	1.6	2.37	0.0151	82.4	328	803	0.6	0.016
		10/30/2010			13.8					1.6	7.20					82.1	366	812		
mea	an/median		< 0.00095	< 0.0002	12.5	0.0007	3.2	0.00009	0.0020	1.3	7.21	0.7	1.8	2.5	0.0109	82.3	361	784	0.5	0.01
		2/19/2009	< 0.00095	< 0.00021	280	< 0.00068	2.4	0.00055	0.808	0.4	6.35	1.4	7.4	8.8	< 0.00099	307	3090	5100	< 0.2	0.028
175	TDM XLI	5/20/2009			300					0.04	6.39					308	3330	3980		
		8/31/2009	< 0.00095	< 0.0002	296	<0.0006	1.3	0.000054	0.797	0.042	6.37	0.8	9.4	10.21	< 0.005	290	2840	5070	< 0.2	0.028
		11/12/2009			295					0.04	6.39					282	3140	4950		
		2/16/2010	< 0.00095	< 0.0002	371	<0.0006	2.3	0.00026	0.766	< 0.04	6.34	1.5	9.1	10.6	< 0.00099	281	2850	4640	< 0.5	0.0065
	1	5/10/2010			275					0.045	6.48					300	2880	4880		
		8/3/2010	< 0.00095	< 0.0002	281	<0.0006	1	0.00022	0.703	< 0.04	6.39	0.6	6.7	7.3	0.00032	290	2720	4780	<0.1	0.032
		11/3/2010			269					< 0.04	6.52					266	2820	4740		
mea	an/median		< 0.00095	< 0.0002	288	<0.0006	1.8	0.00027	0.769	0.04	6.39	1.1	8.2	9.2	< 0.005	290	2865	4768	<0.2	0.024
	1	3/3/2009	< 0.00095	< 0.00021	231	< 0.00068	2.1	0.00005	< 0.0005	0.04	7.01	0.95	3.3	4.25	< 0.00099	246	2310	4150	< 0.2	<0.000
176	TOM XLII	5/21/2009			241					0.043	6.84					248	2840	4020		
		8/12/2009	< 0.00095	< 0.0002	217	< 0.0006	1.1	0.000056	<0.0005	0.04	7.02	0.83	4.4	5.23	< 0.00099	241	1990	4100	<0.2	<0.000
		11/6/2009			264					0.04	6.87					212	2180	4100		
		2/23/2010	< 0.00095	< 0.0002	235	<0.0006	1.2	0.00005	<0.0005	< 0.04	6.81	1.4	5.7	7.1	< 0.00099	228	2100	3970	< 0.2	<0.000
	1	5/5/2010			237					< 0.04	6.89					224	1990	4040		
		8/3/2010	<0.00095	<0.0002	257	<0.0006	1.1	0.000067	0.0015	< 0.04	6.79	0.8	3.8	4.6	< 0.00025	230	2020	4060	<0.2	<0.0003
		11/3/2010			254					< 0.04	6.87					211	2070	3890		
mea	an/median		< 0.00095	< 0.0002	239	<0.0006	1.4	0.00006	< 0.0005	0.04	6.87	1.00	4.3	5.30	<0.00099	230	2188	4050	<0.2	< 0.0003
		1/26/1996	0.002	< 0.01	272	< 0.05	3.2	< 0.05	0.03		7.00	0.9	<1	<1.9	< 0.001	250	2348	4179	< 0.2	0.076
177*	TOM XLIII	7/10/1996	0.001	<0.01	240	<0.05	1	<0.05	0.02	3.03	7.40	0.9	<1	<1.9	<0.001	262	2470	4299	<0.2	0.08
mea	an/median		0.002	< 0.01	256	< 0.05	2.1	< 0.05	0.03	3.03	7.20	0.9	<1	<1,9	< 0.001	256	2409	4239	<0.2	0.081

Well	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	CI (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra 226 (pCi/L)	Ra 228 (pCi/L)	Ra 226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
undw	ater Protec		0.05			0.1	15	0.05							0.05				0.55	
ndard SS Mo			0.05	0.01	Contractory of the party	0.1	16	0.05	0.1					5	0.05		and The second		0.65	0.03
		3/13/2009	Dry	and the second second second								and the second second					and the second			
15	TDM DR	5/22/2009																		
		8/13/2009																		
		11/18/2009	Dry																	
		5/3/2010	Dry																	
		8/20/2010																		1.1.11
			<0.00095	< 0.00021	121	<0.00068	1.3	0.00018	0.0038	< 0.04	7.08	0.56	0.96	1.52	<0.00099	237	1760	3080	<0.1	0.0
112	TDM VII	5/22/2009			144					< 0.04	7.04					240	1860	3080		
			<0.00095	<0.0002	156	<0.0006	0.6	0.00011	0.0035	< 0.04	7.06	0.29	4.6	4.89	<0.00099	225	1890	2980	< 0.2	0.0
		11/3/2009			107					< 0.04	7.10					242	1760	3180		
		2/5/2010	<0.00095	<0.0002	108	<0.0006	1.6	0.00005	0.0031	<0.04	7.12	1.1	2.7	3.8	<0.00099	248	1730	2950	<0.1	0.0
		4/29/2010			103					< 0.04	7.11					244	1560	2960		
		7/30/2010	<0.00095	<0.0002	102	< 0.0006	0.8	0.00014	0.0031	< 0.04	7.20	0.28	2	2.28	<0.00025	243	1460	2870	<0.1	0.0
	1	10/29/2010			100					<0.04	7.18					214	1550	2840		
me	an/median		<0.00095	< 0.0002	116	<0.0006	1.1	0.00012	0.0034	<0.04	7.11	0.56	2.6	3.12	<0.00099	241	1745	2970	<0.1	0.0
			<0.00095	0.00021	307	<0.00068	0.8	0.00005	0.876	0.4	5.83	0.29	1.6	1.89	<0.00099	289	3670	5380	<0.2	<0.0
114	TDM IX	5/20/2009			326					0.18	5.94					320	3970	5530		
			<0.00095	0.00054	357	<0.0006	0.8	0.0031	0.984	0.04	6.53	0.43	6.6	7.03	< 0.005	306	3220	5300	<0.1	<0.0
		11/3/2009	-0.00005	10 0000	297	-0.0000	7.0	0.00005	0.544	0.044	6.24	-			10.00000	299	3300	5370	-0.0	-0.0
		4/29/2010	<0.00095	< 0.0002	292 308	<0.0006	7.8	0.00005	0.541	<0.04 <0.04	6.33 6.43	2	3.3	5.3	<0.00099	303 295	3620 3230	5210 5220	<0.2	<0.0
			<0.00095	< 0.0002	279	< 0.0006	2.0	0.000096	0.667	< 0.04	5.73	0.19	3.6	2 70	<0.00025	295	3230	5220	0.4	0.0
	an/median	10/29/2010	<0.00095	<0.0002	343	<0.0006	2.0	0.000096	0.667	< 0.04	6.13	0.19	3.0	3.19	<0.00025	296	3030	5180	0.4	0.0
1111		10/29/2010	<0.00095	0.00038	313	<0.0006	3.1	0.0008	0.767	0.11	6.15	0.73	3.8	4.50	< 0.00099	213	3410	5260	<0.2	< 0.0
mea	n/median	2/12/2000		0.00036	313	<0.0006	3.1	0.0008	0.767	0.11	0.15	0.73	3.0	4.50	<0.00099	297	3410	5200	<u.z< td=""><td><0.0</td></u.z<>	<0.0
117	TDM XII		3/2009 Dry 0/2009 Dry																	
		9/1/2009																		
	-	11/20/2009																		
		3/15/2010																		
		5/3/2010																		
			/3/2010 Dry 20/2010 Dry																	
		11/4/2010																		
			< 0.00095	< 0.00021	435	<0.00068	1.9	< 0.00005	0.0021	<0.4	6.62	0.64	3.3	3.94	<0.00099	298	1930	4160	<0.2	0.0
120	TDM XXI	5/21/2009			432					< 0.04	6.80					317	2130	4260		
		8/25/2009	< 0.0048	< 0.001	550	< 0.003	1.2	< 0.00025	0.0027	< 0.04	6.78	0.16	2.5	<2.66	< 0.005	279	1830	4110	<0.2	0.0
		11/9/2009			475					< 0.04	6.78					299	1900	4210		
		2/6/2010	<0.00095	< 0.0002	455	<0.0006	2.3	< 0.00005	0.0049	< 0.04	6.77	0.72	0.96	<1.68	<0.00099	310	2170	4210	<0.2	0.0
		5/3/2010			378					< 0.04	6.87					325	1670	4190		
		8/2/2010	<0.00095	< 0.0002	403	<0.0006	1.1	0.00015	0.0066	< 0.04	6.78	0.28	1.7	<1.98	0.00029	342	1840	4320	<0.2	0.0
		10/30/2010			478					< 0.04	6.86					290	1970	4220		
mea	an/median		<0.0048	<0.001	445	<0.0006	1.6	<0.00015	0.0041	<0.04	6.78	0.45	2.1	<1.98	<0.00099	305	1930	4210	<0.2	0.0
		3/13/2009																		
127	TDM XXVII	6/17/2009																		
		8/24/2009																		
		11/18/2009																		
		2/8/2010																		
		5/3/2010																		
		8/20/2010 11/1/2010																		

Well Number	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	Cl (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra226 (pCi/L)	Ra228 (pCi/L)	Ra 226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
Froundwater Protection		0.05	0.01		0.1	15	0.05	0.1					5	0.05				0.55	0.03	
		4/1/2009	< 0.00095	0.0018	254	<0.00068	2.3	0.0034	0.399	1.4	7.25	0.6	<1.1	<1.7	< 0.00099	271	2290	4240	<0.3	0.0026
178	TDM XLIV	6/17/2009			370					1.9						270	2850	4300		
		9/10/2009	< 0.00095	0.0012	277	<0.0006	0.7	0.0013	0.221	1.7	6.75	0.42	<1	<1.42	< 0.00099	272	2230	4130	<0.2	0.0021
		11/12/2009			264					1.5						269	2130	4100		
		2/12/2010	< 0.00095	0.0014	303	<0.0006	1.6	0.0024	0.236	1.4	6.53	0.6	1.3	1.9	< 0.00099	268	2440	4080	<0.1	0.0027
	[5/14/2010			237					1	6.99					265	2180	4180		
		8/3/2010	< 0.00095	0.0013	255	0.0013	NA	0.0078	0.236	1.3		NA	NA		0.002	255	2050	4150	NA	NA
		11/4/2010			253				·	1.4	7.13					255	2150	3990		
mea	an/median		< 0.00095	0.0014	260	< 0.0006	1.5	0.0037	0.273	1.4	6.99	0.54	<1.1	<1.7	< 0.00099	269	2205	4140	<0.3	0.0025
		3/3/2009	< 0.00095	< 0.00021	159	< 0.00068	1.7	< 0.00005	0.00077	< 0.04	7.31	0.46	1.9	2.36	< 0.00099	289	1460	2570	<0.2	< 0.0003
179	TDM XLV	5/20/2009			163					< 0.04	7.33					299	1710	2640		
		8/12/2009	< 0.00095	< 0.0002	203	< 0.0006	0.9	< 0.00005	0.0005	< 0.04	7.43	0.54	2.9	3.44	< 0.00099	323	1710	2680	<0.1	< 0.0003
		11/5/2009			203					< 0.04	7.25					278	1790	2680		-
		2/23/2010	< 0.00095	< 0.0002	172	< 0.0006	0.8	< 0.00005	0.0005	< 0.04	7.17	0.84	2.3	3.14	< 0.00099	286	1540	2740	< 0.2	<0.0003
	1 1	5/5/2010			173					< 0.04	7.19					284	1510	2690		
		8/13/2010	< 0.00095	< 0.0002	183	< 0.0006	1.8	0.000097	0.00093	< 0.04	7.13	1.5	2.3	3.8	< 0.00025	287	1590	2740	0.09	0.0007
		11/5/2010			167					< 0.04	7.20					278	1560	2670		
mea	n/median		< 0.00095	< 0.0002	173	< 0.0006	1.3	< 0.00005	0.0007	<0.04	7.23	0.84	2.4	3.19	< 0.00099	291	1609	2680	<0.2	< 0.0003
		3/4/2009	< 0.00095	< 0.00021	58.4	< 0.00068	1.3	< 0.00005	< 0.0005	< 0.04	7.35	0.46	1.1	<1.56	< 0.00099	220	554	1320	< 0.3	< 0.0003
181	TDM XLVI	5/21/2009			75.2					< 0.04	7.29					237	661	1330		
		8/11/2009	< 0.00095	< 0.0002	72.6	< 0.0006	0.7	< 0.00005	< 0.0005	< 0.04	7.43	0.52	1.8	2.32	< 0.00099	241	503	1330	<0.2	< 0.0003
		11/5/2009			72.1					< 0.04	7.11					215	630	1320		
		2/16/2010	< 0.00095	< 0.0002	58.8	< 0.0006	0.8	< 0.00005	< 0.0005	< 0.04	7.24	0.77	1.4	<2.17	< 0.00099	225	661	1290	< 0.2	< 0.0003
		5/4/2010	0.00000	0.0002	67.5	0.0000	0.0	0.00000	0.0000	< 0.04	7.09				0.00000	220	600	1310		
		8/11/2010	< 0.00095	< 0.0002	73	< 0.0006	<0.6	0.000099	0.00082	< 0.04	6.94	0,19	1.8	<1.99	< 0.00025	219	673	1340	< 0.09	< 0.0003
		11/4/2010			70		2.12			< 0.04	7.22					208	653	1330		
mea	n/median		< 0.00095	< 0.0002	71	< 0.0006	0.9	<0.00005	< 0.0005	<0.04	7.23	0.49	1.5	<1.99	< 0.00099	220	617	1325	<0.2	< 0.0003
		3/3/2009	< 0.00095		137	< 0.00068	1.5		0.0005	< 0.04	7.22	0.4	1.6		< 0.00099	229	1080	2020	< 0.2	< 0.0003
183	TDM XLIX	5/20/2009	40.00000	-0.00021	137	-0.00000	1.0	-0.00000	0.0000	< 0.04	7.28	0.4	1.0		-0.00000	246	1110	1980	-0.L	-0.0000
100		8/12/2009	< 0.00095	< 0.0002	367	< 0.0006	0.9	< 0.00005	0.00052	< 0.04	7.39	0.14	1.7	1.84	< 0.00099	240	1110	2030	< 0.1	< 0.0003
		11/6/2009	-0.00095	-0.0002	152	-0.0000	0.3	-0.00000	0.00002	< 0.04	7.33	0.14	1.7	1.04	-0.00035	241	1100	2030	-0.1	-0.0000
		2/23/2010	<0.00095	<0.0002	131	<0.0006	0.7	<0.00005	0.0005	< 0.04	7.20	1	2	2	< 0.00099	237	1110	2020	<0.1	<0.0003
		5/5/2010	-0.00090	-0.0002	130	-0.0000	0.1	.0.00000	0.0000	< 0.04	7.31	-	2	3	-0.00035	245	1010	2020	-0.1	-0.0000
		8/16/2010	<0.00095	< 0.0002	130	< 0.0006	1.3	< 0.001	0.0015	< 0.04	6.89	0.68	1.7	2.38	< 0.00025	245	1100	2100	< 0.2	< 0.0003
sin ni nga s		11/5/2010	-0.00095	-0.0002	140	-0.0000	1.5	-0.001	0.0015	< 0.04	7.30	0.00	1.7	2.00	-0.00020	222	1090	2070	~0.2	-0.0000
I_	m (m a dic -	11/3/2010	< 0.00095	< 0.0002	132	< 0.0006	1.1	< 0.00005	0.0008	<0.04	7.29	0.56	1.8	2.31	< 0.00099	238	1090	2010	<0.2	< 0.0003
mea	mean/median			~0.0002	137	~0.0006	1.1	~0.00005	0.0008	~0.04	1.29	0.56	1.0	2.31	~0.00099	230	1000	2043	<0.Z	~0.0003

Well Number	Well Name	Sample Date	As (mg/l)	Cd (mg/l)	CI (mg/l)	Cr (mg/l)	Gross Alpha (pCi/L)	Pb (mg/l)	Ni (mg/l)	NO2 +NO3 (mg/l)	pH-Field (s.u.)	Ra226 (pCi/L)	Ra228 (pCi/L)	Ra226 +228 (pCi/L)	Se (mg/l)	Na (mg/l)	SO4 (mg/l)	TDS (mg/l)	Th230 (pCi/L)	Unat (mg/l)
Groundw Standard	ater Protec	tion	0.05	0.01		0.1	15	0.05	0.1					6	0.05				0.55	0.03
Pit Lake		NUMBER OF STREET					CONTRACTOR OF				The state of the			and the second second						
		7/1/2009			37.2		3.1				8.20	2.2	<1	<3.2	0.0804	154	588	1020	< 0.1	3.17
167	Surface	8/17/2009			42		2.6				8.20	2.5	<1.4	<3.9	0.0744	134	577	1030	< 0.2	3.23
		11/7/2009									8.25									
		6/7/2010			38.4		2.6				8.27	1.9	2.1	4	0.0718	127	575	1050	< 0.2	3.22
		8/11/2010			38.1		2.6				8.20	2.3	<1.1	<3.4	0.0725	143	608	1050	<0.1	3.3
me	an/median				38.9		2.7				8.20	2.2	<1.4	<3.9	0.0748	140	587	1038	< 0.2	3.23
		7/1/2009			35.5		3.3				8.33	1.8	1.1	2.9	0.0759	148	579	1000	< 0.2	3.18
168	1/3 Depth	8/17/2009			38.2		3.3				8.31	2.6	1.9	4.5	0.0724	135	650	1000	< 0.1	3.18
		11/7/2009									8.33									
		6/7/2010			38.5		3.0				8.27	1.2	2.1	3.3	0.0695	124	567	1040	<0.2	3.18
		8/11/2010			38.3		2.6				8.42	2.4	1.1	3.5	0.0717	140	590	1000	<0.1	3.19
me	an/median				37.6		3.1				8.33	2.0	1.6	3.6	0.0724	137	597	1010	<0.2	3.18
		7/1/2009			36.3		3.2				8.20	2	1	3	0.0737	156	592	1010	< 0.2	3.09
169	2/3 Depth	8/17/2009			39.1		4.3				8.29	2.5	4.4	6.9	0.0712	135	578	988	<0.2	3.03
		11/7/2009									8.45									
		6/7/2010			38.7		2.6				8.29	2.3	1.5	3.8	0.071	123	555	1060	<0.2	3.24
		8/11/2010			40.0		2.7				8.31	2.4	1.1	3.5	0.072	136	596	1020	<0.2	3.31
me	an/median				38.5		3.2				8.31	2.3	2.0	4.3	0.0720	138	580	1020	<0.2	3.17

Notes:

Either the mean or the median was calculated on sample sets >2 based on the distribution of the historical data for that particular location/analyte *Means were calculated from last available year's data : this was 1996 for well 177, and 2002 for wells 150 and 152.

The nondetect values are replaced by the detection limit

Bold = Result exceeds Groundwater Protection Standards

Note: Alternate Concentration Limits (ACL) apply to:

Well 125: Unat = 0.089 mg/l

Well 175: Ni = 1.8 mg/l; Ra226+228 = 25 pCi/L

Well 177: Unat = 0.11 mg/l

EXHIBIT 3 COST ESTIMATE FOR ACTIVE WATER TREATMENT HIGHLAND PIT LAKE, HIGHLAND MINE AND MILL RECLAMATION PROJECT.

ADVANCED ENVIRONMENTAL SCIENCES, INC. NOVEMBER 2010

DRAFT

Cost Estimate for Active Water Treatment, Highland Pit Lake, Highland Mine and Mill Reclamation Project

November 1, 2010

Prepared For: ExxonMobil Environmental Services Company 12450 Greenpoint Drive Houston, TX 77060

Prepared By: Advanced Environmental Sciences, Inc. 383 West 37th Street Suite 104 Loveland, CO 80538 (970)461-5054

Table of Contents

1.0	INTRODUCTION		1								
2.0	TYPES OF TREATMENT TECHNOLOGIES										
	2.1 Influent Filtration		2								
	2.2 Ion Exchange										
	2.3 Coagulation and Filtration		5								
3.0	CONCEPTUAL COST ESTIMATE										

List of Figures

Figure 1. Conceptual Process Flow Diagram

List of Tables

- Table 1. Conceptual Highland Capital Cost Estimate (+100%, -25%)
- Table 2. Conceptual Estimated Operating and Maintenance Costs (+100%, -25%), 1000gpm

Table 3. Conceptual Estimated Operating and Maintenance Costs (+100%, -25%), 300gpm

List of Appendices

Appendix A. Cost Backup Information

i

1.0 INTRODUCTION

The Highland pit lake water is relatively clean water, with only uranium and selenium concentrations above the United States Environmental Protection Agency primary drinking water standards. In 2009, uranium concentrations were measured at approximately 3 mg/L and selenium concentrations were measured at approximately 0.07 mg/L. The EPA primary drinking water standards are 0.03 mg/L for uranium and 0.05 mg/L for selenium. If the Highland pit lake were to require active treatment, the estimated stored volume requiring treatment is approximately 3.9 billion gallons. In addition to the stored volume, approximately 300 gpm (158 million gallons per year) of groundwater inflows to the pit, would require perpetual treatment.

In contrast to many mine sites, where acid rock drainage (ARD) is present, the Highland site is a carbonate system resulting in higher pH and lower dissolved analyte concentrations in the pit lake water. The pH of the pit lake water is approximately 8.3; at this pH and in the carbonate environment, the form of uranium is expected to be anionic and the species to be $UO_2(CO_3)_3^{4-}$. The form of selenium is expected to be anionic and species to be selenate (SeO₄²⁻).

The following sections discuss potential treatment technologies, conceptual design, and conceptual costs. Every water differs in analytes present and analyte concentrations, and these differences can have significant implications to water treatment effectiveness, efficiencies, and related costs. As with any type of water treatment, the technology should be tested at the pilot-scale level prior to design and construction of a treatment plant.

2.0 TYPES OF TREATMENT TECHNOLOGIES

There are several types of water treatment technologies which have been determined by EPA as best available technologies (BAT) for selenium and uranium removal. For selenium, the BATs are activated alumina, coagulation/filtration, lime softening, and reverse osmosis. For uranium, the BATs are lime softening, ion-exchange, and reverse osmosis. EPA lists other non-BAT technologies for removal or uranium and selenium; however, these technologies are either cost prohibitive or have not been extensively tested at the full scale.

For the EPA BATs, activated alumina, lime softening, and reverse osmosis treatment technologies have been rejected as viable for the reasons discussed in the following paragraphs.

Reverse osmosis is an unlikely candidate for Highland pit lake treatment due to the high capital and operating costs. In addition, reverse osmosis produces a concentrated brine

1

stream (i.e., reject) that would require secondary treatment and/or evaporation prior to disposal.

Activated Alumina (AA) is a treatment technology based on adsorption and consists of aluminum oxide that has been heated to a temperature of 300 to 700 °C. Activated alumina adsorbs charged species and can be regenerated after the media has been loaded to its adsorption capacity. However, the regeneration process is typically performed through the use of acid which results in a breakdown and partial loss of media, and subsequent replacement, after each regeneration. If the activated alumina were to be regenerated onsite, a concentrated brine stream would be produced that would require secondary treatment and/or evaporation prior to disposal. Activated alumina is not expected to as efficient in uranium removal as other technologies.

Lime softening has been proven to be effective in removing varied species at various charge states. However, with the form of uranium $(UO_2[CO_3]_3^{4-})$ at the Highland pit lake, lime softening is not expected to be effective until the pH of the water is increased to above 11 standard units. Lime softening also produces large quantities of sludge that potential would be above the standard for non-radioactive disposal.

Based on the preceding discussions, ion exchange (IX) and coagulation/filtration are anticipated to be the most effective treatment options, from both cost and efficiency standpoints. Figure 1 provides a conceptual process flow diagram for treatment of the pit lake water and resultant reduction of selenium and uranium concentrations in the treatment effluent. As shown on Figure 1, the treatment system would consist of two interacting treatment technologies. The front end of the system would consist of filtration and ion exchange. The effluent from the IX would feed a chemical treatment process that consists of a metal salt addition, potential pH adjustment, coagulant addition, and filtration. The following sections discuss the various processes and assumptions for these processes.

2.1 Influent Filtration

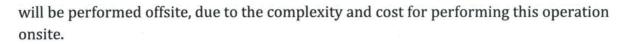
It is anticipated that the feed water to the system will likely need to be prefiltered to remove suspended solids and prolong IX run durations. Ion-exchange resins can become ineffective if significant suspended solids become entrained within the resin beds. The entrainment of suspended solids can lead to excessive differential pressure across the bed and potential flow short circuiting of the bed. For these reasons a prefilter is necessary to reduce the risk of high concentrations of uranium in the IX effluent. A multi-media filter (i.e., prefilter) is a cost effective method of removing suspended solids. A multi-media filter typically consists of, from the top down: (1) anthracite layer, (2) sand layer, (3) fine garnet layer, (4) coarse garnet layer, and (5) gravel support layer. The internals of the media filter consist of designed distributers to promote even flow through the filter. A mixed-media

filter is typically run in a top down flow mode, where water enters though the top of the filter, flows through the media and exits through the bottom of the filter. Particles are retained in the top portion of the filter and in many cases a coagulant is added to agglomerate the particles and improve particle retention. The hydraulic loading through a media filter is typically between 3 and 5 gallons per minute per square foot (gpm/ft²).

After a predetermined time or pressure differential across the media filter bed, the filter requires a cleaning cycle. The backwash cycle is run to expand the prefiltration bed and flush particulate material from the bed. During the backwash cycle, the flow is reversed from the influent cycle and is forced up through the bed, at a typical flow rate of between 13 and 17 gpm/ft² for 10 to 20 minutes. The filter backwash water is collected in a tank and the solids removed through a clarification system. The prefilter backwashed solids may contain high concentrations of uranium if significant suspended solids concentrations are present in the influent water and these solids are high in uranium. However, because the water is coming from a lake, it is anticipated that suspended solids concentrations will be low. Therefore, because it is not anticipated that suspended solids concentrations will be high, the resultant solids will be mixed with the solids from the coagulation/filtration treatment for selenium, discussed below.

2.2 Ion Exchange

Ion exchange is a process in which ions are exchanged from a solid resin with ions in the water to be treated. The mechanism behind IX involves attractive forces. Anion exchange resin carries a net positive charge and is saturated with negatively charged chloride ions. As the water to be treated is passed through a fixed bed of anion exchange resin, chloride ions are displaced by negatively charged uranium species and other negatively charged ions. Uranium removal onto IX media is dependent on the form(s) of uranium present in the process water. The uranium must be present as a negatively charged species for effective removal onto an anion exchange resin. The form of uranium is pH dependent; theoretically, at lower pH (<6.0 s.u.), the predominant uranium species is predicted to be cationic and at higher pH, the predominant species is predicted to be anionic. However, experience with uranium removal from mine waters and data from resin manufacturers indicate that cationic exchange resins do not work as effectively as anionic resins. For anion resins, uranium removal is typically most successful in the range of 5.5 to 8.0 standard units.


While anion exchange resin has a higher affinity for uranium, there will be other ions removed from the feed water onto the media. The ions expected to have the most significant interference with uranium anion exchange resins are sulfate, vanadium, silica, and total organic carbon (TOC). Some ion-exchange interference is expected from the sulfate in the Highland pit lake water, which has shown sulfate concentration ranging

between 500 and 600 mg/L. While vanadium has not been found in measurable concentrations at the site, it is an important analyte because it generally can have the greatest detrimental and irreversible effects at water concentrations greater than 1 gram per liter on the IX media. Silica concentrations greater than 30 mg/L for weak base resin and greater than 50 mg/L for strong base resin, and TOC concentrations greater than 20 mg/L for weak base resin and greater than 1 mg/L for strong base resin may interfere with uranium removal. Silica concentrations in the pit lake water are generally low, less than 5 mg/L, and are not expected to interfere with ion-exchange efficiency. TOC concentration data for the Highland pit lake have not been measured.

Determining the resin capacity for uranium will provide an indication of the operational requirements for IX. The number of bed volumes of a target constituent that a particular resin can effectively remove before exhaustion must be quantified to determine if this technology is feasible for full-scale treatment. Resins that quickly exhaust after a limited number of treatment bed volumes will require more frequent regeneration or change-out, which can significantly increase costs. Strong-base Type I anion exchange resins have a high selectivity for uranium at low concentrations, above many other negatively charged ions resulting in minimized interference with uranium removal. As the concentration of uranium on the resin increases and the resin is exhausted, the exchange sites for Type I resins are regenerated with a concentrated (approximately 20 percent) sodium chloride (NaCI) solution.

Typical capacities for Type I strong base anion exchange resins are reported as up to 2 equivalents per liter of resin. One type of resin, the DOWEX 21K XLT Type I strong base, which has been tested at another mine site for uranium removal, has a published total capacity of 1.40 equivalents per liter of media or 2.1 equivalents per kilogram of media. At a pH of 8.3 and an average Highland water uranium concentration of 3 mg/L, the estimated uranium removal for this resin is approximately 890 grams uranium per kilogram of resin. This calculation almost certainly overestimates the uranium removal as it is known that concentrations of sulfate greater than 250 mg/l, and other analytes, interfere with uranium removal on strong base anion exchange resins. At another uranium mine site this calculation overestimated the actual uranium loading by nearly 20 times, although the sulfate concentration at that site was four times greater than at the Highland site. In order to be conservative in terms of loading, it will be assumed that the resin will be loaded at 50,000 mg/kg of uranium and will require regeneration.

The design for the IX system is based on an assumed hydraulic loading rate of 8 gpm/ft². The type 1 resins have been shown to be relatively insensitive to the contact time necessary for exchange of uranium and chloride ions, in the 6 to 10 gpm/ft² range. For the conceptual cost estimate it is also assumed that the regeneration of the ion-exchange resin

2.3 Coagulation and Filtration

As discussed above, one of the EPA BATs is coagulation and filtration. Coagulation and filtration consists of the addition of metal salts (e.g., aluminum or ferric iron salts) that undergo hydrolysis and form a precipitate. Other compounds co-precipitate with the metal salt and form a floc. A polymer is then added which allows the floc to agglomerate and be separated from the water. Due to the relatively high pH of the pit lake water, the species of selenium in the pit lake is most likely selenate. While coagulation is more effective in removal of the selenite species, than in removal of the selenate species, the selenium concentration of 0.07 mg/L is close to the primary drinking water standard of 0.05 mg/L, and even an inefficient removal should lower the selenium concentration to below the drinking water standard. This inefficient removal may require higher dosing of the metal salt than under ideal conditions, which leads to increased chemical costs. Depending on the metal salt used, a pH adjustment maybe necessary to improve the effective eat coprecipitation at pHs less than 7.0 standard units.

After coagulation, the floc is separated from the water. The floc separation can be accomplished in a similar manner to the influent suspend solids removal; that is, through the use of a multi-media filter. As discussed above, a multi-media filter typically consists of an anthracite layer, sand layer, fine garnet layer, coarse garnet layer, and gravel support layer. The internals of the media filter consist of designed distributers to promote even flow through the filter. A mixed-media filter is typically run in a top down flow mode, where water enters through the top of the filter, flows through the media and exits through the bottom of the filter. Floc is retained in the top portion of the filter and in many cases a coagulant is added to agglomerate the particles and improve floc retention. The hydraulic loading through a media filter is typically between 3 and 5 gallons per minute per square foot (gpm/ft²).

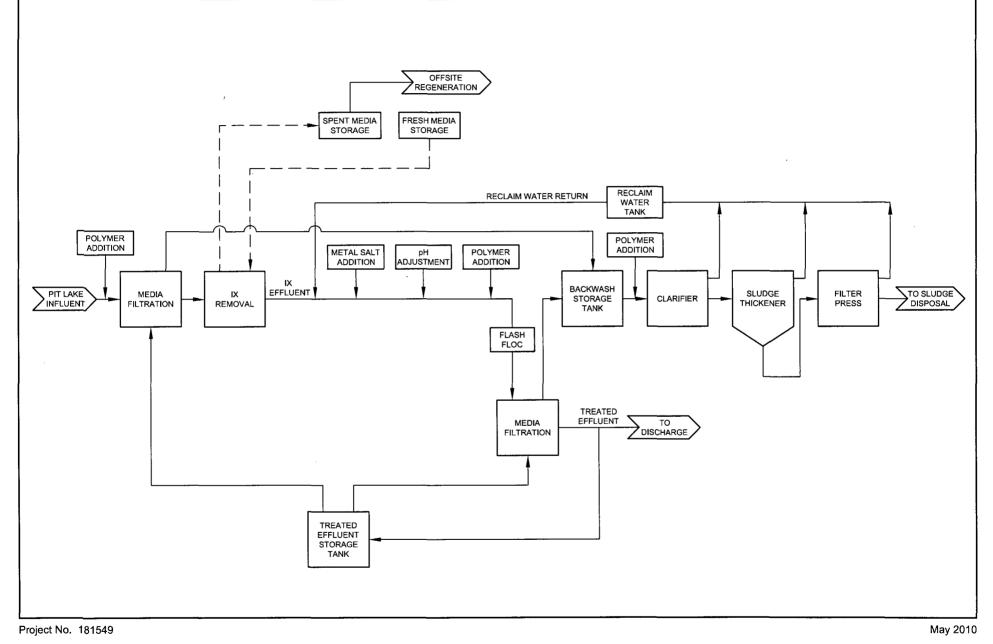
After a predetermined time or pressure differential across the media filter bed, the filter will require a cleaning cycle. The backwash cycle is run to expand the prefiltration bed and flush retained particulate material from the bed. During the backwash cycle, the flow is reversed from the influent cycle and is forced up through the bed, typically at a flow rate of between 13 and 17 gpm/ft² for 10 to 20 minutes, though the time duration is specific to the loading and retained floc characteristics. The filter backwash water is collected in a tank and then pumped through a separation system consisting of a clarifier, sludge thickener tank, and finally to a filter press. The filter press is used to "press" most of the water out of the sludge, resulting in a sludge than can range from 20 to 45% solids. As shown on Figure

Cost Estimate for Active Water Treatment Highland Mine and Mill Reclamation Project

1, the overflow from the sludge thickener and waste water from the filter press would be returned to the front of the plant for retreatment.

3.0 CONCEPTUAL COST ESTIMATE

The conceptual cost estimate is based on a treatment system as described above and presented in Figure 1. The system consists of prefiltration, ion exchange, coagulant addition and filtration, and sludge dewatering. Without pilot-scale testing, geotechnical evaluations, siting studies, and other required information, conceptual costs should be considered +100% and -25% and only take into account major pieces of equipment. Costs for the equipment are based on recent or historic vendor quotes, percentages of overall work, and estimates.


The following presents the assumptions used:

- 1. Currently 3.9 billion gallons of water requires treatment.
- 2. The ground water inflow rate to the pit is 300 gpm
- 3. Bench and pilot-scale tests, treatment plant design, permitting, and construction will take 3 years.
- 4. At the inflow rate of 300 gpm and 3 years before treatment can begin, an additional 500 million gallons will accumulate in the pit lake, for a total of 4.4 billion gallons.
- 5. The treatment rate will be 1,000 gpm.
- 6. Ongoing treatment of 300 gpm after initial treatment.
- 7. Influent mixed-media filter hydraulic loading rate of 4 gpm/ft² and a backwash rate of 15 gpm/ft² for 15 minutes. Backwashes will occur once per 24 hour period.
- 8. Ion exchange hydraulic loading rate of approximately 8 gpm/ft².
- 9. Ion exchange resin will be loaded at 50,000 mg/kg of uranium, requiring regeneration.
- 10. Coagulant, acid, and polymer dosing are unknown and this cost is based on preliminary modeling and estimates.
- 11. A base addition, if needed to raise the pH for discharge, has not been included in the cost estimate.
- 12. Coagulation mixed-media filter hydraulic loading rate of 4 gpm/ft² and a backwash rate of 15 gpm/ft² for 15 minutes. Backwashes will occur once per 24 hour period.
- 13. Backwashes of the influent and coagulation filters can be staggered and allow for a storage tank sized for holding two backwashes.
- 14. Incline plate clarifiers.
- 15. Plate and frame filter press, sized for 1 cubic yard per day of sludge production.
- 16. Construction costs do not include cut/fill costs including excavation, blasting, compaction, importation, or disposal of fill.
- 17. Seismic/environmental (i.e., snow, wind, etc.) considerations may change costs.
- 18. Erected steel building with insulation, no fire suppression.
- 19. One and one-half foot thick concrete-reinforced mat foundation for the main part of the plant. Final cost will be dependent on geotechnical/seismic analysis.

- 20. Three foot thick concrete, reinforced foundation under equipment. Final cost will be dependent on geotechnical/seismic analysis.
- 21. Freight/tax assumed to be 12% of the equipment cost.
- 22. Costs for regulatory meetings, and predesign meetings are not included.
- 23. Phone and 480V, 3 phase power available within 100 feet of the plant location.
- 24. Smith Ranch-Highland can accept and regenerate the IX resin at \$45 per cubic foot.
- 25. Electric cost is estimated at \$0.11 per kilowatt hour.

As detailed on Table 1, the conceptual capital costs are estimated to be \$7,600,000. As presented on Table 2, the conceptual operation and maintenance cost for treating 4.4 billion gallons is estimated to be \$1,270,000 per year and at a treatment rate of 1,000 gpm, will take 12 years to treat the pit lake. The total conceptual cost to treat the stored water in the pit lake is \$15,250,000. As shown on Table 3, the conceptual cost for treating 300 gpm in perpetuity is \$680,000 per year.

TABLE 1 - CONCEPTUAL HIGHLAND CAPITAL COST ESTIMATE (+100%, -25%)

TEM	QUANTITY	UNIT	UNIT COST	UNIT TOTAL ¹¹ (inc freight/tax)	SUBTOTAL
uilding ^{1,2}	9,000	sf	\$24.00	\$241,920	
CuVFill ^{3,9,10}	0	су	\$0.00	\$0	
Building foundation ^{2,4,10} Pit Lake	500	су	\$300.00	\$168,000	\$409,920
nstallation of 2, 12-inch water lines ^{3,7,8,10}	1,000	foot	\$32.00	\$35,840	
Pit Lake Pumps (1000 gpm) ³	2	ea	\$20,000.00	\$44,800	
/ariable Frequency Drives (1000 gpm) ³	2	ea	\$18,000.00	\$40,320	\$120,960
Tow Meter	1 1	69	\$4,500.00	\$5,040	\$5.040
Ion Exchange Proc		ea	\$4,500.00	\$5,040	\$5,040
fluent filtration	1 6		* 57,000,00		
Influent Media Filters (4 gpm/ft2)(96" dia.)(steel) Filter Media (anthracite, fine garnet, sand, coarse garnet, gravel)	5	ea ea	\$57,600.00 \$5,000.00	\$322,560 \$28,000	
Media Filter Foundations ^{2,5}	28	cy	\$450.00	\$14,000	
Turbidimeter	1	ea	\$2,600.00	\$2,912	\$367,472
on Exchange Vessels and Media					
IX Vessels (7.7 gpm/ft2)(63" dia.)(FRP)(6 trains-3 vessels/train) ² Initial IX Media (DOW 21K XLT)(127 cu yds/vessel)(18 vessels)	6 2286	ea cf	\$99,500.00 \$167.00	\$668,640 \$427,573	
Fresh IX Media, Stored (DOW 21K XLT)	1143	Cf	\$167.00	\$213,787	
IX Vessel Foundations ^{2,5}	43	су	\$450.00	\$21,620	\$1,331,620
on Exchange Storage					
IX Spent/Fresh Media Storage Tanks ²	2400	cf	\$10.00		622 400
Coagulation/Filtrat		су	\$450.00	\$5,600	\$32,480
Reagents and Metering					
Acid Skid/Tank (6500 gal)(FRP) ²	1	ea	\$22,000.00	\$24,640	
Secondary Containment	9	су	\$450.00	\$4,480	
Metal Salt Tank/Skid (6500 gal)(FRP) ² Secondary Containment	1 9	ea cy	\$22,000.00 \$450.00	\$24,640 \$4,480	
Polyelectrolyte Tank/Skid (55 gal)	1	ea	\$2,300.00	\$2,576	
Metering Pumps	6	ea	\$3,500.00	\$23,520	
Tank Level Switches (high/low) Inline pH Meter	6	ea ea	\$250.00 \$2,400.00	\$1 <u>,680</u> \$5,376	
Flash-floc Tank Assembly (8,000 gal) ²	1	ea	\$25,000.00	\$28,000	\$119,392
Media Filters					
Influent Media Filters (4 gpm/ft2)(96" dia.)(steel) ²	5	ea	\$57,600.00	\$322,560	
Filter Media (anthracite, fine garnet, sand, coarse garnet, gravel) Media Filter Foundations ^{2,5}	5 28	ea	\$5,000.00 \$450.00	\$28,000	
Turbidimeter	1	cy ea	\$2,000.00	\$14,000 \$2,240	\$366,800
Backwash Collect	-	·			
BW Flow Meter Backwash Tank	1	ea	\$4,500.00	\$5,040	\$5,040
Backwash Collection Tank (30,000 gal) ²	1	ea	\$45,000.00	\$50,400	
Tank Foundation ^{2,5}	10	cy	\$450.00	\$4,946	
Transfer Pump/skid	1	ea	\$3,500.00	\$3,920	
Backwash Collection Tank Level Sensor	1	ea	\$2,000.00		6 04 700
Backwash Tank Level switch (shutoff)	1	ea	\$250.00	\$280	\$61,786
Incline Plate Clarifier ²	2	ea	\$65,000.00	\$145,600	
Clarifier Foundation ^{2,5}	34	су	\$450.00	\$17,232	
Clarifier Sludge Pump-AOD-(100 gpm)	2	ea	\$2,800.00	\$6,272	\$169,104
Solids Storage Tank / Thickener Thickener Tank/Stand Assembly (3000 gal) ²	2	ea	\$40,000.00	\$89,600	
Solids Pump-AOD-(25 gpm)	1	ea	\$1,500.00	\$1,680	
Solids Storage Level Switches (high/low)	2	ea	\$250.00	\$560	\$91,840
Filter Press (1 Cu yd)	1		\$170,000.00	\$190,400	
Control	1	ea ea	\$1,500.00	\$1,680	
Sludge Cart	1	ea	\$3,700.00		\$196,224
Recycle			A47 000 0	<u></u>	
Recycle Tank (10,000 gal) ² Tank Foundation ^{2,5}	1 13	ea	\$15,000.00 \$450.00	\$16,800 \$6,330	
Recycle Water Pump/Skid	13	cy ea	\$450.00		
Recycle Tank Level Sensor	1	ea	\$2,000.00	\$2,240	
Recycle Tank Level switch (shutoff)	1	ea	\$250.00	\$280	\$29,570
Treated Effluent Storage Tank (25,000 gallon) ^{2,6}	1	ea	\$37,500.00	\$42,000	
Tank Foundation ^{2,5}	20	cy	\$37,500.00	\$9,891	
	1	ea	\$3,500.00	\$3,920	
Effluent Tank Pump/Skid			\$2,400.00	\$2,688	
Inline pH Meter	1	ea		A- A	
Inline pH Meter Flow Meter	1	ea	\$3,500.00	\$3,920 \$2,240	\$64 659
Inline pH Meter	1			\$3,920 \$2,240	\$64,659
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer	1 1 1	ea ea ea	\$3,500.00 \$2,000.00 \$22,000.00	\$2,240 \$24,640	\$64,659
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping	1 1 1 1	ea ea ea	\$3,500.00 \$2,000.00 \$22,000.00 \$4,500.00	\$2,240 \$24,640 \$5,040	\$64,659
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer	1 1 1	ea ea ea	\$3,500.00 \$2,000.00 \$22,000.00	\$2,240 \$24,640	\$64,659
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches	1 1 1 4 2 3	ea ea ea ea	\$3,500.00 \$2,000.00 \$22,000.00 \$4,500.00 \$1,000.00	\$2,240 \$24,640 \$5,040 \$4,480	\$64,659 \$38,360
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/H	1 1 1 4 2 3 VAC	ea ea ea ea ea ea	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00	\$2,240 \$24,640 \$5,040 \$4,480 \$3,360 \$840	
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HY Motor Control Center ²	1 1 1 4 2 3 VAC	ea ea ea ea ea ea Ea	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00	\$2,240 \$24,640 \$5,040 \$4,480 \$3,360 \$840 \$224,000	
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/H	1 1 1 4 2 3 VAC	ea ea ea ea ea ea	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00	\$2,240 \$24,640 \$5,040 \$4,480 \$3,360 \$840	
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HY Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical	1 1 1 2 3 VAC 1 1 1 1	ea ea ea ea ea ea Ea LS LS LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00 \$75,000.00 \$200,000.00	\$2,240 \$24,640 \$5,040 \$4,480 \$3,360 \$840 \$224,000 \$84,000	
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HM Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers)	1 1 1 4 2 3 VAC 1 1 1 1 1	ea ea ea ea ea Ea Ea Ea ES LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00 \$75,000.00 \$200,000.00 \$11,500.00 \$200,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$84,000 \$56,000 \$224,000 \$112,000	\$38,360
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HM Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers) HVAC/Plumbing/Air Lines ²	1 1 1 4 2 3 VAC 1 1 1 1 1 1 1	ea ea ea ea ea ea Ea LS LS LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00 \$75,000.00 \$200,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$84,000 \$84,000 \$224,000	\$38,360 \$812,000
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HM Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers)	1 1 1 4 2 3 VAC 1 1 1 1 1	ea ea ea ea ea Ea Ea Ea ES LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00 \$50,000.00 \$200,000.00 \$100,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$84,000 \$56,000 \$224,000 \$112,000	\$38,360
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HM Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers) HVAC/Plumbing/Air Lines ²	1 1 1 4 2 3 VAC 1 1 1 1 1 1 1	ea ea ea ea ea Ea Ea Ea ES LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$200,000.00 \$50,000.00 \$200,000.00 \$100,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$84,000 \$56,000 \$224,000 \$112,000	\$38,360 \$812,000
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HN Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers) HVAC/Plumbing/Air Lines ² IDENTIFIED EQUIPMENT SUBTOTAL Misc Process Piping/Valves ^{2,7} Equipment Installation ²	1 1 1 4 2 3 VAC 1 1 1 1 1 1 1 1 70%	ea ea ea ea ea Ea Ea Ea ES LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$75,000.00 \$75,000.00 \$200,000.00 \$100,000.00 \$100,000.00 \$100,000.00 \$100,000.00 \$100,000.00 \$100,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$56,000 \$224,000 \$112,000 \$112,000 \$112,000 \$112,000	\$38,360 \$812,000
Inline pH Meter Flow Meter Turbidimeter Utility Air Compressor & Dryer Air Tank/Regulators/piping Safety Shower/Eyewash/flow switch Sump Pumps (Chemical Room) Sump Level Switches Electrical/Control/HY Motor Control Center ² PLC (includes programming) Computer/HMI (includes programming) Building Lighting & Electrical Power/phone 100 ft ³ (Incl transformers) HVAC/Plumbing/Air Lines ² IDENTIFIED EQUIPMENT SUBTOTAL isc Process Piping/Valves ^{2,7}	1 1 1 4 2 3 VAC 1 1 1 1 1 1 1 1 1 70%	ea ea ea ea ea Ea Ea Ea ES LS LS	\$3,500.00 \$2,000.00 \$4,500.00 \$1,000.00 \$1,500.00 \$250.00 \$250.000.00 \$50,000.00 \$200,000.00 \$100,000.00 \$100,000.00	\$2,240 \$24,640 \$5,040 \$3,360 \$840 \$224,000 \$56,000 \$112,000 \$112,000 \$112,000 \$112,000	\$38,360 \$812,000

12%		\$6,031,809.60	\$723,817	
10%		\$6,031,809.60	\$603,181	
				\$1,326,998
1	LS	\$65,000.00	\$65,000.00	
1	LS	\$200,000.00	\$200,000.00	
				\$265,000,00
		10%	10% \$6,031,809.60 1 LS \$65,000.00	10% \$6,031,809.60 \$603,181

TOTAL CONCEPTUAL PLANT CONSTRUCTION, DESIGN, AND ADMINISTRATION COSTS

1=Erected steel building with insulation, no fire supression.
 2=Seismic/environmental (i.e., snow, wind, etc.) considerations may change costs.

3=Dependent on plant location, actual cost unknown.
 4=One and one-half foot thick concrete, reinforced mat foundation. Final cost will be dependent on geotechnical/seismic analysis.

5=Three foot thick concrete, reinforced foundation. Final cost will be dependent on geotechnical/seismic analysis.

6=Tank capacity for designed two backwash volumes. 7=Assumes PVC pipe. 8=Includes installation of one air/vac vault, two 500-foot lines in the same trench.

9=Does not include compaction/importation/disposal.

10=Dewatering (if needed) and associated costs not included.

11=Freight/tax assumed to be 12% of the equipment cost.

Exclusions:

Permitting Predesign/preconstruction meetings and site visits

Assumptions:

Nominal plant design of 1.44 mgd. Phone and 480V, 3 phase power available within 100 feet of the plant location. Not all equipment/labor needs to be bid (i.e., full specifications do not need to be prepared). Blasting will not be necessary for installation of the pipeline or foundations. \$7,623,808

Table 2 - Conceptual Estimated Operating and Maintenance Costs (+100%, -25%) 1000 gpm

Item	Basis	Method	Cost/Unit		Quantity	Unit	An	nual Cost
Chemicals	Modeling, estimate	Fixed Rate/Gal	0.24	\$/Kgal	525,600	KGal/Yr	\$	126,796
IX Regen Costs	Quotes/Estimates	Fixed Rate	290,192	290,192 \$/Yr		Yr	\$	290,192
IX Replacement	Quotes/Estimate	Fixed Rate/Cu Ft	167	\$/Cu Ft	1,564	Cu Ft	\$	261,236
Maintenance	Plant Cost Construction Estimate	Fixed Rate	3.00	%	6,000,000	\$	\$	180,000
Operating Labor	Dept Labor/Advertisments	\$/per hour + benefits	29.50	\$/Man-Hr	8,320	Man-Hr/Yr	\$	245,419
Sampling	Estimate	Fixed Rate	25,000	\$/Yr	1	Yr	\$	25,000
Sludge	Estimate Hazardous	Fixed Rate	7,626	\$trip	4	Trips/Yr	\$	30,506
Energy	Plant Load	Fixed Rate	0.11	\$/KW-Hr	111	KW	\$	107,201
				TOTAL			\$ ´	,266,349

٠.

Draft Privileged and Confidential Attorney-Client Work Product

Table 3 - Conceptual Estimated Operating and Maintenance Costs (+100%, -25%) 300 gpm

Item	Basis	Method	Cost/l	Jnit	Quantity	Unit	An	nual Cost
Chemicals	Modeling, estimate	Fixed Rate/Gal	0.1	0.1 \$/Kgal		KGal/Yr	\$	11,412
IX Regen Costs	Quotes/Estimates	Fixed Rate	87,058	\$/Yr	1	Yr	\$	87,058
IX Replacement	Quotes/Estimate	Fixed Rate/Cu Ft	167	\$/Cu Ft	469	Cu Ft	\$	78,371
Maintenance	Plant Cost Construction Estimate	Fixed Rate	3.00	%	6,000,000	\$	\$	180,000
Operating Labor	Dept Labor/Advertisments	\$/per hour + benefits	29.50	\$/Man-Hr	8,320	Man-Hr/Yr	\$	245,419
Sampling	Estimate	Fixed Rate	25,000	\$/Yr	1	Yr	\$	25,000
Sludge	Estimate Hazardous	Fixed Rate	7,626	\$trip	2	Trips/Yr	\$	15,253
Energy	Plant Load	Fixed Rate	0.11	\$/KW-Hr	37	KŴ	\$	35,734
				TOTAL			\$	678,245

DRAFT Privileged and Confidential Attorney - Client Work Product

Appendix A Cost Backup Information

Draft Privileged and Confidential Attorney-Client Work Product

Conceptual Chemical Cost Estimate for Plant Operation - User entered Parameters and volume calcs

Design/Perm/Const(DPC)	3	Yrs
Inflow Rate	300	gal/min
IX Vessels in each Train	3	#
IX Media Replacement	4	Regenerations
Estimated Capital Cost	6,000,000	Dollars

Dewatering Treatment Rate	1000 gpm	Media Filters	1 #	ŧ
		Media Vessel Diam	8 f	t
		Backwash Frequency	1	ber day
		Backwash Rate	15	gpm/ft ²
		Backwash Duration	10 г	
		Volume	7536	gal/day
		IX Vessel Diameter	5.15	pm/ft ²
		IX Media Height	6.1	nin
		Volume	127 (Cu Ft
Ongoing Treatment Rate	300 gpm	Media Filters	1	ŧ
		Media Vessel Diam	0 4	

Ongoing Treatment Rate	300 gpm	Media Filters		#	
		Media Vessel Diam	8	ft	
		Backwash Frequency	1	per day	
		Backwash Rate	15	gpm/ft ²	٦
		Backwash Duration	10	min	Γ
		Volume	7536	gal/day	
		Backwash Rate	5.15	gpm/ft ²	7
		Backwash Duration	6.1	min	
		Volume	127	Cu Ft	٦
			ALC: ANY ALC: A REPORT OF A REPORT OF A	AND DESCRIPTION OF A DE	

Calculations

Currently Pit Vol (Gal)	Time for Design/Permitting/C onst. (Yrs)	Inflow During DPC (gpm)	Total Inflow during DPC (Gal)
3,900,000,000	3	300	473,040,000

Pit Vol After DPC	nt Rate (gpm)		Effective dewatering rate (gpm)	Time to Dewater (Yrs)
4,373,040,000	1,000	300	700	12

Highland IX Assumptions and Conceptual O&M Costs

Highland IX Assumptions and Conceptual O&M Costs		
	Intial Pit Lake	Ongoing Pit Lake
Operational Data	Dewatering	Dewatering
Treatment duration per year (days)	365	365
Work week (days)	7	7
Number of IX trains	6	6
Uranium in feed (mg/L)	3	3
Treatment Rate (gpm)	1000	300
Utilization of IX trains (6 trains, 3 vessels per train)(percent)	98%	29%
Influent treated per day (gallons)	1,440,000	432,000
Influent treated per month (gallons)	43,776,000	13,132,800
Influent treated per year (gallons)	525,600,000	157,680,000
Uranium removed per day (mg)	16,329,600	4,898,880
Uranium removed per year (pounds)	13,140	3,942
IX Vessel Design and Loading		
Media height in vessel (feet)	6.1	6.1
Vessel Diameter (feet)	5.15	5.15
Square feet of media per vessel	20.8	20.8
Cubic feet of media per vessel	127	127
Kilograms of media per vessel	2420	2420
Regeneration		
Est. resin capacity at exhaustion (mg/kg)	50,000	50,000
Uranium loaded per vessel at exhaustion (grams)	120,978	120,978
Uranium loaded per vessel at exhaustion (pounds)	267	267
Days running before exhaustion per vessel	7.4	24.7
Vessel exchanges per year	49	15
IX Train exchanges per year (3 vessels)	16.42	4.93
Offsite Shipment Calculations		
Cubic feet of loaded resin per year for regeneration	6,257	1,877
Pounds loaded resin per cubic foot	44.0	44.0
Number of pounds of loaded resin per year	275,314.3	82,594.3
Truck capacity (pounds)	48,000	48,000
Truck capacity (pounds)	1,091	1,091
Trucks per season	5.7	1.7
	Intial Pit Lake	Ongoing Pit Lake
Regeneration cost	Dewatering	Dewatering
Distance to Stripper	1	
Cost per mile	\$3.00	\$3.00
Cost of shipping per truck	\$3.00	\$3.00
Regeneration cost per cubic foot	\$45.00	\$3.00
Cubic feet per truck	1,091	1,091
Regeneration cost	\$49,091	
Lease and decontamination per truck		\$49,091 \$1,500
-	\$1,500 \$50,504	\$1,500 \$50,504
Total cost per truck	\$50,594	\$50,594
Trucks per season	6 \$200.102	2 597.059
Total cost per year	\$290,192	\$87,058

Draft Privileged and Confidential Attorney-Client Work Product

Conceptual Chemical Cost Estimate for Plant Operation - Lower Chemical Costs May be Obtainable with Long-Term Contracts. Chemical feed rates are conceptual estimates.

	1000	gpm
Influent Basis	1,440,000	gpd
	5,450,400	lpd

Function	Basis	anga su Sugar su		Chemical	Form	Concentration	Cons	umption	Price	e (lb)	Cost ¢/Kgal
pH Adjust	Dosage	93	ppm	Sulfuric Acid	Liquid bulk	93%	1118	Lb/Day	\$ 0	.25	19.4
Metal Salt	Dosage	4	ppm	Ferric Sulfate	Liquid Bulk	60%	48.1	Lb/Day	\$ 0	.10	0.3
Polyelectrolyte	Dosage	2	ppm	Polymer	Liquid in Drum	100%	24.0	Lb/Day	\$ 2	.63	4.4

24.1 Cost in cents per 1000 gallons

	300	gpm
Influent Basis	432,000	gpd
	1,635,120	lpd

Function	Ba	sis		Chemical	Form	Concentration	Cons	umption	Price (lb)	Cost ¢/Kgal
pH Adjust	Dosage	93	ppm	Sulfuric Acid	Liquid bulk	93%	335	Lb/Day	\$ 0.25	5.8
Metal Salt	Dosage	4	ppm	Ferric Sulfate	Liquid Bulk	60%	14.4	Lb/Day	\$ 0.10	0.1
Polyelectrolyte	Dosage	2	ppm	Polymer	Liquid in Drum	100%	7.2	Lb/Day	\$ 2.63	1.3

7.2 Cost in cents per 1000 gallons

Electrical Requirements Backup

.

Equipment	Number of Pumps/VFDs	Motor (HP)	Flow (gpm)	VFD	KW	Usage (KW)	KW Usage rounded	Notes
Caustic Tank					10	5	5	
Wet Well Pumps	2	20	500	Yes	12	23.92	24	500 gpm/pump
IX pumps	2	10	500	Yes	6	12.42	13	300 gpm/pump
Reclaim Tank Pump	1	2	100	No	1	1.38	2	100 gpm
Treated Wtr Backwash Pump	1	20			12	11.96		750 gpm
Backwash Transfer Pump	1	2	100	No	1	1.00	1	100 gpm
Compressor	1	50		No	29	14	15	
Sludge Pump	2	0		Na	0	AOD	0	120 V Solenoid
Filter Press Pump	2	0		Na	0	AOD	0	120 V Solenoid
Ferric	1	1		No	1			
Acid	1	1		No	1			4-20 millamp
Polymer Pumps	2	0.1		No	1	2	3	4-20 millamp
Thickener Rake	1	3		No	2	2	3	on/off
Misc Process				No	1	1	1	2 pH, 2 Turb, 2 flow meters,
Lighting, MCC, Comp., etc.				Na		10	10	

Kilowatts Kilowatts derated 89 111.25

Draft Privileged and Confidential Attorney-Client Work Product

Conceptual Labor Costs						
Operator	Hourly Rate	Burden ²		Full Time Equivelents	Total Hourly Burdened Rate	Total Yearly Cost (2080 Hrs)
Chief Operator	\$24.76	35%	\$33.43	1	\$33.43	\$69,526.08
Backup Operator	\$20.88	35%	\$28.19	3	\$84.56	\$175,893.12
1 = US Department of Labor, Occupational Employment Statistics, Wy 2008, SOC code 518031			Avg Burdened H	ourly Cost	\$29.50	
2 = Burden Estimated						
Total Man Hours Per Year						
Number of People	Hrs/person	Full Time Equiv	Total Hours			
4	2080	4	8320			

Sludge Sampling and Disposal Backup

M _{XMine}	Mass of aluminum discharged	0.54 kg/day	
M _{prec}	Mass of Aluminum precipitate	1.57 kg/day	
	Molecular Wt Al	26.98 g	
	Precipitate formula	Al(OH)3	
	Molecular Wt Al(OH)3	77.98 g	
	Molar ratio Al(OH)3:Al	2.89 g precipitate/g Al	
Cx	Average effluent concentration of aluminum	0.1 mg/l	
	Conversion factor mg/l to kg/l	0.000001 mg/kg	
	Conversion factor liters to gal	3.78 l/gal	
	Conversion factor pounds per gallon	8.345 lbs/gal	
Q _{Mine}	Estimated average daily inflow rate	1440000 gallons/day	
Iron			
M	Mass of iron discharged	21 77 kg/day	
M _{XMine}	Mass of iron discharged Mass of Fe precipitate	21.77 kg/day	
	Mass of Fe precipitate	43.99 kg/day	
	Mass of Fe precipitate Molecular Wt Fe		
	Mass of Fe precipitate	43.99 kg/day 55.85 g Fe2O3:0.5H2O	
	Mass of Fe precipitate Molecular Wt Fe Precipitate formula	43.99 kg/day 55.85 g	
M _{prec}	Mass of Fe precipitate Molecular Wt Fe Precipitate formula Molecular Wt Fe2O3:0.5H2O	43.99 kg/day 55.85 g Fe2O3:0.5H2O 112.85 g	
M _{prec}	Mass of Fe precipitate Molecular Wt Fe Precipitate formula Molecular Wt Fe2O3:0.5H2O Molar ratio Fe2O3:0.5H2O:Fe	43.99 kg/day 55.85 g Fe2O3:0.5H2O 112.85 g 2.02 g precipitate/g Fe	
M _{prec}	Mass of Fe precipitate Molecular Wt Fe Precipitate formula Molecular Wt Fe2O3:0.5H2O Molar ratio Fe2O3:0.5H2O:Fe Average effluent concentration of iron	43.99 kg/day 55.85 g Fe2O3:0.5H2O 112.85 g 2.02 g precipitate/g Fe 4 mg/l	
M _{XMine} M _{prec} C _X	Mass of Fe precipitate Molecular Wt Fe Precipitate formula Molecular Wt Fe2O3:0.5H2O Molar ratio Fe2O3:0.5H2O:Fe Average effluent concentration of iron Conversion factor mg/l to kg/l	43.99 kg/day 55.85 g Fe2O3:0.5H2O 112.85 g 2.02 g precipitate/g Fe 4 mg/l 0.000001 mg/kg	

Draft Privileged and Confidential Attorney-Client Work Product

M _{XMine}	Mass of manganese discharged	0.1 kg/day						
M _{prec}	Mass of Mn precipitate	0.09 kg/day						
	Molecular Wt Mn	54.94 g						
	Precipitate formula	MnO2						
	Molecular Wt MnO2	86.94 g						
	Molar ratio MnO2:Mn	1.58 g precipitate/g	Mn					
Cx	Average effluent concentration of manganese	0.01 mg/l						
	Conversion factor mg/l to kg/l	0.000001 mg/kg						
	Conversion factor gal to liters	3.78 l/gal						
	Conversion factor pounds per gallon	8.345 lbs/gal						
Q _{Mine}	Estimated average daily inflow rate	1440000 gallons/day						
	Estimated total mass from Al, Fe, Mn (metals)	22 kg/day						
	Estimated total mass from Al, Fe, Mn (metals)	49 lbs/day						
	Estimated total mass of Al, Fe, Mn oxyhydroxide precipitate	46 kg/day						
	Estimated total mass of Al, Fe, Mn oxyhydroxide precipitate	100 lbs/day						
	Percent solids estimated	25%						
	Specific gravity Al(OH)3 precipitate	2.3		gm/cm3	http://	webmin	eral.com/dat	a/Gibbsite.shtml
	Specific gravity Fe2O3:0.5H2O precipitate	3.3		gm/cm3	http://	webmin	eral.com/dat	a/Goethite.shtml; http
	Specific gravity MnO2 precipitate	3.0		gm/cm3	http://	webmin	eral.com/dat	a/Birnessite.shtml
	Specific gravity of all solid precipitate	3.3	25%	0.82 gm/cm3				
	Specific gravity water	1.0	75%	0.75 gm/cm3				
	Specific gravity sludge			1.57 gm/cm3				
	Weight cubic foot sludge			98 lbs/ft3				
	Weight of solids in sludge			24.4 lbs/ft3				
	Total cubic feet of sludge per day			4.11 ft3/day				
	Total weight of sludge per day			402 lbs/day				
	Total weight of sludge per year			146638 lbs/yr				
	Total weight of sludge per year			73 tons/yr				
	Cubic yards per year			56 yd3/yr				

HAZARDOUS	DISPOSAL, CLEAN HARBORS, CO	LORADO				Comments	
TCLP Metals	5	Samples	\$175	\$875	Estimated		
ТРН	1	Samples	\$85	\$85	Estimated		
VOCs	1	Samples	\$175	\$175	Estimated		
SVOCs	1	Samples	\$250	\$250	Estimated		
Pesticdes/PCBs	1	Samples	\$150	\$150	Estimated		
Metals	1	Samples	\$150	\$150	Estimated		_
Cyanide	0	Samples	\$100	\$0	Estimated		
		Sampling T	otal	\$1,685			
Bin rental + Liner			\$5,725 p	er year	Quote		
Disposal cost per ton			\$200 p	er ton	Quote		
Hauling/ton			\$115 p	er ton	Quote		
Generator fees			\$0 p	er year	NA		
Total estim	ated sludge disposal cost		\$30,506 p	er year			
	ON-HAZARDOUS DISPOSAL					Comments	

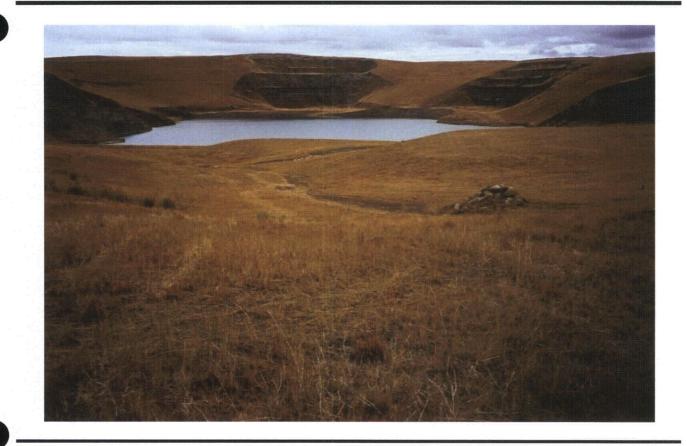
-

	NON-HAZARDOUS DISPOSAL				Comments
TCLP Metals	5	Samples	\$175	\$875 Estimated	
ТРН	0	Samples	\$85	\$0 Estimated	
VOCs	0	Samples	\$175	\$0 Estimated	
SVOCs	0	Samples	\$250	\$0 Estimated	
Pesticdes/PCBs	0	Samples	\$150	\$0 Estimated	
Metals	0	Samples	\$150	\$0 Estimated	
Cyanide	0	Samples	\$100	\$0 Estimated	
		Sampling To	otal	\$875	
Bin rental + Liner			\$5,725 p	er year Quote	
Landfill			\$28 p	er ton Estimate	
Hauling/ton			\$49 p	er ton Estimate	
Generator fees			\$0 p	er year	
	Total estimated sludge disposal cost		\$12,188 p	er year	

.

Estimated Anaylitical Costs

Item	Description	Quantity	Unit	Unit Cost	Total Cost	Comment
1.0	Annual Laboratory Analytical	Quantity		Onit Cost	Total Cost	Comment
1.0	TSS	12	Samples	\$25	\$300	Effluent
	Settleable solids	12	Samples	\$15	\$180	Effluent
	Nitrate/Nitrite	12	Samples	\$50	\$600	Effluent
	Hardness	12	Samples	\$30	\$360	Effluent
	Total Dissolved Solids	12	Samples	\$25	\$300	Effluent
	Color	12	Samples	\$15	\$180	Effluent
	Sulfate	12	Samples	\$20	\$240	Effluent
	Aluminum	12	Samples	\$17	\$204	Effluent
	Antimony	12	Samples	\$20	\$240	Effluent
	Arsenic	12	Samples	\$20	\$240	Effluent
	Barium	12	Samples	\$20	\$240	Effluent
	Beryllium	12	Samples	\$20 \$20	\$240	Effluent
	Cadmium	12	Samples	\$20	\$240	Effluent
	Chromium	12	Samples	\$20	\$240	Effluent
	Cobalt	12	Samples	\$20	\$240	Effluent
	Copper	12	Samples	\$20	\$240	Effluent
	Iron	12	Samples	\$20	\$240	Effluent
	Lead	12	Samples	\$20	\$240	Effluent
	Manganese	12	Samples	\$20	\$240	Effluent
	Mercury	12	Samples	\$30	\$360	Effluent
	Molybdenum	4	Samples	\$20	\$80	Effluent
	Nickle	12	Samples	\$20	\$240	Effluent
	Selenium	4	Samples	\$20	\$80	Effluent
	Thallium	12	Samples	\$20	\$240	Effluent
	Vandium	12	Samples	\$20	\$240	Effluent
	Zinc	12	Samples	\$20	\$240	Effluent
	Pimephales Promelas (acute)	2	Samples	\$500	\$1,000	Effluent
	Pimephales Promelas (Chronic)	2	Samples	\$790	\$1,580	Effluent
	Daphnia Dubia (Acute)	2	Samples	\$300	\$600	Effluent
	Daphnia Dubia (Chronic)	2	Samples	\$395	\$790	Effluent
	Dissolved Oxygen	12	Samples	\$12	\$144	Effluent
	pН	cont	Samples	\$0	\$0	Meter
	Temperature	12	Samples	\$5	\$60	Effluent
	Turbidity	cont	Samples	\$0	\$0	Effluent
	Electrical Conductivity	cont	Samples	\$0	\$0	Effluent, meter
	Radionuclides	12	Samples	\$500	\$6,000	Receiving water
	Subtotal Annual Laboratory Analytica	al Costs (rou	nded)		\$16,700	-
2.0	Sampling					
2.0	Operator	68	Hours	\$29	\$2,006	5 Hr/Mo +2 Hr/Qtr.
	Sampling equipment	1	Lump Sum	\$1,500	\$2,000 \$1,500	Composite sampler, meters, etc.
	Consumables	27	Events	\$1,500 \$20	\$540	Gloves, containers, calibrant, etc.
	Subtotal Annual Sampling Costs (rour		e vento	\$20	\$4,000	
2.0	Reporting					
5.0	Operator	104	Hours	\$29	\$3,068	6 Hr/Mo + 3 Hr/Qtr +20 Hr Annual
	Operator	24	Hours	\$29 \$29	\$3,008 \$708	1 Hr/Mo + 1 Hr/Qtr + 8 Hr Annual
	Copying and Mailing	12	Each	\$50	\$600	
	Subtotal Annual Reporting Costs (rou		Luch	450 <mark>-</mark>	\$4,400	
	Success Annual Reporting Costs (100	, acuy			Ψ -,- 00	


Total Estimated Annual NPDES Compliance Monitoring Costs (round_ \$25,000

,

EXHIBIT 4 COST ESTIMATE FOR PARTIAL BACKFILL OF HIGHLAND MINE PIT

MWH GLOBAL, FEBRUARY 2010

Exxon Mobil HIGHLAND RECLAMATION PROJECT

Cost Estimate for Partial Backfill of Highland Mine Pit

February 2010

3665 JFK Parkway Suite 206 Fort Collins, CO USA

TABLE OF CONTENTS

Section No.

Table No.

1.0	INTRODUCTION	1
2.0	ALTERNATIVE 1	2
3.0	ALTERNATIVE 2	3
4.0	MOBILIZATION/DEMOBILIZATION ESTIMATE	4
5.0	UNIT COST DETERMINATION AND PRODUCTION COST ESTIMATE	5
6.0	REVEGETATION ESTIMATE	6
7.0	TOTAL ESTIMATED PROJECT COST	7
8.0	REFERENCES	8

LIST OF TABLES

Table 2-1. Alternative 1 Backfill Quantities2Table 3-1. Alternative 2 Backfill Quantities3Table 4-1. Equipment Mobilization/Demobilization Estimate, Alternative 14Table 4-2. Equipment Mobilization/Demobilization Estimate, Alternative 24Table 5-1. Alternative 1 Production Cost Estimate5Table 5-2. Alternative 2 Production Cost Estimate5Table 6-1. Alternative 1 Revegetation Cost Estimate6Table 6-2. Alternative 2 Revegetation Cost6Table 6-2. Alternative 2 Revegetation Cost6Table 6-2. Alternative 3 Revegetation Cost7

LIST OF FIGURES

Figure No. Description

Figure 1 Alternative 1 Regrading Plan

Description

- Figure 2 Alternative 1 Borrow and Fill Areas
- Figure 3 Alternative 1 Isopach Contours
- Figure 4 Alternative 2 Regrading Plan
- Figure 5 Alternative 2 Borrow and Fill Areas
- Figure 6 Alternative 2 Isopach Contours

LIST OF APPENDICES

APPENDIX A	Unit Cost Calculations
APPENDIX B	Project Duration Calculations
APPENDIX C	Revegetation Cost per Acre Calculations

Page No.

Page No.

1.0 INTRODUCTION

This report provides an estimate of earthmoving costs for partial backfill of the remaining open pits (Pits 3 and 4) at the Highland Uranium Project in Converse County Wyoming. This estimate has been prepared for ExxonMobil by MWH Americas, Inc., under the direction of Tetra Tech in Fort Collins, CO. The objective of this work is to provide an engineering estimate of costs to partially backfill Pits 3 and 4 of the Highland Uranium Mine, described in this report as the pit. The level of backfill was chosen to be above the anticipated long-term natural groundwater elevation.

This estimate was based on 1) identifying reasonable alternatives for partial pit backfilling, 2) calculating volumes of cut and fill to achieve the two backfill alternatives, and 3) estimating earthmoving costs for the backfill work on a unit price basis, and 4) calculating total earthmoving costs using a reasonable equipment layout and earthmoving schedule. Earthwork quantities are estimated without any shrink/swelling factors for material excavated from the borrow areas, since the density of the placed material would be similar to the current density of material in the anticipated borrow areas.

MWH provided cost estimates for two alternatives identified for partial pit backfill. The first alternative entails the placement material into the pit to an elevation that provides a 0.25% slope downward from the northernmost point of the pit, across the surface of the pit, through an excavated channel to a tie-in to the Box Canyon drainage south of the pit. The channel was designed to have a 600-ft bottom width. This alternative was selected with the thought that providing a path for surface water to drain from the pit would be a better long-term solution for pit reclamation. The layout for this alternative is shown in Figure 1.

The second alternative consisted of backfilling the mine pit to an even elevation of 5100 ft, without providing a channel to drain surface water from the pit. The layout for this alternative is shown in Figure 4. The second alternative involves backfill to a lower elevation, with associated lower costs.

2.0 ALTERNATIVE 1

The Alternative 1 backfill design was divided into three cut and three corresponding fill areas to further breakdown the amount of fill required and help determine the limits of borrow areas to provide fill. The goal of the grading plan exercise was to determine the extent and slopes of the cuts needed to provide the required fill amounts for the backfill design. The individual cut and fill areas can be seen in Figure 2. Quantities for each backfilled section are provided in Table 2-1 below.

Backfilled Area	Quantity of Backfill Required			
Fill Area A	18,323,014 cy			
Fill Area B	17,963,131 cy			
Fill Area C	4,711,314 cy			
TOTAL	40,997,459 cy			

For this alternative, it was assumed that the material for Fill Area A would be obtained by regrading the pit slopes of Cut Area A back at a 4:1 (horizontal : vertical) slope, using a D9 dozer, then pushing the material cut into the pit. Because of the long push distances, the work would be done in two steps, with the first push length being approximately 600 ft and then the same material pushed down to the floor of the pit. The unit cost for moving this material will be doubled due to the double handling of the material. The remainder (and majority) of the fill required would be provided by borrowing stockpiled material from the northeast borrow (North Dump) using scrapers.

Fill Area B material would be obtained from the excavation of the proposed channel at the south end of the pit leading to the Box Canyon drainage, as well as slope regrade, again at a 4:1 slope and in two steps, requiring double handling. The channel excavation would be completed using scrapers, with the regrade completed using D9 dozers.

Finally, Fill Area C material would be obtained from the regrading the pit walls in Cut Area C to a 4:1 slope along the western edge of the section and 10:1 slope along the southern edge of the section. A cut-fill isopach for this alternative is given in Figure 3.

Using production rates from Caterpillar (2007), unit production rates and unit costs were determined. Assuming two eleven hour shifts each day, total production each day for the dozer push was approximately 24,651 cy, and an average rate of approximately 25,343 cy for scraper hauls, depending on hauling distances. Using these production rates, the approximate duration of the project is four years assuming:

- 1) All three sections are being worked on concurrently, and
- 2) Working is limited to 9 months per year due to frozen ground conditions during the winter months,

Project duration calculations are given in Appendix B and unit cost development is described in detail in Section 5.

3.0 ALTERNATIVE 2

As mentioned previously, the second alternative for the partial backfill is to fill to elevation 5100 ft, containing any surface water on the flat backfill surface within the pit. Fill Area D material will be obtained partially from a 4:1 dozer pushdown in Cut Area D, with the remainder borrowed from the North Dump adjacent to the pit (as was planned for Fill Area A in Alternative 1). The two remaining fill areas (Fill Areas E and F) will be completed with dozer pushdowns at a 4:1 slope in Cut Areas E and F. Due to the long distance of the pushdowns in Cut Areas E and F, the work is estimated to be completed in two steps, pushing down approximately 600 ft and then pushing the same material again to the bottom. As was the case with the long pushes in Alternative 1, the material haul cost will be doubled to account for this double movement of material. Approximate volumes of backfill material required for this alternative are given in Table 3-1.

Backfill Area	Quantity of Backfill Required
Fill Area D	14,497,886 cy
Fill Area E	14,224,875 cy
Fill Area F	2,631,440 cy
TOTAL	31,354,201 cy

Table 3-1. Alternative 2 Backfill Quantities

Again, using production rates from Caterpillar (2007), the daily production rates for the dozer pushdown and scraper borrow are 24,651 cy and 23,405 cy, respectively. As previously mentioned, it is assumed that two crews work eleven hour shifts each day, working on all three sections concurrently. Given the nine month work year, the approximate duration of the project for Alternative 2, including revegetation activities, as described in detail in Section 6.0, would be three years.

The calculations for project duration are included in Appendix B. An isopach, showing cut and fill contours for the regrading of this alternative is given in Figure 6.

4.0 MOBILIZATION/DEMOBILIZATION ESTIMATE

Due to the large amount of equipment needed for this operation, mobilization and demobilization of the equipment will contribute a significant cost to the project. For this estimate, we assumed that the equipment will be rented from an equipment dealer within a day's travel of the site, thus requiring cost for a day in transit each way. In addition, we assumed that one day will be needed to reassemble and prepare the equipment. Assuming a cost of \$100/hr for a flat bed truck and driver to transport the equipment for operation, a work day of 10-hrs, the cost at \$100/day*10 hours/day*3 days = \$3,000 per round trip. We assumed that the equipment will be returned from the site and serviced once a year, thus we assumed four round trip mobilization/demobilizations over the life of the project per piece of equipment for Alternative 1 and three round trips for Alternative 2. Table 4-1 and 4-2 give anticipated mobilization/demobilization cost estimates for each regrading alternative.

Table 4-1. Equipment Mobilization/Demobilization Estimate, Alternative 1

		Mobilization / Demobilization					
Equipment	Unit Mob/Demob Cost	Equipment Quantity	# of Mob/Demob	Total Mob/Demob Cost			
CAT 631 Scraper	\$3000	10	4	\$120,000			
CAT D9 Dozer	\$3000	30	4	\$360,000			
CAT D8 Dozer	\$3000	2	4	\$24,000			
CAT 16G Grader	\$3000	2	4	\$24,000			
Water Truck	\$3000	3	4	\$36,000			
Service Truck	\$3000	3	4	\$36,000			
TOTA	L MOBILIZATION/DE	MOBILIZATIC	N ESTIMATE	\$600,000			

Table 4-2. Equipment Mobilization/Demobilization Estimate, Alternative 2

		Mobilization	/ Demobilizatio	'n
Equipment	Unit Mob/Demob Cost	Equipment Quantity	# of Mob/Demob	Total Mob/Demob Cost
CAT 631 Scraper	\$3000	5	3	\$45,000
CAT D9 Dozer	\$3000	30	3	\$270,000
CAT D8 Dozer	\$3000	1	3	\$9,000
CAT 16G Grader	\$3000	1	3	\$9,000
Water Truck	\$3000	3	3	\$27,000
Service Truck	\$3000	3	3	\$27,000
TOTA	L MOBILIZATION/DE	MOBILIZATIC	N ESTIMATE	\$387,000

5.0 UNIT COST DETERMINATION AND PRODUCTION COST ESTIMATE

The unit cost and production estimates for Alternative 1 and 2 are summarized in Tables 5-1 and 5-2, and are discussed below.

Assumptions

This estimate assumes that two crews would be each working an 11-hour shift each day, with the remaining two hours available for maintenance and refueling. In addition, work is assumed to be completed by an outside contractor, a per diem of \$100 per person per day was used in the unit cost calculation.

Dozer Pushdown

The unit costs for the dozer pushdown were determined by taking the average pushdown distance for the dozer push, finding the appropriate production for that distance using Caterpillar (2007), taking into account variables such as operator efficiency, slope, and side by side dozing. These unit cost calculations and daily production rates can be found in Appendix A. As mentioned above, unit costs for all dozer work, with the exception of the dozer pushdown of material in Cut Area D to Fill Area D, were doubled due to the double handling of material being pushed down long slope.

Scraper Hauling

Scraper hauling unit costs were determined using the Caterpillar (2007), finding travel and cycle times for loaded and unloaded CAT 631 Scrapers, taking into account slopes and other variables as described in Caterpillar (2007). These cycle times were used to determine hourly productivity and eventually unit costs. Cost calculations and daily production rates for Alternative 2 can also be found in Appendix A.

Operation	Unit Cost (\$/cy)	Quantity Req.	Section Subtotal
Cut Area A Dozer Push	\$1.16 x 2 = \$2.32	6,579,112 cy	\$15,263,540
North Dump Scraper Haul	\$1.52	11,743,902 cy	\$17,850,731
Cut Area B Scraper Haul	\$1.30	16,189,193 cy	\$21,045,951
Cut Area B Dozer Push	\$1.16 x 2 = \$2.32	1,773,938 cy	\$4,115,536
Cut Area C Dozer Push	\$1.16 x 2 = \$2.32	4,711,314 cy	\$10,930,249
ΤΟΤΑ	L ALTERNATIVE 1 C	OST ESTIMATE	\$69,206,007

Table 5-1. Alternative 1 Production Cost Estimate

Table 5-2. Alternative 2 Production Cost Estimate

Operation	Unit Cost (\$/cy)	Quantity Req.	Total Cost
Cut Area D Dozer Push	\$1.16	2,753,984 cy	\$3,194,621
North Dump Scraper Haul	\$1.52	11,743,902 cy	\$17,850,731
Cut Area E Dozer Push	\$1.16 x 2 = \$2.32	14,224,875 cy	\$33,001,710
Cut Area F Dozer Push	\$1.16 x 2 = \$2.32	2,631,440 cy	\$6,104,941
ΤΟΤΑ	L ALTERNATIVE 2 C	OST ESTIMATE	\$60,152,003

6.0 REVEGETATION ESTIMATE

In addition to the work associated with the partial backfill of the mine pit, work will be required to revegetate the disturbed areas. Revegetation would be completed once a year for the duration of the project. Each year, equipment would be mobilized to the site to perform revegetation activities on areas completed during the previous year. This mobilization cost has been included in the unit cost per acre estimate for revegetation.

Revegetation would include placing a one-foot thick layer of growth media over all disturbed areas, applying fertilizer, ripping and harrowing the soil, broadcast seeding, and mulching all disturbed areas. The seed mix will be comprised of specific grasses and plants native to the area and/or grasses proven in previous similar revegetation projects to grow as required by revegetation guidelines of Wyoming. Revegetation unit costs per acre calculations are included in Appendix C. Estimates of the revegetation costs for each alternative are provided in Tables 6-1 and 6-2.

Revegetation Activity	Quantity	Unit Cost	Subtotal
1-ft Thick Growth Media Application ¹	984,367 cy	\$1.52/cy	\$1,496,238
Revegetation Cost	724 acres	\$2009/acre	\$1,454,516
an a		TOTAL	\$2,950,754

Table 6-1. Alternative 1 Revegetation Cost Estimate

Note: ¹Assumes using scraper at cost of \$1.52/cy. Also assumes North Dump does not require growth media.

Revegetation Activity	Quantity	Unit Cost	Subtotal	
1-ft Thick Growth Media Application ¹	785,174 cy	\$1.52/cy	\$1,193,464	
Revegetation Cost	487 acres	\$2011/acre	\$979,357	
		TOTAL	\$2,172,821	

Table 6-2. Alternative 2 Revegetation Cost

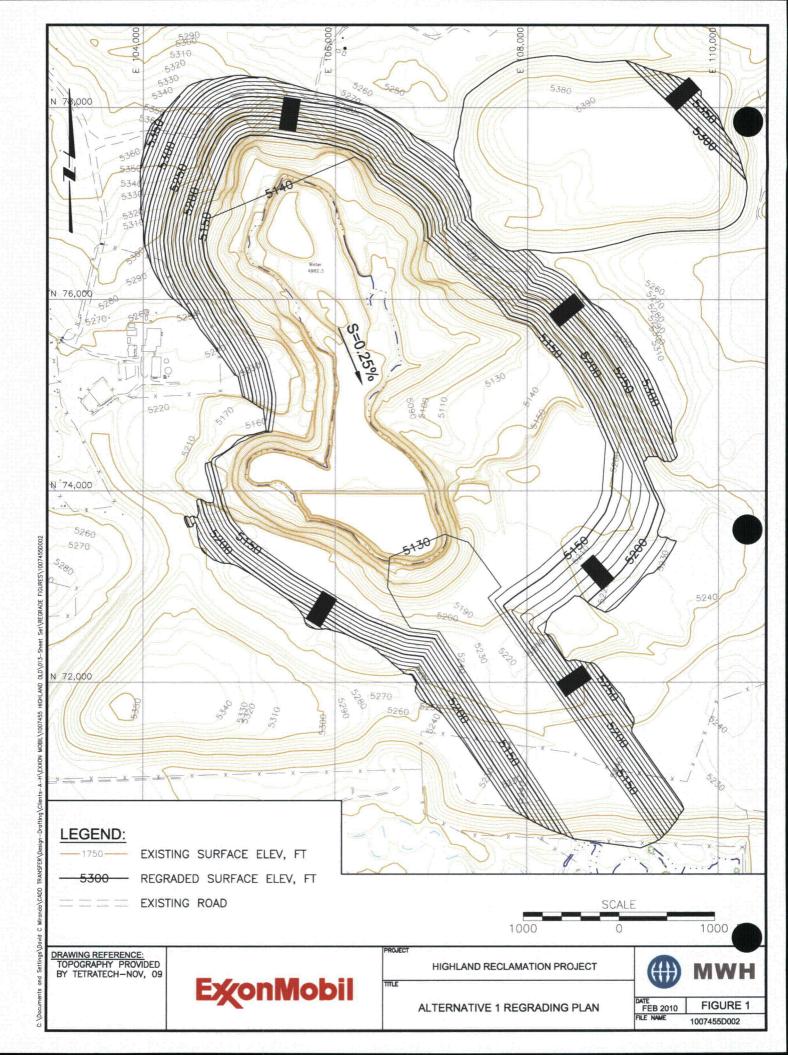
Note: ¹Assumes using scraper at cost of \$1.52/cy.

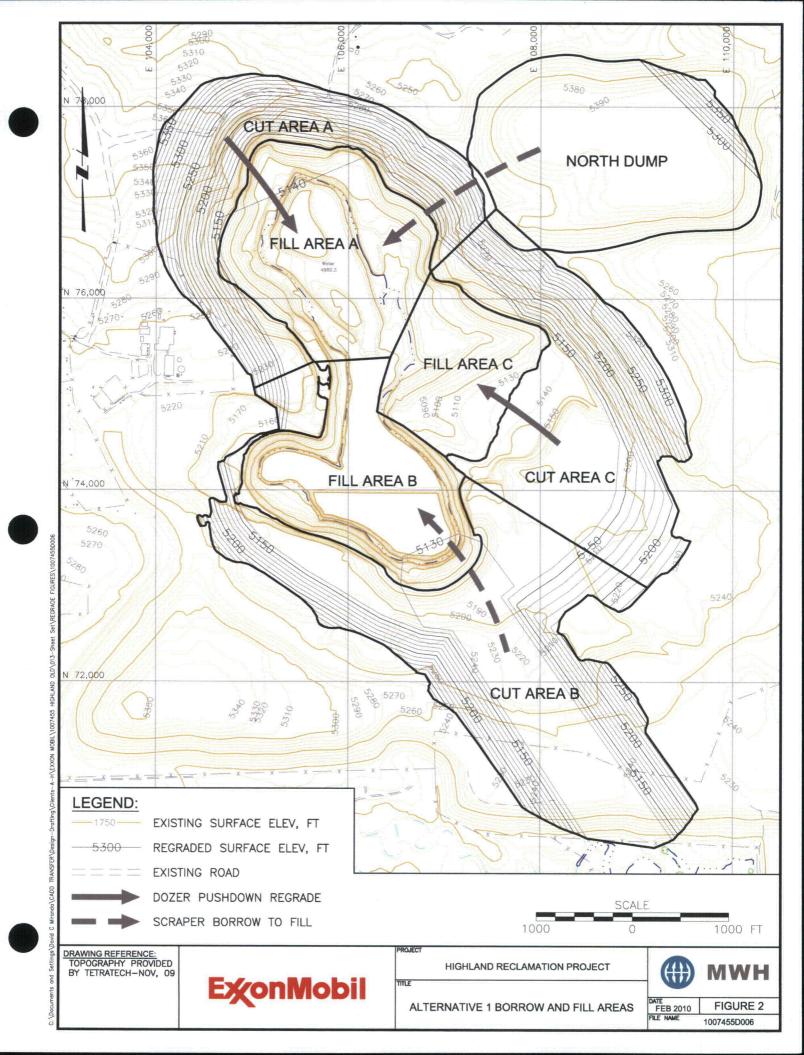
7.0 TOTAL ESTIMATED PROJECT COST

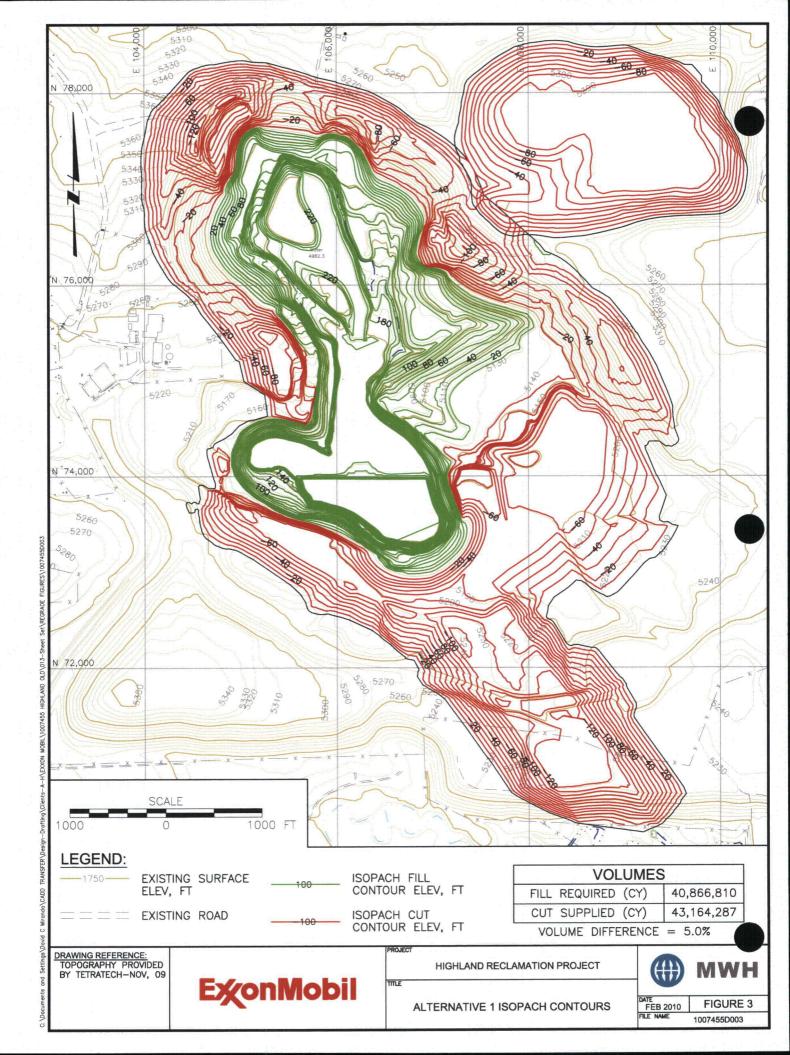
The estimated project costs for each alternative are given below in Table 7-1. Included in the estimate is a contingency of 10% for unexpected costs due to weather delays and unforeseen changes in fuel prices or equipment availability.

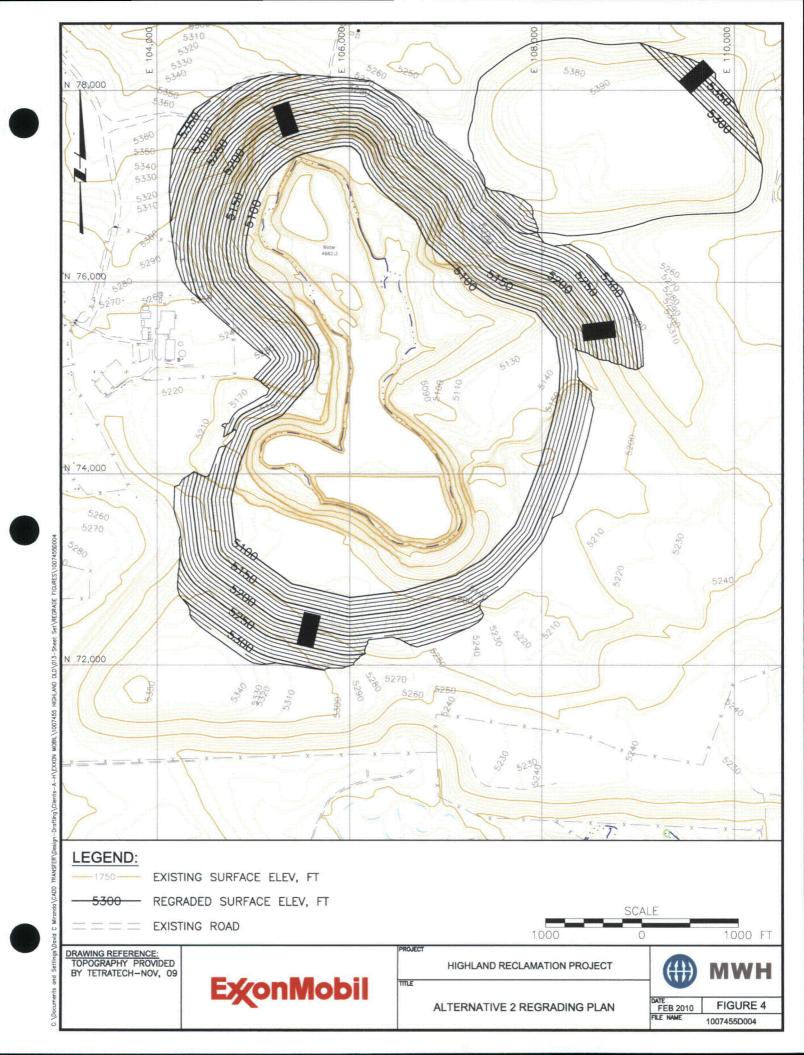
Alternative	Mob/Demob Cost (\$)	Production Cost (\$)	Revegetation Cost (\$)	Contingency (10%)	Total Cost (\$)
1	\$600,000	\$69,206,007	\$2,950,754	\$7,275,676	\$80,032,437
2	\$387,000	\$60,152,003	\$2,172,821	\$6,271,182	\$68,983,006

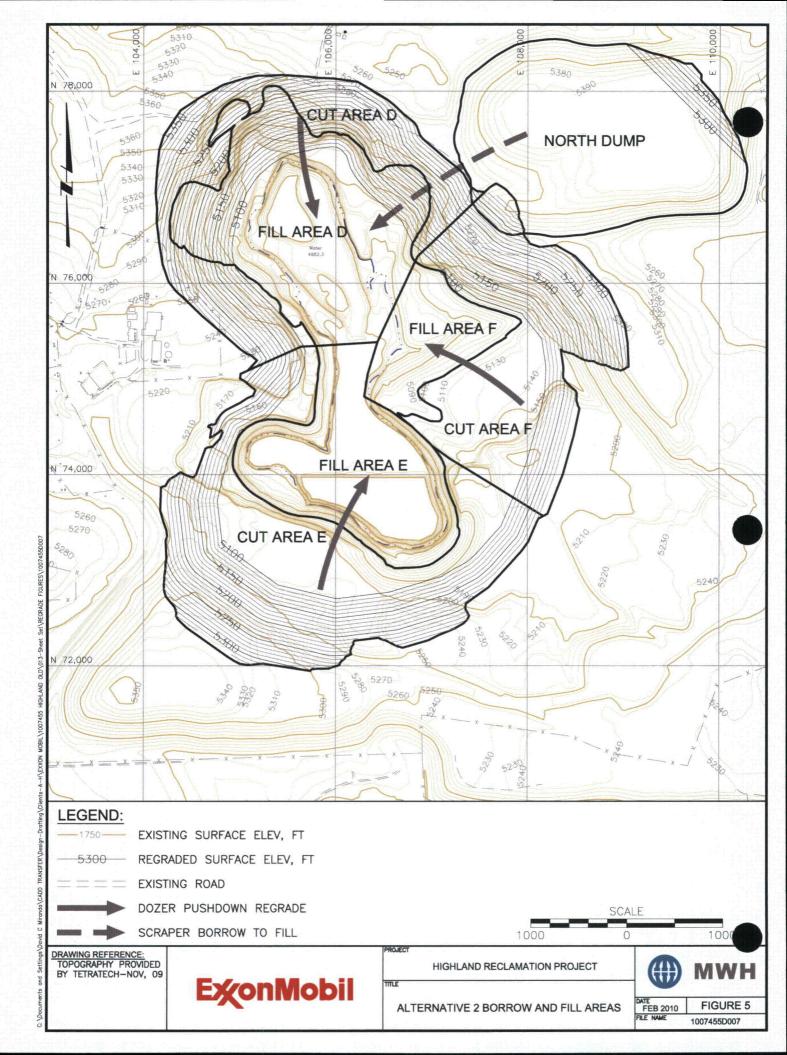
Table 7-1. Total Pre	ject Cost Estimates f	or Alternatives 1 and 2
----------------------	-----------------------	-------------------------

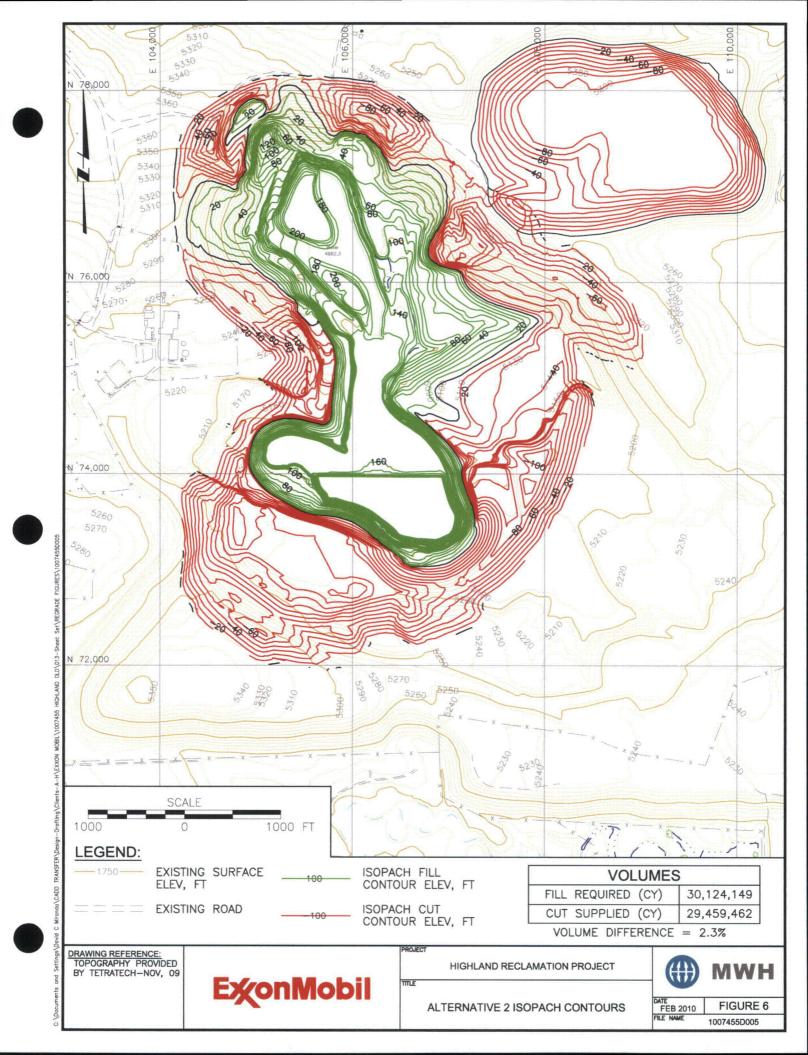

Costs associated with other necessary aspects of the partial pit backfill, that are not included in this estimate are listed below.


- 1. Permitting and licensing associated with backfill planning.
- 2. Property leases or purchases, and access permissions.
- 3. Removal of water from the mine, along with treatment and discharge of this water.
- 4. Installation and operation of dewatering systems for the mine prior to and during backfill operations.
- 5. Permitting and licensing associated with water removal, treatment, and discharge listed above.
- 6. Obtaining contractor bids, evaluating bids, and contract negotiation for the work listed above.
- 7. Monitoring of backfill and revegetation performance, (vegetation success, erosion control, slope stability, settlement, groundwater levels and quality).


8.0 **REFERENCES**


Caterpillar, Inc., 2007. Caterpillar Performance Handbook, Caterpillar Inc., Peoria, Illinois,


FIGURES



APPENDIX A

COST ESTIMATE CALCULATIONS

ALTERNATIVE 1 BACKFILLING

CUT AREA A DOZER PUSHDOWN CUTTING AND PUSH DOWN OF WALL MATERIAL INTO FILL AREA A AT 4H:1V 600 ft average dozing distance

Daily Cost	aily Cost						
Item	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate	
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40	
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62	
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16	
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00	
Crew Per Diem	16			_		\$1,600.00	
				ſ	Overall Total =	\$28,554,18	

Daily Dozer Production

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
	0.75	1	0.83	1.5	1.2	224.1	4930.2
Notes						LCY/hr/fleet	1120.5
Hourly production and load corre	ctions from					LCY/day/fleet	24651

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Cost/Daily Production =	\$1.16	per cy	
unit rate by item	cost/cy		
Dozer (Cat D9)	\$0.97		
Foreman	\$0.04		
Grade checker	\$0.04		
Mechanic	\$0.04		
Crew Per Diem	\$0.06		

Operator Efficiency Excellent Average Poor	1 0.75 0.6	
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7	
Side By Side Dozin	1.2	
Job Efficiency 50 min/hr 40 min/hr	0.83 0.67	

Load Corrections

ALTERNATIVE 1 BACKFILLING

NORTH DUMP SCRAPER BORROW TO FILL AREA A 3300-ft average haul distance

Daily Cost

		Hours	Hourly Equipment	Hourly		
Item	Quantity	Used/Day	Rate	Operator Rate	Total Hourly Rate	Total Daily Rate
Scraper (Cat 631)	5	22	\$163.00	\$32.44	\$195.44	\$21,498.40
Dozer (Cat D8)	1	22	\$147.00	\$32.44	\$179.44	\$3,947.68
Grader (Cat 16G)	1	22	\$108.00	\$32.71	\$140.71	\$3,095.62
Water truck (2000 gal)	1	22	\$45.00	\$32.08	\$77.08	\$1,695.76
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	22					\$2,200.00
				[Overall Total =	\$35,473.24

Daily Production

cycle time (min)	loads/hr	hr/day	efficiency	loads/day	rounded loads/day	cy/load	cy/day/unit
7	8.57	22	0.8	150.9	151	31	4681

Notes

Cycle time and hourly production from 1997 Caterpillar Performance Handbook

Production controlled by scraper travel times Borrow from Northeast Stockpile

cy/hr/unit	213
cy/hr	1064
cy/day	23405

\$1.52

Daily Cost/Daily Production =

per cy

unit rate by item	cost/cy
Scraper (Cat 631)	\$0.92
Dozer (Cat D8)	\$0.17
Grader (Cat 16G)	\$0.13
Water truck (2000 gal)	\$0.07
Foreman	\$0.04
Grade checker	\$0.04
Mechanic	\$0.05
Crew Per Diem	\$0.09

FILL AREA B FROM CHANNEL SCRAPER BORROW 2500-ft average haul distance

Daily Cost

		Hours	Hourly Equipment	Hourly		
Item	Quantity	Used/Day	Rate	Operator Rate	Total Hourly Rate	Total Daily Rate
Scraper (Cat 631)	5	22	\$163.00	\$32.44	\$195.44	\$21,498.40
Dozer (Cat D8)	1	22	\$147.00	\$32.44	\$179.44	\$3,947.68
Grader (Cat 16G)	1	22	\$108.00	\$32.71	\$140.71	\$3,095.62
Water truck (2000 gal)	1	22	\$45.00	\$32.08	\$77.08	\$1,695.76
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	22					\$2,200.00
				Γ	Overall Total =	\$35,473.24

Daily Production

cycle time (min)	loads/hr	hr/day	efficiency	loads/day	rounded loads/day	cy/load	cy/day/unit
6	10.00	22	0.8 176.0 176		31	5456	
lotes					Г	cy/hr/unit	248
Cycle time and hourly pro	duction from				Γ	cy/hr	1240
1997 Caterpillar Performa	nce Handbook	ζ.				cy/day	27280
Production controlled by s	craper travel ti	mes		Daily C	cost/Daily Production =	\$1.30	per cy

unit rate by item	cost/cy
	-
Scraper (Cat 631)	\$0.79
Dozer (Cat D8)	\$0.14
Grader (Cat 16G)	\$0.11
Water truck (2000 gal)	\$0.06
Foreman	\$0.04
Grade checker	\$0.03
Mechanic	\$0.04
Crew Per Diem	\$0.08

CUT AREA B DOZER PUSHDOWN TO FILL AREA B CUTTING AND PUSH DOWN OF WALL MATERIAL INTO PIT AT 4H:1V 600 ft average dozing distance

Daily Cost	1	I	Hourly			1
		Hours	Equipment	Hourly Operator		
Item	Quantity	Used/Day	Rate	Rate	Total Hourly Rate	Total Daily Rate
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	16					\$1,600.00
]	Overall Total =	\$28,554.18

7.44	\$Z3,910.40	
5.71	\$1,027.62	
2.28	\$930.16	
9.00	\$1,078.00	
	\$1,600.00	
Total =	\$28,554.18	

Daily Dozer Production

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
	0.75	1	0.83	1.5	1.2	224.1	4930.2
Notes	· · · · · ·					LCY/hr/fleet	1120.5
Hourly production and load corrections from							24651

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Cost/Daily Production =	\$1.16	per cy
unit rate by item	cost/cy	
Dozer (Cat D9)	\$0.97	
Foreman	\$0.04	
Grade checker	\$0.04	
Mechanic	\$0.04	
Crew Per Diem	\$0.06	

Load Corrections Operator Efficiency Excellent Average Poor	1 0.75 0.6
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7
Side By Side Dozin	g

1.2

Job Efficiency	
50 min/hr	0.83
40 min/hr	0.67

CUT AREA C DOZER PUSHDOWN TO FILL AREA C CUTTING AND PUSH DOWN OF WALL MATERIAL INTO PIT AT 4H:1V 600 ft average dozing distance

Daily Cost						
Item	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	16					\$1,600.00
				1	Overall Total =	\$28,554.18

Daily Dozer Production

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
	0.75	1	0.83	1.5	1.2		
Notes						LCY/hr/fleet	1120.5

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Cost/	Daily Production =	\$1.16	per cy
	unit rate by item	cost/cy	7
	Dozer (Cat D9)	\$0.97	
	Foreman	\$0.04	
	Grade checker	\$0.04	
	Mechanic	\$0.04	
	Crew Per Diem	\$0.06	

LCY/day/fleet

24651

Load Corrections Operator Efficienc Excellent Average Poor	y 0.75 0.6	
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7	
Side By Side Dozi	ng	1.2
Job Efficiency 50 min/hr	0.83	

0.67

40 min/hr

CUT AREA D DOZER PUSHDOWN TO FILL AREA D CUTTING AND PUSH DOWN OF WALL MATERIAL INTO PIT AT 4H:1V 600 ft average dozing distance

Item	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	16					\$1,600.00

Daily Dozer Production

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
	0.75	1	0.83	1.5	1.2	224.1	4930.2
Notes						LCY/hr/fleet	1120.5
Hourly production and load corrections from					LCY/day/fleet	24651	

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Cost/Daily Production =	\$1.16	per cy
unit rate by item	cost/cy	٦
Dozer (Cat D9)	\$0.97	
Foreman	\$0.04	
Grade checker	\$0.04	
Mechanic	\$0.04	
Crew Per Diem	\$0.06	

Load Corrections Operator Efficiency Excellent Average Poor	/ 0.75 0.6	
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7	
Side By Side Dozir	ng	
Job Efficiency		

1.2

JOD EINCIENCY	
50 min/hr	0.83
40 min/hr	0.67

Appendix

NORTH DUMP SCRAPER BORROW TO FILL AREA D 3300-ft average haul distance

Daily Cost

Item	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate
Scraper (Cat 631)	5	22	\$163.00	\$32.44	\$195.44	\$21,498.40
Dozer (Cat D8)	1	22	\$147.00	\$32.44	\$179.44	\$3,947.68
Grader (Cat 16G)	1	22	\$108.00	\$32.71	\$140.71	\$3,095.62
Water truck (2000 gal)	1	22	\$45.00	\$32.08	\$77.08	\$1,695.76
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	22					\$2,200.00
				Γ	Overall Total =	\$35,473.24

Daily Production

cycle time (min)	loads/hr	hr/day	efficiency	loads/day	rounded loads/day	cy/load	cy/day/unit
7	8.57	22	0.8	150.9	151	31	4681
Notes					I	cy/hr/unit	213
Cycle time and hourly pro	duction from					cy/hr	1064
1997 Caterpillar Performa	ance Handbool	κ (cy/day	23405

Production controlled by scraper travel times Borrow from Northeast Stockpile

Daily Cost/Daily Production =	\$1.52	per_cy	
unit rate by item	cost/cy		
Scraper (Cat 631)	\$0.92		

A4 E0

Scraper (Cat 631)	\$0.92
Dozer (Cat D8)	\$0.17
Grader (Cat 16G)	\$0.13
Water truck (2000 gal)	\$0.07
Foreman	\$0.04
Grade checker	\$0.04
Mechanic	\$0.05
Crew Per Diem	\$0.09

CUT AREA E DOZER PUSHDOWN TO FILL AREA E CUTTING AND PUSH DOWN OF WALL MATERIAL INTO PIT AT 4H:1V 600 ft average dozing distance

Daily Cost			ooo nanonago	aoang alolanoo		
Item	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	16			N		\$1,600.00
]	Overall Total =	\$28,554.18

Dailv	Dozer	Produ	uction

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
	0.75	1	0.83	1.5	1.2	224.1	4930.2
Notes			•			LCY/hr/fleet	1120.5
Hourly production and load corrections from						LCY/day/fleet	24651

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Cost/Daily Pro	duction =	\$1.16	per cy
			_
unit rate b	y item	cost/cy	
Dozer (Ca	it D9)	\$0.97	_
Forem	an	\$0.04	
Grade ch	ecker	\$0.04	
Mecha	nic	\$0.04	
Crew Per	Diem	\$0.06	

Load Corrections Operator Efficiency Excellent Average Poor	1 0.75 0.6	
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7	
Side By Side Dozin	9	

ن ن

1.2

Job Efficiency 50 min/hr 0.83 40 min/hr 0.67

CUT AREA F DOZER PUSHDOWN TO FILL AREA F CUTTING AND PUSH DOWN OF WALL MATERIAL INTO PIT AT 4H:1V 600 ft average dozing distance

Daily Cost						
ltem	Quantity	Hours Used/Day	Hourly Equipment Rate	Hourly Operator Rate	Total Hourly Rate	Total Daily Rate
Dozer (Cat D9)	5	22	\$185.00	\$32.44	\$217.44	\$23,918.40
Foreman	1	22	\$14.00	\$32.71	\$46.71	\$1,027.62
Grade checker	1	22	\$14.00	\$28.28	\$42.28	\$930.16
Mechanic	1	22	\$17.00	\$32.00	\$49.00	\$1,078.00
Crew Per Diem	16					\$1,600.00
					Overall Total =	\$28,554.18

Daily Dozer Production

LCY/hr MAX	Operator Efficiency	material	Job Efficiency	Grade Factor	Side By Side Dozing	Corrected LCY/hr	LCY/day/unit
200	Average	Bank	50 min/hr	4H:1V downhill	Yes	224.1	4930.2
•	0.75	1	0.83	1.5	1.2	224.1	4930.2
Notes						LCY/hr/fleet	1120.5

Hourly production and load corrections from 2007 Caterpillar Performance Handbook

Average Dozing Distance (ft)	LCY/hr
100	1300
200	725
300	500
400	325
500	225
600	200

Daily Co	st/Daily Production =	\$1.16	per cy
	unit roto hu itom	cost/cy	_
L	unit rate by item Dozer (Cat D9)	\$0.97	
	Foreman	\$0.97 \$0.04	
	Grade checker	\$0.04 \$0.04	
	Mechanic	\$0.04	
	Crew Per Diem	\$0.06	

LCY/day/fleet

24651

Load Corrections Operator Efficien Excellent Average Poor		
Load Conditions Bank Loose Stkple Rock	1 1.2 0.7	
Side By Side Do	zing	
Job Efficiency 50 min/hr	0.83	

1.2

50 min/hr 0.83 40 min/hr 0.67

APPENDIX B

PROJECT DURATION CALCULATIONS

Highland Mine and Mill Site Reclamation Project Project Duration Calculations

Alternative 1:

Task ID	Backfill Quantity Required (cy)	Daily Production Rate (cy/day)	Duration of Task (days)	
Cut Area A Dozer Push	6,579,112	24651	267	
North Dump Scraper Haul	11,743,902	23405	502	
Cut Area B Scraper Haul	16,189,193	27280	593	
Cut Area B Dozer Push	1,773,938	24651	72	
Cut Area C Dozer Push	4,711,314	24651	191	
a da la maanadin on maananan amminintari na taatan taatan kanana sa amminintari amminintari amminintari ammini		TOTAL	1625 d	days
		Maximum Duration is Area A at	769 d	days

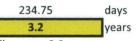
Task	Quantity Needing Revegetation (acres)	Daily Production Rate (acres/day)	Duration of Task (days)
Revegetation of Flat and 10H:1V Areas	389	5.5	71
Revegetation of 4H:1V Areas	221	2.5	88
n na na na sana sa sana ang na sana na sana na sana na na na sana na sana na sana na sana sa sana sa sa sa sa s	an a	TOTAL DURATION	159

Assuming a 6-day work week and a 9 month work year, total working days per year = Assuming all areas are worked concurrently, maximum duration of project =

days years

234.75

4.0


Alternative 2:

Task ID	Backfill Quantity Required (cy)	Daily Production Rate (cy/day)	Duration of Task (days)	
Cut Area D Dozer Push	2,753,984	24651	112	1
North Dump Scraper Haul	11,743,902	23405	502	1
Cut Area E Dozer Push	14,224,875	24651	577	1
Cut Area F Dozer Push	2,631,440	24651	107	1
		TOTAL	1297	days
		Maximum Duration is Area A at	613	days

Task	Quantity Needing Revegetation (acres)	Daily Production Rate (acres/day)	Duration of Task (days)	
Revegetation of Flat and 10H:1V Areas	246	5.5	45	
Revegetation of 4H:1V Areas	241	2.5	96	
		TOTAL DURATION	141	

Assuming a 6-day work week and a 9 month work year, total working days per year =

Assuming all areas are worked concurrently, maximum duration of project =

we will assume 3.0 years

APPENDIX C

REVEGETATION COST PER ACRE CALCULATIONS

Highland Mine and Mill Site Reclamation Project Revegetation Cost per Acre Calculation

Alternative 1:

Item	Units	Unit Cost
Fertilizer and fertilizer application	per acre	\$175
Ripping before seeding	per acre	\$200
Harrowing after seeding	per acre	\$120
Seed	per acre	\$500
Broadcast seeding	per acre	\$200
Mulch and mulching	per acre	\$800

Mobilization/Demobilization = \$2520 per round trip

Total Roundtrips = 4

Divide total mobilization/demobilization cost by total acreage (724 acres) =

\$14

TOTAL COST PER ACRE \$2,009

Alternative 2:

Item	Units	Unit Cost
Fertilizer and fertilizer application	per acre	\$175
Ripping before seeding	per acre	\$200
Harrowing after seeding	per acre	\$120
Seed	per acre	\$500
Broadcast seeding	per acre	\$200
Mulch and mulching	per acre	\$800

Mobilization/Demobilization = \$2520 per round trip

Total Roundtrips = 3

Divide total mobilization/demobilization cost by total acreage (487 acres) =

\$16

\$2,011

TOTAL COST PER ACRE

EXHIBIT 5 LISTING OF DOMESTIC WELLS FROM STATE DATABASE

Domestic Wells From State Database

Township	Tns Suffix	Range	Kng Suffix	Section	Qtrqtr	Applicant	Facility Name	Uses	Yid Act		Static	Mwbz Top	Bottom	Well Log	Cnemical Analysis	County
استعسما		استخصب		<u></u>										·		إحصاد
37	N	73	W	10		ROY C. BAKER**FEROL BAKER	BAKER #1	DOM	6	300	20	Unknown	Unknown	Yes	No	Converse
36	N	71	w	31	SWSW	BONER BROTHERS PARTNERSHIP	BULL PASTURE	DOM	15	80	35	65	77	Yes	No	Converse
37	N	73	w	10	SENW	ROY C. & FEROL BAKER	BAKER 10 A	DOM	13	300	50	240	300	Yes	No	Converse
37	N	73	W	22	SENE	DUCK CREEK RANCHES INC.	REYNOLDS #22	DOM	3	375	-6	251	349	Yes	No	Converse
36	N	72	W	9	SESE	LEE FOWLER	FOWLER #1	DOM	8	212	182	Unknown	Unknown	No	No	Converse
37	N	73	W	22	SENE	DUCK CREEK RANCHES INC.	DUCK CREEK #2	DOM	1	400	0	310	340	Yes	No	Converse
36	N	73	W	27	NWNE	WILLIAM R. VOLLMAN	VOLLMAN #6	DOM	5	180	165	Unknown	Unknown	No	No	Converse
						BONER BROTHERS PARTNERSHIP** STATE OF WY										
35	N	71	W	36	NESE	DEPT. OF PUBLIC LANDS	CLAUSEN STATE #1	DOM,STO	5	480	30	Unknown	Unknown	No	No	Converse
37	N	72	W	17	NESW	WARREN A. & JUDITH Y. MANNING	#3 G MANNING DOMESTIC WELL	DOM,STO	7	297	21	262	297	Yes	No	Converse
35	N	73	W	3	NESW	CARROLL JAY LISCO	LISCO #1	DOM,STO						No		Converse
36	N	72	W	30	NWNE	HUMBLE OIL & REFINING COMPANY	HIGHLAND #7	IND,DOM						No		Converse
36	N	72	W	19	SWSE	HUMBLE OIL & REFINING COMPANY	HIGHLAND #2	IND,DOM						No		Converse
36	N	72	w	29	NWSW	HUMBLE OIL & REFINING COMPANY	HIGHLAND #6	IND,DOM						No		Converse
36	N	73	W	21	SWSE	HUMBLE OIL & REFINING COMPANY	HIGHLAND #8	IND, DOM						No		Converse
36	N	73	W	29	NESW	HUMBLE OIL & REFINING COMPANY	HIGHLAND #9	IND,DOM						No		Converse
36	N	73	w	31	NWSE	HUMBLE OIL & REFINING COMPANY	HIGHLAND #10	IND,DOM						No		Converse
36	N	72	W	29	NENW	POWER RESOURCES INC.	HIGHLAND #6	RES, IND, DOM	100	400	50	250	355	Yes	Yes	Converse
36	N	72	w	20	NESE	POWER RESOURCES INC.	HIGHLAND #3	RES, IND, DOM	150	298	129	175	298	Yes	No	Converse
36	N	72	W	28	NWSW	EXXON CORPORATION	HIGHLAND #5	RES, IND, DOM	150	270	54	150	260	Yes	No	Converse
36	N	72	W	21	NENW	EXXON CORPORATION	HIGHLAND #4	RES, TEM, IND, DOM	52	600	-1	450	590	Yes	No	Converse

EXHIBIT 6

ASSESSMENT OF POTENTIAL HEALTH EFFECTS FROM EXPOSURE TO SELECTED CONTAMINANTS IN GROUNDWATER AND SURFACE WATER AT THE EXXONMOBIL HIGHLAND URANIUM PROJECT

ASSESSMENT OF POTENTIAL HEALTH EFFECTS FROM EXPOSURE TO SELECTED CONTAMINANTS IN GROUNDWATER AND SURFACE WATER AT THE EXXONMOBIL HIGHLAND URANIUM PROJECT

Prepared on Behalf of: ExxonMobil Environmental Services Company 12450 Greenspoint Drive Houston, TX 77060

Prepared for: **AMEC Earth & Environmental** 2000 S. Colorado Blvd., Suite 2-1000 Denver, Colorado 80222 & Advanced Environmental Sciences, Inc.

118 East 29th Street Suite C Loveland, CO 8053

Prepared by: Wright Environmental Services, Inc. 3801 Automation Way, Suite 100 Fort Collins, Colorado 80525

February 4, 2011

Table of Contents

1	Introduction	1
2	Evaluation of Potential Health Effects	1
	2.1 Health Effects from Radiological Exposures2.1.1 Southeast Drainage2.1.2 Pit Lake	1 3 4
	2.2 Non-Radiological Health Effects 2.2.1 Southeast Drainage 2.2.2 Pit Lake	4 4 5
3	Conclusion	5
4	References	5

Attachments

Attachment 1 **Dose Calculations**

1 Introduction

This evaluation assesses potential adverse health effects resulting from exposure to both radiological and non-radiological constituents present in groundwater and surface water at the ExxonMobil Highland Uranium Project, near Douglas Wyoming if these water resources were used as a source of drinking water. The following describes estimates of potential adverse human health effects that might be avoided through successful implementation of corrective action at the Highland Site.

This area is remote from population centers and has very low population density (< 1 person/square mile) and use of the shallow groundwater and surface water for domestic drinking water is extremely unlikely. However, it has conservatively been assumed that the potentially exposed population is a residential family of four.

Background information on site conditions and relevant exposure scenarios is provided in the *Highland Uranium Mine and Millsite Request for Amendment to Radioactive Materials License SUA-1139, Application to Amend Existing Alternate Concentration Limits* (Exxon, 2011). This evaluation assumes that groundwater in the Southeast Drainage or Highland pit lake could be used as a drinking water source, which is highly unlikely for numerous reasons. Also, given the very low population density in this area, it is even less likely that persons would be exposed to surface water or groundwater as a drinking water source.

2 Evaluation of Potential Health Effects

2.1 Health Effects from Radiological Exposures

The avoided radiological dose from groundwater consumption can be estimated based on factors such as intake rates, groundwater concentrations, and exposure durations. The intake of radiological constituents from ingestion of groundwater that could be avoided by reducing groundwater concentrations to the MCL was calculated as follows:

Equation 1: Idw = (Cgw)((IW)(EF)(ED))

Where:

Idw= Lifetime intake from groundwater, µCi

Cgw = Groundwater concentration removed based on reduction to MCL, µCi/L

IW = Average daily water intake of 2 liters per day (EPA, 2010)

EF = Exposure frequency of 350 days/year (USEPA 1998)

ED = Exposure duration of 30 years.

The units of pCi were converted to μ Ci by multiplying by 1 x 10-6 (μ Ci/pCi). Intake from other food sources was not considered because the contribution from other food sources for these hazardous constituent is insignificant compared to the contribution from groundwater as a drinking water source. Additionally, potential dose from external exposure during showering or other dermal contact with water also was not included.

The lifetime averted dose if concentrations in drinking water were reduced to the MCL (averted dose (AD)) was calculated as follows:

Equation 2: LAD = (Idw)(CF)

Where:

LAD =	Lifetime averted dose in mrem
ldw =	Intake of a constituent by an individual in μ Ci (Idw, described
	above)
CF =	Intake to dose conversion factor in mrem/µCi
	CF for Unat = 268.9 mrem/µCi, (average for U-238 and U234)
	CF for Ra-226 = 1324.6, CF for Ra-228 = 1435.6 (higher CF value
	used)

The annual averted dose is calculated by dividing the lifetime averted dose by the number of years of exposure:

Equation 3: AAD = LAD/ED

Where:

AAD =	Annual averted dose in mrem/year
LAD =	Lifetime averted dose in mrem
ED =	Exposure duration (30 years)

Assuming a family of four would hypothetically be exposed to groundwater or surface water from the Southeast Drainage or Highland pit lake, the total annual averted dose would be four times higher.

2.1.1 Southeast Drainage

The maximum natural uranium (Unat) groundwater concentrations in the Southeast Drainage are observed in well MFG-1, all other Southeast Drainage wells exhibit uranium concentrations of approximately 0.07 mg/L or below. The average recent Unat concentration measurements from well MFG-1 is approximately 0.37 mg/L. If the groundwater could be remediated to the current MCL (0.03 mg/L), then the groundwater concentration would be 0.34 mg/L or 0.00023 μ Ci/L (assuming an activity concentration of 677 pCi/L for each mg/L of Unat). Similarly, Ra-226+228 are only observed in the Southeast Drainage above the MCL of 5 pCi/L in one well, BBL-3. The Ra-226+228 concentrations in all other Southeast Drainage wells are below the MCL value. The average recent Ra-226+228 concentration measurements from well BBL-3 is approximately 5.4 pCi/L, just 0.4 pCi/L above the MCL. If the groundwater could be remediated to the current MCL (5 pCi/L), then the maximum groundwater Ra-226+228 concentrations reduction by implementing a corrective action would be 0.4 pCi/L or 4.0 x10⁻⁷ μ Ci/L.

Based on Equation 1, the avoided individual lifetime (30 years) intake of Unat from groundwater would be 4.83 μ Ci and 0.0084 μ Ci for Ra-226+228. Applying Equations 2 and 3, the annual averted dose equivalent for Unat would be 43.3 mrem/year and 0.40 mrem/year for Ra-226+228, for a total annual averted dose of 43.7 mrem/year. Assuming four people were exposed at these levels the total lifetime averted dose would be 5.25 person-rem.

This estimate represents a highly conservative assessment of averted dose for Unat and Ra-226+228 assuming the concentrations observed in worst wells of the Southeast Drainage. However, it should be noted that current Unat concentrations in all Southeast Drainage monitoring wells other than MFG-1 are less than or equal to 0.12 mg/L. Similarly, Ra-226+228 is below the MCL of 5 pCi/L in all wells other than BBL-3, including the proposed POC well MFG-1. Therefore, a more realistic annual averted dose could be calculated assuming a reduction Unat concentrations of 0.09 mg/L (0.12 mg/L minus the 0.03 mg/L MCL for Unat) and assuming no action was required for Ra226+228. In this case, the annual averted dose would be 11.5 mrem/year and the total lifetime avoided dose for four people would be 1.38 person-rem.

2.1.2 Pit Lake

The current pit lake water quality for Unat (3.15 mg/L) exceeds the MCL by approximately two orders of magnitude, all other known radiological parameters are below regulatory levels. Based on Equation 1, the avoided individual lifetime (30 years) intake of Unat from drinking the pit lake water would be 45.6 μ Ci. Applying Equations 2 and 3, the annual averted dose for Unat would be 409 mrem/year and the total lifetime avoided dose for four people would be 49.1 person-rem.

2.2 Non-Radiological Health Effects

Selenium is the only non-radiologcal hazardous constituent present in the limited groundwater system of the Southeast Drainage or in the Highland pit lake above the MCL. To evaluate potential non-cancer health effects for chemicals exceeding MCLs, the upper bound representative concentrations in the Southeast Drainage were compared to regional screening levels (RSLs) for tap water developed by EPA to evaluate potential exposure to these chemicals in a drinking water source (EPA, 2010b). The RSLs were developed to evaluate potential lifetime exposure to the chemical in the media of concern. EPA is working on developing toxicity criteria for Unat specifically, but that process has not been completed, and as such DWELs or RSLs have not been published for Unat. The RSL for selenium is 0.180 mg/L, which is also comparable to the Drinking Water Equivalent Level (DWEL) for selenium of 0.200 mg/L. Both the RSL and DWEL represent a lifetime exposure concentration protective of adverse, non-cancer health effects, which assume that all of the exposure to a contaminant is from drinking water.

2.2.1 Southeast Drainage

The fact that selenium occurs above the MCL in only one Southeast Drainage well (BBL-2) indicates that the elevated groundwater concentration of selenium is discrete and not wide spread, making the likelihood of a future exposure through groundwater use even lower than it is due to the remoteness of the site and limited extent of the groundwater system. The upper-bound concentration of selenium (0.0777 mg/L) is below the RSL and DWEL for selenium. As such, reduction of the selenium concentrations to the MCL may not result in a significant benefit to human health.

•

2.2.2 Pit Lake

The 2010 selenium levels in the Highland pit lake (0.071 mg/L) are well below the EPA RSL and DWEL for selenium of (0.18 and 0.2 mg/L, respectively). Adverse health effects would not be expected from even long-term chronic consumption of selenium at these concentrations. Therefore, there is no significant specific human benefit of avoiding adverse health effects by reducing the selenium concentration in the pit lake.

3 Conclusion

The potential radiological exposures avoided by reducing the Highland pit lake and/or the limited Southeast Drainage groundwater system concentrations to the MCLs are relatively low and are commensurate with typical annual doses for commercial airline flight crews (DOE, 2005). No specific adverse health effects can reliably be associated with these low exposures.

The likelihood of chronic exposures to the selenium in the Highland pit lake and the limited groundwater system of the Southeast Drainage is very low and the concentrations in these waters are a fraction of the EPA RSL and DWEL values, which EPA identifies as a lifetime exposure concentration protective of adverse, non-cancer health effects from the drinking water pathway. Therefore, there are no reasonably identifiable adverse health effects avoided from remediation of these waters.

4 References:

- Exxon, 2011 Highland Uranium Mine And Millsite Request For Amendment To Radioactive Materials License Sua-1139; Application To Amend Existing Alternate Concentration Limits. March, 2011.
- DOE, 2005. Chart compiled by NF Metting, Office of Science, August 2005 DOE/BER "Orders of Magnitude", <u>http://www.nuclear.utah.edu/class_notes/shared/dose_ranges_aug05.pdf</u>
- U.S. EPA, 1989, Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A) Interim Final. December.
- U. S. Environmental Protection Agency. 1998. Environmental Protection Agency health risks from low level environmental exposure to radionuclides. Federal Guidance Report No. 13. Part I-Interim Version. EPA 402 R-97-014. January.
- U. S. Environmental Protection Agency. 2009. 2009 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-09-011, October 2009.

U.S. Environmental Protection Agency. 2010. U.S. EPA Web site. Regional Screening Levels, http://www.epa.gov/region9/superfund/prg/rsl-table.html (last update November 2010).

Wyoming Department of Environmental Quality. 2007. Wyoming Water Quality Standards, Chapter 1. Wyoming Surface Water Classification List 2007.

.

,

DOSE CALCULATIONS

.

Highland Southeast Drainage Averted Dose Calculation High Range

Idw = (Cgw)((FW)(EF)(ED))

where Unat Ra-226+228 Unat 0.340 mg/l. Idw= Intake from groundwater, uCi avg of last 4 values in MFG-1: 0.37 mg/L minus the MCL of 0.03 mg/L, assumes water returned to the MCL @ 677 pCi/L = 1 mg/L convert pCi/L to uCi/l by multiplying annual intake by 1c-6 uCi/pCi Cgw = Groundwater concentration reduced by alternative corrective action, uCi/L 0.00023 0.00000040 uCi 230 pCi/L IW = Average daily water intake of 2 liters per day (U.S. EPA, 1989) E3: = Exposure frequency of 350 days/year (USEPA 1998) ED = Exposure duration of 30 years. 0.00023 uCi/L 2 2 L/dav 350 350 days/yr Ra-226+228 0.40 pCi/L 4.00E-07 uCi/L 30 30 yrs avg of last 4 values in BBL-3: 5.4 pCi/L minus 5 pCi/L, assumes water returned to MCL Therefore, Idw = convert pCi/L to uCi/l by multiplying annual intake by 1e-6 uCi/pCi 4.83 0.0084 uCi AD = (I)(CF)(P)Where AD = Averted effective dose equivalent in person-rem I = Intake of a constituent by an individual (uCi) CF = Intake to dose conversion factor in mrem/uCi 4.83 0.0084 uCi 1435.6 mrem/uCi CF for Ra-226 = 1324.6, CF for Ra-228 = 1435.6, assume higher CF value 268.9 CF = Intake to dose conversion factor in mrem/uCi CF for Uranium is average of CF for U238 (254.56) and U-234 (283.42) P = Number of persons exposed or 4. 4 persons 4 A hypothetical family of four was assumed for the unlikely scenario of consuming groundwater for domestic purposes at the potential POE. Assumed food sources negligible compared to water intake AD = 5.20 0.05 Avoided dose in person-rem over 30 years AD/person 1 30 0.012
 1.30
 0.012

 43.3
 0.40 mrem/yr per person

 5.25 Collective avoided dose in person-rem over 30 years from ground water intake
 Total AD = 1.31 per person 43.7 mrem/yr per person Highland Southeast Drainage Averted Dose Calculation Low Range Idw = (Cgw)((IW)(EF)(ED))where Ra-226+228 Unat Unat Idw= Intake from groundwater, uCi 0.090 mg/L 3/10-10/10 max in allwells other than MFG-1: 0.12 mg/L minus the MCL of 0.03 mg/L, assumes water returned Cgw = Groundwater concentration reduced by alternative corrective action, uCi/L 0.00006 0.0000000 uCi 61 pCi/1. @ 677 pCi/L = 1 mg/L IW = Average daily water intake of 2 liters per day (U.S. EPA, 1989) IF = Exposure frequency of 350 days/year (USEPA 1998) 0.00006 uCi/L 2 2 L/day convert pCi/L to uCi/l by multiplying annual intake by 1c-6 uCi/pCi 350 350 days/yr ED = Exposure duration of 30 years. 30 30 yrs Ra-226+228 pСi/L avg of last 6 values in BBL-3: 5.6 pCi/L, minus 2.5 pCi/L, assumes water returned to 1/2 MCL. 0.00E+00 uCi/L Therefore. convert pCi/L to uCi/l by multiplying annual intake by 1e-6 uCi/pCi Idw ≃ 1.28 0.000.uCi AD = (T)(CF)(P)Where: AD = Averted effective dose equivalent in person-rem. I = Intake of a constituent by an individual (uCi) 0.00_uCi 1.28 CF for Ra-226 = 1324.6, CF for Ra-228 = 1435.6, assume higher CF value CF = Intake to dose conversion factor in mrem/uCi 1435.6 mrem/uCi CF for Uranium is average of CF for U238 (254.56) and U-234 (283.42) 268.9 CF = Intake to dose conversion factor in mrem/uCi P = Number of persons exposed or 4. 4 persons 4 A hypothetical family of four was assumed for the unlikely scenario of consuming groundwater for domestic purposes at the potential POE. Assumed food sources negligible compared to water intake AD =1.38 0.00 Avoided dose in person-rem over 30 years AD/person 0.34 0.000 11.5 mrem/yr per person Total AD = 1.38 Collective avoided dose in person-remover 30 years from ground water intake 0.34 per person 11.5 mrem/yr per person

rted Dose Calculation						
Idw = (Cgw)((IW)(EF)(ED))						
where:						
where	Unat	Ra-226+228		Unat		
Idw= Intake from groundwater, uCi	Contraction of the local distance of the loc			3.21	mg/L	3.24 mg/L minus MCL of 0.03 mg/L, assumes water returned to the M
Cgw = Groundwater concentration reduced by alternative corrective action, uCi/L	0.00217	0.00000000 u	ıCi	2173		(a) 677 pCu/L = 1 mg/L
IW = Average daily water intake of 2 liters per day (U.S. EPA, 1989)	2	21	/day	0.00217		convert pCi/L to uCi/l by multiplying annual intake by 1e-6 uCi/pCi
EF = Exposure frequency of 350 days/year (USEPA 1998)	350		lays/yr			
ED = Exposure duration of 30 years.	30	30 y		Ra-226+228		
		1			pCi/L	Pit Ra-226+228 < MCL
Therefore,				0.00000000	· · · · · · · · · · · · · · · · · · ·	convert pCi/L to uCi/l by multiplying annual intake by 1e-6 uCi/pCi
Idw=	45.6	0.0 u	ıCi			
AD = (I)(CF)(P)						
Where:						
AD = Averted effective dose equivalent in person-rem						
I = Intake of a constituent by an individual (uCi)	45.6	0.00 1	Ci			
CF = Intake to dose conversion factor in mrem/uCi	268.9		mrem/uCi	CF for Ra-226	= 1324.6. CF	for Ra-228 = 1435.6, assume higher CF value
P = Number of persons exposed or 4.	4	4 r	persons			
A hypothetical family of four was assumed for the unlikely scena	rio of consumi			purposes at the po	tential POE.	
Assumed food sources r						
AD =	49.1	0.000	Avoided dos	se in person-rem ov	er 30 years	
AD/person	12.3	0.000				
Total AD =	49.1	Collective avoi	ded dose in	person-rem over	30 years fro	m ground water intake

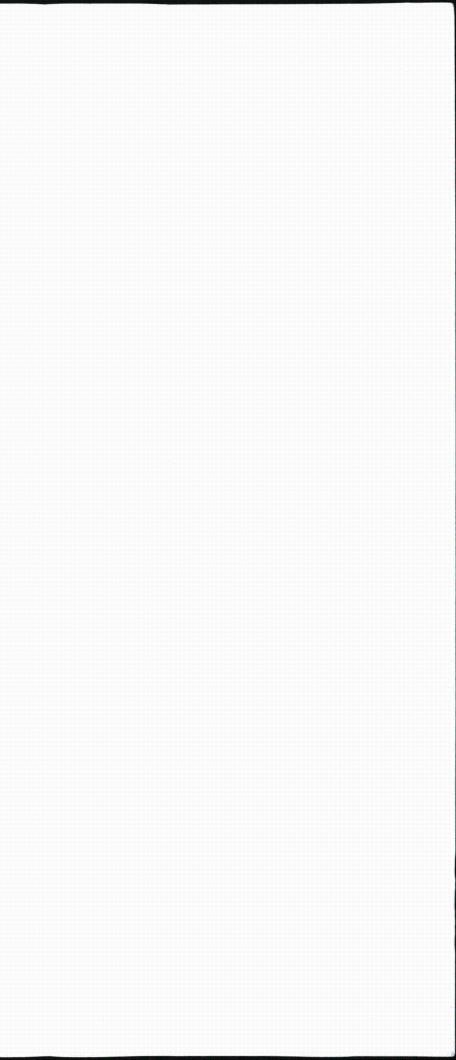


EXHIBIT 7 LAND APPRAISAL BY GARY T. CASPER PETROLEUM LAND SERVICES, LLC. 2/6/10

Gary T. Casper Petroleum Land Services, LLC Office • 307-265-0638 Cell • 307-351-9066

Post Office Box 3697 Casper, Wyoming 82602 Fax • 307-472-3049

Saturday, February 6, 2010

Rebecca J. Bilodeau Senior Environmental Scientist Advanced Environmental Sciences, Inc. 118 East 29th Street, Suite C Loveland, Colorado 80538 RE: Exxon Highland Mine Site Current market prices and 2009 "sold" parcels Converse County, Wyoming

Rebecca:

Enclosed please find some current advertisements for Converse County (and other counties) lands obtained from various realty web-sites and multi-list services showing the variety of acreages currently available for sale in central Wyoming. Since most of these lands are larger ranches or recreational or farming lands (some having improvements), most do not make for good comparisons for Highland area lands. Those parcels that are unimproved dry (non-irrigated) land of around 40 acres in size naturally are better comparisons.

I contacted local Douglas realtors Jim Willox (Comsee Horizon Realty) and H.R. Johnston (H.R. Johnston Realty) to inquire about what they thought current sales prices for 40 to 640 acre tracts of dry range land would run. Jim reported he thought they should bring about \$1000 to \$1500 per acre. He showed me two "rural residential" 40 acre tracts near Dull Center (about 12 miles from the Highland site) currently on the market for \$25,500 and \$71,000 respectively. The second tract has been on the market for 2 years. He also reported two other dry land tracts of 64 acres and 40 acres east of Douglas currently for sale for \$3000/acre and \$1775/acre, with the second tract on the market for over 700 days.

H.R. Johnson thought small tracts of 40 acres would bring \$1500 to \$1700, depending on size and location. Aspen Realty (of Douglas) reported that in 2009, they sold one 40 acre parcel near Dull Center for \$25,500, while another tract of 40 acres sold in another part of the county for \$65,000.

As reported in my 2008 findings, no lands within quite a few miles of the mine site are currently on the market, nor have been sold over the last two years. As reported before, those lands in the general vicinity the mine have been in ranching families for generations, and rarely come on the market. The Converse County Assessor's Office again reported no sales of dry range land during 2009. However, their office received 2010 figures from the State of Wyoming Department of Revenue, indicating the average assessed production value of dry rangeland remains ranging from \$90.00-\$152.00-\$193.00 per acre. These estimates represent the low, average and high amounts of income per acre ranchers are expected to derive from the dry range land they own.

Rebecca, I am also including a hard copy of my "Second Update to Memorandum of Title" e-mailed to you last week, together with copies of the probate files for Anne S. Boner proceedings obtained from the Circuit Court records for Converse County. Please let me know if you have any questions regarding the enclosed materials.

I happened to recall that I furnished MFG, Inc. with a complete abstract of title for the southeast quarter of Section 27 lands in October, 2003. Do you still have that in your possession and should it be updated? Or will you need another complete abstract for your continuing work?

I will forward my invoice for my current services in the near future, complete with a new W-9. Thanks for the continuing work.

Sincerely,

Gary T. Casper, Manager Petroleum Land Services, LLC

EXHIBIT 8 LETTER FROM JOHN LAWSON US DEPARTMENT OF INTERIOR\BUREAU OF RECLAMATION VALUATION OF WATER RESOURCES. 6/2/10

United States Department of the Interior

BUREAU OF RECLAMATION Great Plains Region Wyoming Area Office P.O. Box 1630 Mills, Wyoming 82644-1630

IN REPLY REFER TO:

WY-4007 WTR-4.03 June 2, 2010

VIA ELECTRONIC MAIL ONLY

Mr. Toby Wright Principal Engineer Wright Environmental Services, LLC 3801 Automation Way, Suite 100 Fort Collins, CO 80525 (wrightenv@gmail.com)

Subject: Valuation of Ground Water

Dear Mr. Wright:

This is in response to your e-mail of April 21, 2010, regarding the value of ground water. The Bureau of Reclamation currently sells storage water from Glendo Reservoir on a temporary (one year or less) basis. Storage water for irrigation purposes is contracted only to supplement existing natural flow rights, and is valued at \$5.00 per acre-foot (AF), with a minimum contract amount of 50 AF. Storage water for municipal and industrial purposes is contracted at a rate of \$75.00 per AF with a minimum contract amount of 8 AF.

If you need any further information, please contact me at 307-261-5697.

Sincerely,

/s/ John H. Lawson Area Manager

cc: WY-1000 (John H. Lawson)