Umetco Minerals Corporation

P.O. BOX 1029 GRAND JUNCTION, COLORADO 81502 **7** (970) 245-3700

December 21, 2010

Mr. Dominic Orlando, Project Manager U.S. Nuclear Regulatory Commission Fuel Cycle Facilities Branch Division of Fuel Cycle Safety and Safeguards Office of Nuclear Material Safety and Safeguards Mail Stop T-8-A-33 Two White Flint North, 11545 Rockville Pike Rockville, Maryland 20852-2738

Subject: Above Grade Tailings Impoundment and A-9 Repository Erosion Protection Enhancement Design Report

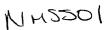
Reference: License SUA-648, Docket No. 40-0299

Dear Mr. Orlando:

Attached please find two copies of the report titled Above Grade Tailings Impoundment and A-9 Repository Erosion Protection Enhancement Design Report.

As previously discussed with NRC staff, this design has been prepared to address erosion protection issues on the Above Grade Tailings Impoundment and A-9 Repository. Accordingly, Umetco is requesting approval of the design as we would like to construct the proposed erosion protection enhancements during the spring and summer of 2011.

For surety purposes, the estimated costs associated with the enhancement design is included in the design report.


If you, or your staff, have any questions, please contact me at 970-256-8889 or by e-mail at gieckte@dow.com.

Regards.

Thomas E. Gieck Remediation Leader

TEG/jfc Attachments: As stated

cc: Mark Moxley – WDEQ, w/attachments

GAS HILLS RECLAMATION PROJECT

ABOVE GRADE TAILINGS IMPOUNDMENT AND A-9 REPOSITORY EROSION PROTECTION ENHANCEMENT DESIGN REPORT

UMETCO MINERALS CORPORATION GAS HILLS URANIUM TAILINGS SITE SUA-648 GAS HILLS, WYOMING DECEMBER 20, 2010

CONTENTS

1.0 INTRODUCTION	1
1.1 HISTORY OF ABOVE-GRADE TAILINGS IMPOUNDMENT PLAN APPROVAL	1
1.2 HISTORY OF A-9 REPOSITORY PLAN APPROVAL	1
1.3 CONSTRUCTION COMPLETION APPROVAL	1
2.0 EROSION PROTECTION – AREAS OF CONCERN	2
2.1 Above-Grade Tailings Impoundment	2
2.1.1 AGTI Areas of Concern and Cause	
2.1.2 Evaluation of Hydrology and Erosion Protection Design	4
2.1.3 Geotechnical – Potential Settlement	6
2.1.4 Radon Attenuation	
2.2 A-9 Repository	
2.2.1 A-9 Areas of Concern and Cause	
2.2.2 Evaluation of Hydrology and Erosion Protection Design	
2.2.3 Geotechnical – Potential Settlement	
2.2.4 Radon Attenuation	
2.3 EVALUATION OF HEAP LEACH AND GHP NO. 2 RECLAMATION COVERS	12
3.0 ENHANCEMENT OF EROSION PROTECTION DESIGN	12
3.1 Above Grade Tailings Impoundment	12
3.1.1 AGTI Areas of Concern and Repair	
3.1.2 Type C Erosion Protection, Bedding Repair	
3.1.2.1 Repair Method One Compatibility Calculations:	
3.1.2.2 Repair Method Two Compatibility Calculations:	
3.1.3 Launch Rock Structure Filter Installation	
3.1.3.1 Launch Rock Filter Compatibility Calculations	
3.1.4 Off-Cover Erosion Control Apron Channel	
3.1.4.1 Apron Channel Design Calculations	
3.2 A-9 REPOSITORY3.2.1 A-9 Areas of Concern and Repair	
3.2.1 A-9 Areas of Concern and Repair	
3.3 CONSTRUCTABILITY VERIFICATION FIELD TESTS	
4.0 TECHNICAL CONSTRUCTION SPECIFICATIONS	
4.1 USE OF SITE	
 4.2 REQUIRED EXCAVATION 4.3 RADON BARRIER 	
4.3 RADON BARRIER	
4.3.2 Placement	
4.5.2 Fracement 4.4 Frost Protection Layer/Random Fill	
4.4 PROST PROTECTION LATER/RANDOM FILE	
4.4.2 Placement	
4.5 EROSION PROTECTION AND BEDDING MATERIALS	
4.5.1 Gradation Requirements	
4.6 EROSION PROTECTION PLACEMENT	

4	1.6.1	Sub-grade Preparation	
		Placement and Compaction	
	1.6.3	Tolerances	
5.0	QU	ALITY CONTROL PLAN	
- 5.1	Q	UALITY CONTROL/QUALITY ASSURANCE PERSONNEL	
5.2	Т	EST PROCEDURES AND DOCUMENTATION	
5.3	E	NVIRONMENTAL QUALITY, HEALTH AND RADIATION PROTECTION	
5	5.3.1	Surveys for Unrestricted Release	
5	5.3.2	Surveys for Conditional Release	
		2.1 Heavy Equipment Surveys	
		2.2 Pre-Entry Surveys	
54		EST FREQUENCIES	

TABLES

- Table 2.0Above-Grade Tailings Impoundment Reclamation Cover Summary of
Erosion Protection Evaluation
- Table 2.1Settlement Analysis
- Table 2.2Future Settlement Analysis
- Table 2.3A-9 Repository Reclamation Cover Summary of Erosion Protection
Evaluation
- Table 3.0Crushed Rock Gradation

Table 3.1Existing Quarry Fines Gradation

- Table 3.230/70 Bedding Gradation Band
- Table 3.4Filter Material Gradations
- Table 4.0Erosion Protection Gradation Requirements
- Table 4.1
 30/70 Blended Bedding Gradation Requirements
- Table 5.0Summary of QC Test Procedures
- Table 5.1Summary of QC Test and Inspection Forms

APPENDICES

- Appendix A Design Calculations and Gradation Plots
- Appendix B Constructability Verification Field Test Photographs and Gradation Plots
- Appendix C 2011 Construction Cost Estimates

DRAWINGS

SHEET NUMBER	TITLE					
1 OF 8	VICINTIY AND LOCATION MAP					
2 OF 8	EVALUATION OF HYDROLOGY AND EROSION PROTECTION DESIGN, CRITICAL HYDRAULIC PROFILES					
3 OF 8	ABOVE-GRADE TAILINGS IMPOUNDMENT, EVALUATION OF SETTLEMENT SURVEY					
4 OF 8	A-9 REPOSITORY, EVALUATION OF SETTLEMENT SURVEY					
5 OF 8	ABOVE-GRADE TAILINGS IMPOUNDMENT, DESIGN ENHANCEMENT, EROSION AND RILL REPAIR PLAN					
6 OF 8	ABOVE-GRADE TAILINGS IMPOUNDMENT, EROSION AND RILL REPAIR PLAN, SECTIONS AND DETAILS					
7 OF 8	A-9 REPOSITORY, EROSION AND RILL REPAIR PLAN					
8 OF 8	EROSION CONTROL APRON CHANNEL, PLAN AND DETAILS					

1.0 Introduction

Monitoring and inspection activities performed by Umetco Minerals Corporation (Umetco) on the Above-Grade Tailings Impoundment (AGTI) and A-9 Repository (A-9) Reclamation Covers have identified isolated areas of concern associated with the erosion protection layer resulting from a design error. This issue has been previously communicated to the NRC and observed with NRC staff in the field.

While this issue has resulted in shallow incision of the underlying cover soils in isolated locations, there has been no release of tailings or degradation of the radon attenuation capacities of the completed reclamation covers.

Accordingly, this submittal provides an evaluation of the erosion protection design which identifies the design deficiency and provides an enhanced design to correct this deficiency.

1.1 History of Above-Grade Tailings Impoundment Plan Approval

Umetco submitted a reclamation plan for the AGTI area of the site in 1980 (D'Appolonia, 1980). During the mid-1990s, the existing reclamation plan was reevaluated to address potential erosion of the cover design, NRC's position on previously approved reclamation designs, as well as additional contamination identified adjacent to the existing cover in the area. Umetco submitted an enhanced reclamation plan for the AGTI area on October 6, 1997 that involved: (1) extending the existing radon barrier to address the additional contamination; (2) regrading areas of the impoundment; (3) installing a 137.16-cm (54-inch) frost protection layer; and (4) installing riprap erosion protection (Shepherd Miller, 1997). The NRC approved this enhanced plan in 1999. In 2000, Umetco submitted a request for approval for modification of the erosion protection design to prevent potential disturbance of cultural resources discovered during reclamation activities. The enhanced design modification was approved by NRC in April 2001. Work in this area was completed in 2002.

1.2 History of A-9 Repository Plan Approval

The A-9 is a former open pit uranium mine that was used for tailings disposal. The original reclamation plan was previously approved by the NRC, but the cover was never constructed. Umetco submitted a revised reclamation plan in 1998 to implement modifications to the A-9 (Shepherd Miller, 1998). The NRC approved the revised reclamation plan in 1999. This approval allowed for the North and South Evaporation Pond liners to be placed in the A-9 and for the slopes of the North and South Evaporation Ponds to be regraded. The A-9 reclamation cover includes a 45.72-cm (18-inch) thick radon barrier, 137.16-cm (54-inch) thick frost protection layer and an erosion protection layer. Work in this area was completed in 2006.

1.3 Construction Completion Approval

On June 29, 2007, Umetco submitted the Construction Completion Report documenting the completed construction activities at the site inclusive of the AGTI and A-9 reclamation covers. The Construction Completion Report was subsequently approved by License Amendment 60, dated September 8, 2008.

2.0 Erosion Protection – Areas of Concern

The areas of concern, discussed herein, were first identified by Umetco during routine field inspections. Subsequent field investigations and review of approved design documents have identified the associated cause of the sub-grade erosion as a design error. The design error is associated with utilization of inappropriate interstitial velocity for inclusion of a filter or bedding layer in the erosion protection design.

Umetco has completed a review of approved designs associated with all reclamation cover systems constructed at the site to ensure the design deficiency is confined to AGTI and A-9 and that other potential contributing factors are adequately addressed.

2.1 Above-Grade Tailings Impoundment

This section details the areas of concern and cause associated with erosion protection of the AGTI reclamation cover.

2.1.1 AGTI Areas of Concern and Cause

The areas of concern associated with the AGTI reclamation cover are:

- Type C ($D_{50} = 6$ inches) Erosion Protection located on the lower portions of the northern and eastern reclamation cover slopes.
- Launched Rock located at the bottom of the eastern slope of the reclamation cover.
- Off-Cover Erosion occurring on the southeast corner of the repository.

Type C ($D_{50} = 6$ inches) Erosion Protection

Umetco field inspections identified areas of soil cover erosion beneath the riprap layer on the eastern and northeastern sides of the reclamation cover on those areas with Type C erosion protection material. These locations are also located in areas which receive substantial upland flow and are susceptible to large amounts of drifting snow during the winter months. The Type C erosion protection for the AGTI consists of a single layer of riprap with a minimum layer thickness of 12 inches.

Field investigations of these areas, conducted by Umetco, concluded that cover soil erosion beneath the riprap layer are caused by concentrated interstitial flows at the interface of the erosion protection layer and cover soil sub-grade. The erosion features typically extend about 200 feet and become stable at the downstream end due to filling of the riprap void space with sediment. The geometry of the erosion features is such that the bottoms of the incisions are perpendicular to the slope for the entire length of the incision and typically about 0.5 feet in depth.

Review of the AGTI (Shepherd Miller, 1997) design indicates appropriate and conservative methods were used to determine the size of rock for the Type C erosion protection. The design error is associated with the evaluation of the filter blanket. The Design Report evaluated the need for a filter blanket by calculating interstitial flow velocity which is an acceptable and recommended procedure established in NUREG 4620. While NUREG 4620 provides guidance on calculation of interstitial velocities it does not provide an acceptable velocity at which the sub-grade layer is erosionally stable. The Design Report utilized criteria presented in NRC STP (pp A1-A20, August 1990) to

determine an adjusted permissible velocity of 2.5 feet per second. Computation of the permissible interstitial velocity in this manner has resulted in unacceptable performance of the erosion protection layer at the locations noted. At about the same time as the design was approved, the NRC published draft guidance regarding adequate interstitial velocities in NUREG 1623 (Draft guidance, February 1999). This guidance states:

"When the computed interstitial velocity is less than 0.5 feet per second, a filter may not be needed. When velocities are between 0.5 and 1.0 feet per second, the need for a filter layer will be dependent upon the type of soil material placed at the interface. A filter should be provided when velocities are 1.0 feet per second or greater."

The calculated interstitial velocities for the problematic Type C area of the AGTI vary between 0.6 and 0.7 feet per second. Accordingly the guidance provided by NUREG 1623 is very applicable to this site, weather conditions, and cover soils.

Another contributing factor associated with the rill formation is believed to be drifting of snow in these specific areas which tend to concentrate flows. During the winter months drifting snow fills void spaces in these areas, once the drifts begin to melt and the cover receives additional precipitation interstitial flows are diverted around and concentrated around the perimeter of the frozen drifts.

It should also be noted that there are several isolated areas within the problematic areas in which the riprap void spaces are filled with finer fraction material which is a typical artifact of the placement process. Where this condition is present there is no erosion of subsurface soils and up-slope rills are diverted around these areas, i.e., void space is filled and interstitial velocities are slowed.

There is an area within the Type C erosion protection where the slope gradient approaches 5(H) to 1(V), which is also the steepest slope on the AGTI reclamation cover. In this area a field decision was made to place a 3-inch thick layer of filter material. Inspection of this area shows no signs of sub-grade erosion which is a further indication of the design error associated with the Type C erosion protection.

Launched Rock

The launched rock located at the eastern toe of the AGTI repository cover was designed to address potential scour and head cut of East Canyon Creek under PMF conditions. Field inspections of the launched rock apron indicate that interstitial velocities through the Type C erosion protection immediately upgradient of the launched rock are causing sub-grade soil erosion. As with the Type C erosion protection the cause of this sub-grade soil erosion is the lack of filter material at the erosion protection sub-grade interface to slow interstitial velocities.

Off-Cover Erosion

An area located adjacent to the toe of the reclamation cover on the southeast corner of the cover is exhibiting incision formation caused by off-cover surface flows and drainage of the buried apron.

2.1.2 Evaluation of Hydrology and Erosion Protection Design

To ensure the cause of the sub-grade erosion was appropriately identified and to verify the adequacy of the erosion protection design a detailed evaluation of the designed/placed erosion protection layer was completed. This evaluation was based on current criteria found in NUREG-1623.

Evaluation of the AGTI erosion protection design was completed by identification of three critical hydraulic profiles, as shown on Drawing 2 of 8, which pass through the areas of concern associated with the Type C erosion protection. The approved PMP (one-hour thunderstorm) of 8.7 inches was used for this evaluation. Calculation of rock size was completed using the Safety Factors Method for slopes less then 10%; Stephenson Method for slopes greater then 10%; for slopes at or near 10% both Safety Factors and Stephenson Methods are shown; and for all slope segments the Abt and Johnson Method.

Results of this evaluation demonstrate that the rock size of the AGTI erosion protection layer is appropriate and conservative. The interstitial velocities for the upper slopes of the reclamation cap covered with Type A ($D_{50} = 0.5$ inches) and Type B ($D_{50} = 3$ inches) erosion protection are less than the 0.5 feet per second criteria established in NUREG 1623. In addition, there is no visual evidence of cover degradation or sub-grade erosion on the upper repository slopes where interstitial velocities are less then 0.5 feet per second.

The rock size for the lower portions of the AGTI slopes covered with Type C ($D_{50} = 6$ inches) erosion protection is also conservative, however the interstitial velocities associated with this larger erosion protection material for the most part exceed the 0.5 feet per second criteria causing isolated areas of erosion at the sub-grade erosion protection layer interface.

A summary of the erosion protection evaluation is shown on Table 2.0.

Table 2.0 Above-Grade Tailings Impoundment Reclamation Cover - Summary of Erosion Protection Evaluation

AGTI	Segment	Segment	Hydraulic	Segment	Intensity	Peak	Riprap Size	Riprap	o D ₅₀	Interstitial	
Profile 1	Elev. Diff. (ft)	Length (ft)	Length (ft)	Slope (ft/ft)	(in/hr)	Flow (cfs/ft)	Calculation Method	Calculated (inches)	In-Place (inches)	Velocity ¹⁾ (fps)	Comment
Segment 1	9	1,254	1,254	0.0072	28.15	0.81	Safety Factors	0.4	3.0	0.12	Riprap Size ok, Interstitial Velocity ok
Segment 1	9	1,254	1,254	0.0072	28.15	0.81	Abt and Johnson	0.7	3.0	0.12	
Segment 2	70	1,130	2,384	0.0619	23.01	1.26	Safety Factors	3.0	3.0	0.37	Riprap Size ok, Interstitial Velocity ok
Segment 2	70	1,130	2,384	0.0619	23.01	1.26	Abt and Johnson	2.2	3.0	0.37	
Segment 3	50	493	2,877	0.1014	21.36	1.41	Safety Factors	5.0	6.0	0.69	Slope near 10% - Stephenson and Safety
Segment 3	50	493	2,877	0.1014	21.36	1.41	Abt and Johnson	2.8	6.0	0.69	Factors Used. Riprap Size ok. Interstitial
Segment 3	50	493	2,877	0.1014	21.36	1.41	Stephenson	2.9	6.0	0.69	Velocity > 0.5 fps.

AGTI	Segment	Segment	Hydraulic	Segment	Intensity	Peak	Riprap Size	Ripraj	D D ₅₀	Interstitial	
Profile 2	Elev. Diff. (ft)	Length (ft)	Length (ft)	Slope (ft/ft)	(in/hr)	Flow (cfs/ft)	Calculation Method	Calculated (inches)	In-Place (inches)	Velocity ¹⁾ (fps)	Comment
Segment 1	3 .	246	. 246	0.0122	54.21	0.31	Safety Factors	0.3	0.5	0.06	Riprap Size ok, Interstitial Velocity ok
Segment 1	3	246	246	0.0122	54.21	0.31	Abt and Johnson	. 0.5	0.5	0.06	
Segment 2	42	545	791	0.0771	43.69	0.79	Safety Factors	2.7	3.0	0.41	Riprap Size ok, Interstitial Velocity ok
Segment 2	42	545	791	0.0771	43.69	0.79	Abt and Johnson	1.8	3.0	0.41	
Segment 3	70	907	1,698	0.0772	32.97	1.29	Safety Factors	3.6	6.0	0.59	Riprap Size ok. Interstitial Velocity > 0.5
Segment 3	70	907	1,698	0.0772	32.97	1.29	Abt and Johnson	2.4	6.0	0.59	fps.

AGTI	Segment	Segment	Hydraulic	Segment	Intensity	Peak	Riprap Size	Riprag	o D ₅₀	Interstitial	
Profile 1	Elev. Diff. (ft)	Length (ft)	Length (ft)	Slope (ft/ft)	(in/hr)	Flow (cfs/ft)	Calculation Method	Calculated (inches)	In-Place (inches)	Velocity ¹⁾ (fps)	Comment
Segment 1	5	237	237	0.0211	57.42	0.31	Safety Factors	0.5	0.5	0.08	Riprap Size ok, Interstitial Velocity ok
Segment 1	5	237	237	0.0211	57.42	0.3ľ	Abt and Johnson	0.6	0.5	0.08	- -
Segment 2	60	682	919	0.0880	45.06	0.95	Safety Factors	3.4	3.0	0.45	Riprap Size ok, Interstitial Velocity ok
Segment 2	60	682	919	0.0880	45.06	0.95	Abt and Johnson	2.2	3.0	0.45	
Segment 3	22	678	1,597	0.0324	32.70	1.20	Safety Factors	1.7	6.0	0.37	Riprap Size ok, Interstitial Velocity ok,
Segment 3	22	678	1,597	0.0324	32.70	1.20	Abt and Johnson	1.6	6.0	0.37	Area of Concentrated Flow Repair
Segment 4	23	410	2,007	0.0561	28.78	1.33	Safety Factors	2.8	6.0	0.50	Riprap Size ok, Interstitial Velocity
Segment 4	. 23	410	2,007	0.0561	28.78	1.33	Abt and Johnson	2.1	6.0	0.50	marginal Repair

Interstitial Velocity based on the Placed/Specified D₅₀. Abt and Johnson: $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$ 1)

2)

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010

5

2.1.3 Geotechnical – Potential Settlement

The geotechnical stability with respect to settlement has been evaluated as a potential cause of sub-grade soil erosion beneath the Type C erosion protection. Several factors, enumerated below indicate that negligible settlement has occurred on the AGTI and is not a concern or contributing factor associated with the rill formation.

In order to verify settlement is not a contributing factor in the formation of the erosion rill features, a minimum of one test excavation will be made on the AGTI and A-9 to expose and verify the integrity of the existing radon barrier or clay layer. Test excavations will be made in the vicinity of erosion rill features identified on both structures. Additional excavations may be required if it is determined that the radon barrier layer has experienced significant settlement or has otherwise been disturbed.

The approved AGTI reclamation plan (Shepherd Miller, 1997) evaluated settlement in two parts:

- Part 1 from end of tailing deposition to present (i.e. 1997 being present).
- Part 2 from present (1997) to the end of settlement.
- Approach 1 (Predictive Model) continued analysis from Part 1 until the pore pressures that were predicted in 1997 dissipate completely.
- Approach 2 (Current Field Conditions and Laboratory Results) conduct a separate settlement analysis using soil properties obtained from the field investigation conducted by Shepherd Miller and consolidation data from subsequent testing by Western Engineers, Inc. (WEI).

The following table, presented in the Design Report (Table 5-6, Shepherd Miller, 1997), provides the results of this analysis.

	Total Settlement	Future Settlement	Future Settlement	Percentage of Total Settlement Completed				
Zone	Based on the Model (ft)	Based on Model (ft)	Based on Current Conditions (ft)	Based on Model (%)	Based on Current Conditions (%)			
1	9.3	0.79	0.003	91	100			
2	4.2	0.08	0.005	98	100			
3	2.5	0.53	0.47	80	88			
4	6.7	0.58	0.29	93	. 96			

Table 2.1 Settlement Analysis

A conservative estimate (i.e., based on Approach 1 - model) of the total anticipated Future Settlement with the addition of secondary settlement is shown on the following Table 2.2 (also shown as Table 5-7, Shepherd Miller, 1997).

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010 6

Table 2.2 Future Settlement Analysis

Zone	Future Primary Settlement (ft)	Secondary Settlement (ft)	Total Future Settlement (ft)
1	0.79	0.31	1.1
2	0.08	0.2	0.28
3	0.53	0.24	0.77
4	0.58	0.24	0.82

Based on the results of this evaluation it was determined that a flow concentration factor of 1 was appropriate for design of riprap for the top and sideslopes of the AGTI.

To evaluate settlement as a potential cause of the gully formation a survey was performed on a 100-foot grid system in the areas of concern. The 100-foot grid system is the same as-built survey grid used at the completion of cover construction. Results of this survey clearly indicate that the Approach 2 (based on current conditions) reflect the observed settlement for AGTI to date and the Approach 1 (model) represents a very conservative evaluation of anticipated settlement. As shown on Drawing 3 of 8, the actual settlement which has occurred since cover completion is very minimal.

2.1.4 Radon Attenuation

While there are some isolated locations of rill formation beneath the Type C erosion protection on the AGTI reclamation cover, the geometry of the rills are shallow and perpendicular to the slope. These rills, typically, appear to develop and extend for a length of approximately 200 feet and stabilize because eroded soils are deposited within the rock voids at the downstream end thus slowing or terminating interstitial velocities. The typical rill depth is about 6 inches and in no case incisions formed greater than one foot over the radon barrier. Since radon attenuation to 20 picocuries per meter squared per second (20 pCi/m²/s) occurs at a much shallower depth within the cover system, based on conservative modeling, the cover system performance with respect to radon attenuation is functioning as designed.

2.2 A-9 Repository

This section details the areas of concern and cause associated with erosion protection of the A-9 reclamation cover.

2.2.1 A-9 Areas of Concern and Cause

The areas of concern associated with the A-9 reclamation cover are:

• Type C ($D_{50} = 6$ inches) Erosion Protection – located on the southern reclamation cover slopes.

<u>Type C ($D_{50} = 6$ inches) Erosion Protection</u>

Umetco field inspections identified areas of soil cover erosion beneath the riprap layer on the southern slope of the reclamation cover on those areas with Type C erosion protection material. These locations are also located in areas which receive substantial upland flow and are susceptible to large amounts of drifting snow during the winter months. The

Type C erosion protection for the A-9 consists of a single layer of riprap with a minimum layer thickness of 12 inches.

Umetco's field investigations of these areas concluded that cover soil erosion beneath the riprap layer are caused by concentrated interstitial flows at the interface of the erosion protection layer and cover soil sub-grade. The erosion incisions typically extend about 200 feet and become stable at the downstream due to filling of the riprap void space with sediment. The incisions also terminate near the lower portions of the slope where the slope flattens, i.e., interstitial velocities are reduced. The geometry of the erosion features are such that the bottom of the incisions are perpendicular to the slope for the entire length of the incision and typically about 0.5 feet in depth.

Review of the A-9 (Shepherd Miller, 1998) design indicates appropriate and conservative methods were used to determine the size of rock for the Type C erosion protection. The design error is associated with the evaluation of the filter blanket. The Design Report evaluated the need for a filter blanket by the calculating interstitial flow velocity which is an acceptable and recommended procedure established in NUREG 4620. While NUREG 4620 provides guidance on calculation of interstitial velocities it does not provide an acceptable velocity at which the sub-grade layer is erosionally stable. The Design Report utilized criteria presented in NRC STP (pp A1-A20, August 1990) to determine an adjusted permissible velocity of 2.5 feet per second. Computation of the permissible interstitial velocity in this manner has resulted in unacceptable performance of the erosion protection layer at the locations noted. At about the same time as the design was approved, the NRC published draft guidance regarding adequate interstitial velocities in NUREG 1623 (Draft guidance, February 1999). This guidance states:

"When the computed interstitial velocity is less than 0.5 feet per second, a filter may not be needed. When velocities are between 0.5 and 1.0 feet per second, the need for a filter layer will be dependent upon the type of soil material placed at the interface. A filter should be provided when velocities are 1.0 feet per second or greater."

The calculated interstitial velocities for the problematic Type C area of the A-9 vary between 0.6 and 0.8 feet per second. Accordingly the guidance provided by NUREG 1623 is very applicable to this site, weather conditions, and cover soils.

Another contributing factor associated with the rill formation is believed to be drifting of snow in these specific areas which tend to concentrate flows. During the winter months drifting snow fills void spaces in these areas, once the drifts begin to melt and the cover receives additional precipitation, interstitial flows are diverted around and concentrated around the perimeter of the frozen drifts.

It should also be noted that there are several isolated areas within the problematic areas in which the riprap void spaces are filled with finer fraction material which is a typical artifact of the placement process. Where this condition is present there is no erosion of subsurface soils and up-slope gullies are diverted around these areas, i.e., void space is filled and interstitial velocities are slowed.

The southern slope of the A-9 flattens near the toe. At this location interstitial velocities slow to 0.54 feet per second and sub-grade incisions abruptly terminate indicating that the

0.5 feet per second criteria found in NUREG 1623 is very applicable to this site and the cover soils found at the riprap cover interface.

2.2.2 Evaluation of Hydrology and Erosion Protection Design

To ensure the cause of the sub-grade erosion was appropriately identified and to verify the adequacy of the erosion protection design, a detailed analysis of the designed/placed erosion protection layer was performed. This evaluation is based on the current criteria found in NUREG 1623.

Evaluation of the A-9 erosion protection design was completed by identification of the critical hydraulic profile, as shown on Drawing 2 of 8, which includes the area of concern located on the southern slope of the reclamation cover. The approved PMP (one-hour thunderstorm) of 8.7 inches was used for this evaluation. Calculation of rock size was performed using the Safety Factors Method for slopes less then 10%; Stephenson Method for slopes greater then 10%; for slopes at or near 10% both Safety Factors and Stephenson were utilized; and for all slope segments the Abt and Johnson Method was used, i.e., $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$.

Results of this evaluation demonstrate that the rock size of the A-9 erosion protection is appropriate and conservative. The upper two segments of the profile are located on the Heap Leach reclamation cover which does incorporate a filter bedding layer at the interface between the riprap and soil cover.

The interstitial velocity for the top slope covered with Type B ($D_{50} = 3$ inches) of the A-9 reclamation cover is 0.24 feet per second which is well below the 0.5 feet per second criteria established in NUREG 1623. In addition, there is no visual evidence of cover degradation or sub-grade erosion on the upper repository slopes.

The rock size for the lower (southern) portion of the A-9, covered with Type C ($D_{50} = 6$ inches) erosion protection is also conservative, however, the interstitial velocities associated with this larger erosion protection material, for the most part, exceed the 0.5 feet per second criteria causing isolated areas of shallow incision at the interface of the erosion protection and cover soil.

A summary of the erosion protection evaluation is shown on Table 2.3.

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010 9

		Table 2.3	
A-9 Reposito	ry Reclamation Cover	- Summary of Erosion P	Protection Evaluation

A-9	Segment	Segment	Hydraulic	Segment	Intensity	Peak	Riprap Size	Riprap	D D ₅₀	Interstitial	
Profile	Elev. Diff. (ft)	Length (ft)	Length (ft)	Slope (ft/ft)	(in/hr)	Flow (cfs/ft)	Calculation Method	Calculated (inches)	In-Place (inches)	Velocity ¹⁾ (fps)	Comment
Segment 1	6	571	571	0.0105	42.08	0.55	Safety Factors	0.4	0.5	0.05	Segment on Heap Leach Reclamation Cover
Segment 1	6	571	571	0.0105	42.18	0.55	Abt and Johnson	0.6	0.5	0.05	
Segment 2	39	377	948	0.1034	36.52	0.79	Safety Factors	3.5	3.0	0.49	Segment on Heap Leach Reclamation
Segment 2	39	377	948	0.1034	36.52	0.79	Abt and Johnson	2.1	3.0	0.49	Cover, Filter Layer in Place, Stephenson
Segment 2	39	377	948	0.1034	36.52	0.79	Stephenson	2.0	3.0	0.49	and Safety Factors used – slope near 10%
Segment 3	10	161	1,109	0.0621	34.13	0.87	Safety Factors	2.3	6.0	0.53	Riprap Size ok, Interstitial Velocity
Segment 3	10	161	1,109	0.0621	34.13	0.87	Abt and Johnson	1.8	6.0	0.53	marginal
Segment 4	39	1,354	2,463	0.0288	23.88	1.35	Safety Factors	1.7	3.0	0.24	Riprap Size ok, Interstitial Velocity ok
Segment 4	39	1,354	2,463	0.0288	23.88	1.35	Abt and Johnson	1.6	3.0	0.24	
Segment 5	15	120	2,583	0.125	23.26	1.38	Stephenson	3.3	6.0	0.77	Riprap Size ok, Interstitial Velocity
Segment 5	15	120	2,583	0.125	23.26	1.38	Abt and Johnson	3.1	6.0	0.77	unacceptable Repair
Segment 6	8	124	2,707	0.0645	22.52	1.40	Safety Factors	3.3	6.0	0.54	Riprap Size ok, Interstitial Velocity
Segment 6	.8 .	124	2,707	0.0645	22.52	1.40	Abt and Johnson	2.3	6.0	0.54	marginal Repair

¹⁾ Interstitial Velocity based on the Placed/Specified D₅₀. ²⁾ Abt and Johnson: D₅₀ = 5.23 q^{0.56} S^{0.43} x 1.20

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010

10

2.2.3 Geotechnical – Potential Settlement

The geotechnical stability with respect to settlement has been evaluated as a potential cause of shallow sub-grade soil erosion beneath the Type C erosion protection material. Several factors as discussed below conclude that the observed settlement occurring on the A-9 is as predicted with no impact on erosion protection design.

The approved A-9 reclamation plan (Shepherd Miller, 2008) settlement analysis was performed in six stages.

- Stage 1 deposition of tailings generated by Umetco (December 1979 to December 1984).
- Stage 2 consolidation and drainage of Umetco tailings (December 1984 to September 1987).
- Stage 3 placement of Susquehanna tailings and interim cover (September 1987 to December 1989).
- Stage 4 consolidation and drainage of Susquehanna tailings and Umetco tailings (December 1989 to March 1998).
- Stage 5 placement of additional waste and reclamation cover (March 1998 to April 1998).
- Stage 6 consolidation and drainage subsequent to reclamation cover construction (April 1998 to end of consolidation).

For the purpose of this discussion the Stage 6 or anticipated settlement post reclamation cover construction are of interest. Results of the Stage 6 analysis predicted a maximum settlement of 1.65 feet. This settlement is anticipated subsequent to the Stage 5 immediate settlement resulting from placement of additional waste and reclamation cover loading.

Long-Term settlement (maximum creep) was predicted to be 0.87 feet. The total settlement is the sum of the immediate, consolidation, and creep settlements, however, for this evaluation the Stage 5 immediate settlement of 0.2 feet is neglected because the as-built (100-foot grid) survey was performed at the conclusion of completion of the reclamation cover, i.e., immediate settlement had occurred. Accordingly, the maximum predicted post reclamation cover loading settlement is the consolidation settlement of 1.65 feet plus long-term creep of 0.87 feet or 2.52 feet.

As part of this evaluation, Umetco performed a survey on the same 100-foot grid system to ensure settlement is occurring as predicted without differential settlement which could impact the radon barrier or concentrate surface flows. Results of the survey are shown on Drawing 4 of 8 along with comparison contours to identify any differential settlement. As shown on the drawing, settlement of about 1 foot has occurred at the maximum waste thickness section located at the southern end of the repository and diminishing near the northern end. Settlement is occurring in a uniform manner and well within the predicted limits of settlement, i.e., no strain on radon barrier or concentrated flows.

As stated above, the maximum settlement is occurring at the southern end of the repository which increases the slope across the top of the repository, however, the size of the riprap placed on the top slope of the repository (Segment 4) is such that it is oversized by almost a factor of 2 at the southern (critical) end of the slope. To ensure the Type B ($D_{50} = 3$ inches) is adequate

based on worst case settlement conditions, the required rock size was calculated assuming an additional 3 feet of settlement at the southern end of the repository resulting in a top slope of 0.0318 feet/foot. This scenario would result in an increase required D_{50} of 1.8 inches using the Safety Factors Method and 1.70 inches using the Abt and Johnson Method. The interstitial velocity would increase to only 0.26 feet per second which is well below the 0.5 feet per second criteria established in NUREG 1623.

Because of the uniform bottom configuration of the A-9 and waste placement, there is no reason to anticipate that settlement will occur in a non-uniform manner.

2.2.4 Radon Attenuation

While there are some isolated locations of rill formation beneath the Type C erosion protection on the A-9 reclamation cover, the geometry of the rills are shallow and perpendicular to the slope. These rills, typically, appear to develop and extend for a length of approximately 200 feet and stabilize because eroded soils are deposited within the rock voids thus slowing or terminating interstitial velocities. The typical rill depth is about 6 inches and in no case incisions formed greater than one foot over the radon barrier. Since radon attenuation to 20 pCi/m²/s occurs at a much shallower depth within the cover system, based on conservative modeling, the cover system performance with respect to radon attenuation is functioning as designed.

2.3 Evaluation of Heap Leach and GHP No. 2 Reclamation Covers

Umetco has evaluated the Heap Leach and GHP No. 2 Reclamation Covers to ensure the situation found with the AGTI and A-9 does not exist. The designs for both of these cover systems were prepared by Umetco, in-house, approved by the NRC, and contain filter layers beneath all Type B and Type C erosion protection which are placed on the 5(H) to 1(V) cover outslopes. Reclamation covers have been inspected in the field with no indication of cover degradation.

3.0 Enhancement of Erosion Protection Design

In order to correct the erosion features on the AGTI and A-9 structures, repair methodologies have been devised to provide adequate bedding material beneath/within the Type C erosion protection placed on the lower portions of the outslopes. A multi-layer filter system will be provided at the upstream and downstream sides of the launch rock structure located on the east side of the AGTI to reduce erosion. The off-cover erosion occurring on the southeast corner of the AGTI will be corrected by the installation of a riprap armored apron channel.

3.1 Above Grade Tailings Impoundment

This section details the design of repairs in areas of concern associated with erosion protection of the AGTI reclamation cover.

3.1.1 AGTI Areas of Concern and Repair

The areas of concern associated with the AGTI reclamation cover are:

- Type C ($D_{50} = 6$ inches) Erosion Protection Bedding located on the lower portions of the northern and eastern reclamation cover slopes.
- Launched Rock Filter– located at the bottom of the eastern slope of the reclamation cover.

Off-Cover Erosion Control Apron Channel- occurring on the southeast corner of the repository.

3.1.2 Type C Erosion Protection, Bedding Repair

Field investigations indicated that the rills in the existing erosion protection are generally confined to the eastern or lee side of the AGTI with some minor rills occurring on the north face. Two bedding repair methods have been devised for the AGTI.

The first method (repair method one) involves removal of the existing Type C erosion protection layer, placement of a minimum 3-inch thick layer of Type A bedding material (Design $D_{50} = 0.5$ inch, actual $D_{50} = 1.0$ inch, average from field gradations) and replacement of the Type C riprap to a minimum depth of 1 foot. The areas to receive this treatment method total approximately 19.5 acres and are shown on Drawings 5 of 8 and 6 of 8.

The second repair method (repair method two) involves spreading a blended bedding material $(D_{50} \approx 0.64 \text{ inch})$ over the surface of the existing Type C riprap and vibrating/working the material into the bottom portion of the 1-foot thick layer of erosion protection. Section 3.3 of this report discusses field tests conducted to verify the constructability of this method. A minimum 4-inch layer of blended bedding material will be provided and 25-foot wide staging bands will be provided on 10-foot elevation centers to access the slope. The existing Type C riprap will be removed from the access band areas and a minimum 3-inch layer of Type A bedding material will be placed to plate the existing frost barrier and act as a bedding layer. When the access/staging bands are no longer required, the Type C riprap previously removed will be replaced and blended/transitioned into the surrounding undisturbed erosion material to a minimum depth of 1 foot. The area to receive this treatment method totals 42.8 acres and encompasses the majority of the north outslope of the AGTI as shown on Drawings 5 of 8 and 6 of 8.

3.1.2.1 Repair Method One Compatibility Calculations:

An adequate quantity of Type A bedding material is stockpiled at the Rattlesnake Quarry to complete the repairs on the AGTI.

Bedding Filter Criteria:

Criterion 1*: D_{15} (Riprap) / D_{85} (Bedding Material) < 5, prevents migration of the bedding material into the riprap.

Criterion 2*: D_{15} (Bedding Material) / D_{85} Frost Barrier Material) < 10, prevents erosion of soil below the bedding material.

* NRC, NUREG/CR-4620 (USNRC 1986)

Material Gradation Data:

Frost Barrier Material* – $D_{85} = 0.066$ inch

Type A Bedding Material* $- D_{15} = 0.52$ inch, $D_{85} = 1.95$ inches

Type C Riprap Material* $- D_{15} = 4.48$ inches

*D₁₅ and D₈₅ sizes from averages of field gradations performed during construction.

Criterion 1 - 4.48/1.95 = 2.3 < 5, Check

Criterion 2 - 0.52/0.066 = 7.9 < 10, Check

Interstitial Velocity Criteria:

 $Vv = W m^{0.5} I^{0.54}$, NUREG-1623 (USNRC, Draft Guidance 1999)

Recommended interstitial <0.5 feet per second (ft/s)

Where:

Vv = Interstitial velocity, inches per second (in/s) W = Constant, 11.316 m = D₅₀ of bedding material, inches, and I = Hydraulic gradient, feet per foot (ft/ft)

Input Data:

 D_{50} Type A Bedding = 1.0 inch, average from field gradations during construction

Assume worst case - 5H:1V slope, hydraulic gradient = 0.2 ft/ft

 $Vv = 11.316 * 1^{0.5} * 0.2^{0.54} = 4.75$ in/s

4.75 in/s = 0.39 ft/s < 0.5 ft/s, Check

3.1.2.2 Repair Method Two Compatibility Calculations:

Repair method two will require the crushing of existing rock material stockpiled at the Rattlesnake Quarry. The crushed rock will be blended with existing quarry fines to produce the desired bedding material gradation (30 percent quarry fines / 70 percent 2-inch minus crushed rock). The proposed individual material gradations and target bedding material gradations are as follows (blend calculations and a gradation graph are presented in Appendix A):

Crushed Rock Gradation:

Size	Percent Passing
2-inch	100
1 ¹ /2-inch	80 - 100
1-inch	50 - 70
³ ⁄4-inch	30 - 50
3/8-inch	0 - 5

Table 3.0, Crushed Rock Gradation

Average Existing Quarry Fines Gradation:

Sieve Size	Percent Passing
³ ⁄4-inch	100
3/8-inch	98
No. 4	77
No. 8	63
No. 16	55
No. 30	51
No. 50	47
No. 100	30
No. 200	5.4

Table 3.1, Existing Quarry Fines Gradation

Target 30/70 Bedding Blend Gradation:

Table 3.2, 30/70 Bedding Gradation Band

Sieve Size	Percent Passing
2-inch	100
1 ¹ /2-inch	80 - 100
³ ⁄4-inch	40 – 70
3/8-inch	20 - 50
No. 4	10-40
No. 200	0 - 10

Bedding Filter Criteria:

Criterion 1*: D_{15} (Riprap) / D_{85} (Bedding Material) < 5, prevents migration of the bedding material into the riprap.

Criterion 2*: D_{15} (Bedding Material) / D_{85} Frost Barrier Material) < 10, prevents erosion of soil below the bedding material.

* NRC, NUREG/CR-4620 (USNRC 1986)

Material Gradation Data:

Frost Barrier Material¹ – $D_{85} = 0.066$ inch

30/70 Bedding Material² - D₁₅ = minimum 0.006 inch, maximum 0.27 inch

 D_{85} = minimum 1.05 inches, maximum 1.56 inches

Type C Riprap Material¹ – $D_{15} = 4.48$ inches

 $^{1}D_{15}$ and D_{85} sizes averaged from field gradations performed during construction

²Minimum and maximum sizes from gradation band

Criterion 1 – Minimum bedding band - 4.48/1.05 = 4.27 < 5, Check

Criterion 1 – Maximum bedding band - 4.48/1.56 = 2.87 < 5, Check

Criterion 2 – Minimum bedding band – 0.006/0.066 = 0.09 < 10, Check

Criterion 2 – Maximum bedding band - 0.27/0.066 = 4.09 < 10, Check

Interstitial Velocity Criteria:

 $Vv = W m^{0.5} I^{0.54}$, NUREG-1623 (USNRC, Draft Guidance 1999)

Recommended interstitial velocity <0.5 feet per second (ft/s)

Where:

Vv = Interstitial velocity, inches per second (in/s) W = Constant, 11.316, m = D₅₀ of bedding material, inches, and I = Hydraulic gradient, feet per foot (ft/ft)

Input Data:

 D_{50} 30/70 Bedding Blend = minimum 0.38 inch, maximum 0.88 inch

Assume worst case -5H:1V slope, hydraulic gradient = 0.2 f ft/ft

Minimum gradation band:

 $Vv = 11.316 * 0.38^{0.5} * 0.2^{0.54} = 2.88 in/s$

2.88 in/s = 0.24 ft/s < 0.5 ft/s, Check

Maximum gradation band:

 $Vv = 11.316 * 0.88^{0.5} * 0.2^{0.54} = 4.44$ in/s

4.44 in/s = 0.37 ft/s < 0.5 ft/s, Check

3.1.3 Launch Rock Structure Filter Installation

Multi-layer filter zones will be installed on both the upstream and downstream sides of the existing launch rock structure to reduce erosion and repair erosion sink holes that have developed upstream of the structure. The filter zone on the upstream side of the structure will consist of three filter material layers. The existing upstream face of the launch rock structure will be exposed (approximate 6-foot deep excavation) and a minimum 1-foot thick layer of Type C riprap will be placed next to the existing Type E launch rock material. A minimum 1-foot thick layer of Type A bedding will be placed next to the Type C rock followed by a minimum 1-foot thick layer of 30/70 blended bedding material. The filter zone will be backfilled with the frost barrier material previously removed and the filter zone will extend the full length of the launch rock structure. The required excavation is located well beyond the limits of the radon barrier on the east side of the AGTI and the radon barrier and waste materials will not be exposed. It is expected that the excavation required to facilitate installation of the filter zone will include and encompass all indentified sink hole features. Any sink hole features which may fall outside of the required excavation will be repaired by the placement of additional frost barrier material.

The downstream side of the launch rock structure will receive a similar filter zone treatment. After a shallow trench has been excavated at the toe of the structure and filled with Type A bedding, Type C rock will be placed next to the existing Type E launch rock followed by minimum 1-foot layers each of Type A bedding, 30/70 blended bedding, another layer of Type A bedding which will be covered with a final layer of Type C rock. Details of both the upstream and downstream filter installation are shown on Drawing 6 of 8.

3.1.3.1 Launch Rock Filter Compatibility Calculations

Adequate quantities of Type A bedding material and Type C rock are stockpiled at the Rattlesnake Quarry to complete the filter zones on the AGTI launch rock structure. The quantity of 30/70 bedding material will have to be processed in the quarry as specified previously.

Piping Filter Criteria:

Criterion 1* - 5 < D_{15} (Filter) / D_{15} (Base) < 40,

Criterion 2* - D_{50} (Filter) / D_{85} (Base) \leq 5, and

Criterion $3^* - D_{50}$ (Filter) / D_{50} (Base) < 40

*US Bureau of Reclamation, Design of Small Dams, pg. 235, 1977

Filter Material Gradation Data:

Table 3.4, Filter Material Gradations

Material Type	D ₁₅ (in.)	D ₅₀ (in.)	D ₈₅ (in).
Frost Barrier ¹	0.0011	.02	.066
30/70 Bedding Blend ²	0.02	0.64	1.31
Type A Bedding ¹	0.52	1.0	1.95
Type C Rock ¹	4.48	6.32	7.86
Type E Rock ¹	21	31	45.1

¹Average gradation from field tests

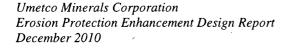
²Calculated values of 30/70 blended material (See Figure 2 of Appendix A)

Compatibility Calculations:

30/70 Blend / Frost Barrier

Criterion 1,5 < 0.02/0.0011 < 40, 5 < 20 < 40, CheckCriterion 2, $0.02/0.066 \le 5$, $0.03 \le 5$, CheckCriterion 3,0.64/.02 < 40, 32 < 40, Check

Type A Bedding / 30/70 Blend


Criterion 1, 5 < 0.52/0.02 < 40, 5 < 26 < 40, Check

Criterion 2, $0.52/1.31 \le 5, 0.4 \le 5$, Check

Criterion 3, 1.0/0.64 < 40, 1.5 < 40, Check

Type C Rock / Type A Bedding

Criterion 1,5 < 4.48/0.52 < 40,5 < 9 < 40,CheckCriterion 2, $4.48/1.95 \le 5$, $2.3 \le 5$,CheckCriterion 3,6.32/1.0 < 40,6.3 < 40,Check

17

Type E Rock / Type C Rock

Criterion 1, 5 < 21/4.48 < 40, 5 < 4.7 < 40, Check

Criterion 2, $21/7.86 \le 5, 2.7 \le 5$, Check

Criterion 3, 31/6.32 < 40, 4.9 < 40, Check

3.1.4 Off-Cover Erosion Control Apron Channel

A slope area located adjacent to the toe of the impoundment cover on the southeast corner of the AGTI has experienced some erosion caused by off-cover surface runoff and drainage exiting the downstream end of the existing buried apron. This slope area will be stabilized by placement of a riprap armored apron channel. The erosion damage will be repaired by placing compacted random sub-grade material obtained from grading activities required to shape the slope area. After sub-grade preparation and shaping, the apron channel will receive a minimum 6-inch layer of Type A bedding material overlain by an 18-inch thick layer of Type C riprap. Near the downstream end of the apron channel the Type C riprap will be tied into the existing buried apron material to provide drainage of the buried apron. The entire length of the apron channel will match the existing surface of the impoundment cover erosion protection material (maximum slope 0.17 feet per foot.). The apron channel will vary in width from 141.0 feet to 78.0 feet. Details of the apron channel design are shown on Drawing 8 of 8.

3.1.4.1 Apron Channel Design Calculations

The erosion protection required for the apron channel was evaluated considering the approved PMP (one-hour thunderstorm) of 8.7 inches, using both the Stephenson Method for slopes greater than 10% and the Abt and Johnson Method.

The Stephenson Method returned a required D_{50} of 4.06 inches and the Abt and Johnson method also indicates that a minimum D_{50} of 4.06 inches is required. The D_{50} of the Type C riprap stockpiled in the Rattlesnake Quarry averages 6.34 inches with a D_{100} of 9 inches. Due to frequent wetting/concentrated flow, an 18-inch thick layer of Type C riprap will be placed on a 6-inch layer of Type A bedding material. It has been previously demonstrated, in this report, that the Type A bedding material will provide adequate bedding for a 0.2 feet per foot (5H:1V) slope. The Stephenson Method calculation sheets are presented in Appendix A and the Abt and Johnson Method calculation follows:

Abt and Johnson Rock Sizing Method:

 $D_{50} = 5.23^{*} q^{0.56} s^{0.43} s^{1.20}$, NRC NUREG-1623 (USNRC, Draft Guidance 1999)

Where,

 D_{50} - Minimum median stone size, inches

q - Unit Flow Rate, feet per second (fps), (1.78 fps from Rational Formula for unit width analysis),

S - Slope, feet per foot (ft/ft), (0.17 ft/ft. from design Drawing)

 $D_{50} = 5.23 \times 1.79^{-0.56} \times 0.17^{-0.43} \times 1.20 = 4.06$ inches, D_{50} Type C riprap = 6.34 inches, Check

3.2 A-9 Repository

This section details the design of repairs in areas of concern associated with erosion protection of the A-9 reclamation cover.

3.2.1 A-9 Areas of Concern and Repair

The areas of concern associated with the A-9 reclamation cover are:

- Type C ($D_{50} = 6$ inches) Erosion Protection Bedding located on the southern reclamation cover slopes.
- Type C Erosion Protection Bedding located at the toe of the Heap Leach Repository (northeast edge of the A-9 Repository).

3.2.2 Type C Erosion Protection, Bedding Repair

Field investigations indicated that the rills in the existing erosion protection are generally confined to the southern crest area and outslope. Based on the erosion protection evaluation presented in Table 2.3 of this report, it appears that the interstitial velocity at the end of flow segment 3 is slightly higher than recommended. While no evidence of rill formation has been detected in this area, bedding material will be added here as well as repairs to the A-9 crest and southern slope. Two bedding repair methods have been devised for the AGTI.

The first method (repair method one) involves removal of the existing Type C erosion protection layer, placement of a minimum 3-inch thick layer of Type A bedding material (Design $D_{50} = 0.5$ inch, actual $D_{50} = 1.0$ inch from average of field gradations) and replacement of the Type C riprap to a minimum depth of 1 foot. A 30-foot wide zone of type B riprap at the southern crest will be removed, the sub-grade will be repaired with a minimum 3-inch layer of Type A bedding material (or greater depth as required to reestablish grade). The repaired/prepared sub-grade in this zone will be covered with the Type B riprap previously removed. In all cases the repaired erosion protection materials will be replaced at the originally required depths in a manner that will provide a smooth transition from the existing (undisturbed) material to the repair areas. The A-9 crest area and southern outslope will receive these treatments and the area totals approximately 5.9 acres as shown on Drawing 7 of 8.

The second repair method (repair method two) involves spreading a blended bedding material $(D_{50} \approx 0.64 \text{ inch})$ over the surface of the existing Type C riprap and vibrating/working the material into the bottom portion of the 1-foot thick layer of erosion protection. Section 3.3 of this report discusses field tests conducted to verify the constructability of this method. A minimum 4-inch layer of blended bedding material will be provided and 25-foot wide staging/access corridors will be provided around the perimeter of the existing Type B erosion protection material on the top of the A-9. A minimum 3-inch layer of Type A bedding material will be placed on the existing Type B riprap to provide access and act as a staging area for the placement of bedding material on the adjacent Type C armored slopes. The Type A material will remain on the Type B riprap after repairs to the slopes are complete. The areas to receive this treatment method total 7.1 acres as shown on Drawing 7 of 8.

Bedding compatibility calculations for repair methods one and two presented in Sections 3.1.2.1 and 3.1.2.2 of this report also apply to the repair methods proposed for the A-9.

3.3 Constructability Verification Field Tests

The constructability of filling the void space of the existing Type C riprap (repair method two) was verified by field testing in the Rattlesnake Quarry. During the fall of 2010, an approximate 100-foot wide by 100-foot long test bed of Type C riprap was constructed in the Rattlesnake Quarry. The test bed was constructed on a sloping surface in the quarry which varied from

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010

7(H):1(V) to 4(H):1(V) and simulates the existing slopes found on the AGTI and A-9. The test bed sub-grade was shaped and compacted and a minimum 12-inch thick layer of Type C erosion protection material was placed and compacted in accordance with the placement and compaction techniques incorporated on the completed AGTI and A-9.

Two bedding material types were spread over the riprap test bed in order to evaluate placement techniques and the feasibility of working bedding material into the void spaces in the riprap. The first bedding material type considered was a 30/70 blend of quarry fines and imported 1-inch minus crushed rock. This material readily penetrated the Type C rock material with dozer track walking and mechanical vibration. The second bedding material type considered was the existing Type A bedding material (3-inch minus material) stockpiled in the quarry. This material also penetrated the Type C material though not as readily and slightly more energy was required to work the coarser material into the riprap. Both material types were successfully worked into the bottom portion of the 12-inch thick Type C riprap layer.

Placement methods evaluated included conventional dumping of bedding material on the surface and spreading with a dozer tractor and sprinkling or spreading bedding materials on the surface of the riprap with loader type equipment. Again, both methods were successfully worked into the riprap layer, however, the more conventional dumping and dozer spreading of the material resulted in the waste of material, required significantly more vibratory effort and left bedding material visible on the surface. The second placement method (sprinkling bedding material with a loader) resulted in a more uniform distribution of bedding material, less vibratory effort and no wasted material. It was noted during the testing that point contact on the surface between the vibratory equipment and the Type C rock resulted in more effective penetration of the bedding materials.

In conclusion, the results of field testing indicate that bedding materials up to and including 3inch minus material can effectively be worked into the existing Type C erosion material layer. Loader spreading of the material is the most desirable and economical bedding placement method. Therefore, a bedding material comprised of 70 percent 2-inch minus crushed rock and 30 percent quarry fines and spreading with loader type equipment is proposed as a viable method to introduce bedding material into the existing Type C erosion protection material where no rill damage has occurred on the AGTI and A-9. Photographs of the testing process and a gradation plot of bedding materials introduced into the erosion protection layer during testing are presented in Appendix B.

4.0 Technical Construction Specifications

4.1 Use of Site

All repair work, new construction and Contractor operations, including staging shall be conducted within the established Gas Hills site transfer boundary shown on the Drawings. No work or construction activities will be allowed outside such boundary without the Owner's approval.

4.2 Required Excavation

Prior to initiation of repair activities, test excavations shall be made to verify the integrity of the existing radon barrier or clay layer in the vicinity of existing rill features. A minimum of one excavation shall be made on the AGTI and A-9, additional excavations may be required if it is

determined that the radon barrier layer has been disturbed or excessive settlement has occurred. All soil material (frost barrier material) and erosion protection material shall be carefully removed and stockpiled for re-use. Material removed from required excavations shall be replaced in accordance with these Specifications.

4.3 Radon Barrier

This section discusses placement of the radon barrier layer of the reclamation cover should it become necessary to place radon barrier material during erosion protection repair activities or test pit examination of the radon barrier. It is anticipated that no radon barrier material will be disturbed or require placement.

4.3.1 Materials

Clayey soils for constructing the radon barrier layer have been obtained from a permitted borrow source and stockpiled on site. Should it become necessary to place radon barrier material, the inplace material removed from required excavations will be stockpiled for re-use. The Cody shale (claystone) material contained in the stockpile shall be conditioned prior to re-use placement in the radon barrier. The moisture content of the stockpiled material shall be within 2 percent of the specified moisture prior to placement.

Conditioning of this material shall (at a minimum) require application of water, disking and desiccation to the extent necessary to provide a homogeneous borrow material prior to excavation and placement. Soils used in constructing the radon barrier shall conform to the following physical requirements:

- At least 50 percent passing the No. 200 sieve.
- Maximum particle size of 1 inch.
- Liquid limit of the material shall be at least 25 percent with a minimum plasticity index of 10.
- Maximum hydraulic conductivity of 1E-7 cm/sec when compacted to 95 percent of maximum standard Proctor density (ASTM D 698).

4.3.2 Placement

Radon barrier (clayey soil) shall be placed in equal continuous layers not exceeding 6 inches compacted thickness and shall be compacted to a minimum of 95 percent of the maximum standard Proctor density (ASTM D 698), at a moisture content of between optimum moisture content and 4 percent above optimum moisture content.

The placement areas and thickness for the radon barrier layer are shown on the drawings or shall match the depth removed from required excavations. Distribution and gradation of materials in each layer will be, as far as practicable, free of lenses, pockets, streaks, or layers of material differing substantially in texture, gradation or moisture content from surrounding materials.

Compacting radon barrier soils shall be accomplished using tamping foot (sheepsfoot) roller or mechanical hand tamping equipment. In placing the first lift of radon barrier material, care shall be taken to avoid mixing of underlying radiologically contaminated soils. The top surface of the compacted final lift of the radon barrier shall be bladed to the uniform and smooth grades established on the drawings or as modified by the engineer in the field.

If the compacted surface of any layer or fill is too dry or smooth to bond properly with the layer of material to be placed thereon, it will be moistened and/or reworked with a harrow, scarifier, or suitable equipment, to a sufficient depth to provide relatively uniform moisture content and a satisfactory bonding surface before the next layer of fill is placed. If the compacted surface of any layer of the placed material is too wet to obtain the specified compaction of the fill material to be placed thereon, the material shall be allowed to dry out, reworked, or scarified to reduce the moisture content and recompacted to the specified density.

Fill soils shall not be placed when the sub-grade is frozen, or when ambient temperatures do not permit placement or compaction of fill material to the specified density without developing frost lenses in the fill.

Construction surfaces, including lift surfaces, shall be protected from desiccation prior to placing subsequent lifts or frost protection materials.

The top of the radon barrier layer shall be graded to within +0.1 foot of the design grade shown on the drawings or as modified by the engineer in the field. The in-place thickness of the radon barrier layer shall be equal to or greater than 100 percent of the design thickness shown.

4.4 Frost Protection Layer/Random Fill

This section discusses placement of the frost protection layer of the reclamation cover where test pits are excavated to examine the condition of the radon barrier or where rill repairs are required to reestablish grade. Random fill material shall be placed to establish sub-grade for the apron channel and shall be obtained from required excavations and/or grading activities in the vicinity of the apron channel.

In general, repairs to the existing frost barrier layer will be made with Type A bedding material.

4.4.1 Materials

Random fill and the frost protection layer of the cover shall be constructed with soils obtained from local mine spoil borrow sources, required excavations or the Rattlesnake Quarry. Suitable materials obtained from the borrow sources, Rattlesnake Quarry or required excavations shall consist of processed Type A rock bedding material, or clayey and/or silty sand, classified as SC, SM and/or SC-SM, in accordance with the Unified Soil Classification System. Soils used for random fill and construction of the frost protection layer shall be free of brush, roots, sod, lumps or rocks larger than one-half of the lift thickness, or other perishable or unsuitable materials.

A significant volume of soils obtained from mine spoil borrow sources at the site have radiological characteristics which are naturally occurring but unsuitable for cover construction. Umetco will continuously monitor borrow excavations in the field. If additional material is required to affect repairs or fill test pits, the radiological and characteristic suitability of borrow materials will be determined on a load-by-load basis. For the most part, radiologically elevated (naturally occurring) materials, which are present in borrow areas, occur in isolated ponds and at times small clusters of loosely cemented rock. Upon initial scanning of this material it may appear that radiologically elevated materials are wide spread and unsuitable for cover construction while post-handling measurements may indicate that the radiological characteristics of the material are suitable.

Umetco Minerals Corporation Erosion Protection Enhancement Design Report December 2010 22

4.4.2 Placement

Random fill and frost protection soils shall be placed in equal continuous layers not exceeding 12 inches compacted depth and compacted to a minimum of 95 percent of maximum standard Proctor density (ASTM D 698), at a moisture content above minus 2 percent of optimum.

The placement areas and thickness for the frost protection layer are shown on the drawings or shall match existing depths removed from test pit excavations. Distribution and gradations of materials in each layer will be, as far as practicable, free of lenses, pockets, streaks, or layers of material differing substantially in texture, gradation, or moisture content from surrounding materials.

If the compacted surface of any layer of fill is too dry or smooth to bond properly with the layer of material to be placed thereon, it will be moistened and/or reworked with a harrow, scarifier, or other suitable equipment to a sufficient depth to provide a relatively uniform moisture content and a satisfactory bonding surface before the next layer of earthfill is placed.

No material will be placed in the fill layer when sub-grade soils are frozen or when ambient temperatures do not permit placement or compaction of soils to the specified density without developing frost lenses in the fill.

The top of the frost protection layer shall be graded to within +0.1 foot of the design grade shown on the drawings or as modified by the engineer in the field. The in-place thickness of the frost protection layer shall be equal to or greater than 100 percent of the design thickness shown.

4.5 Erosion Protection and Bedding Materials

Erosion protection materials shall be obtained from existing stockpiles in Umetco's Rattlesnake Quarry located approximately 6 miles east of the Gas Hills site. Erosion protection materials from this quarry site have been approved for use as erosion protection for repositories at the Gas Hills site, i.e., AGTI and A-9. Umetco has performed and documented quality control testing of erosion protection material to verify that processed materials meet durability requirements previously specified and gradation requirements specified herein. Gradation tests will be performed on the processed materials used as Type A bedding, the 30/70 blended bedding material and component materials used to create the blended bedding material. Type C riprap stockpiled in the quarry, to be used in the construction of the apron channel and launch rock filters has previously been verified to meet durability and gradation requirements and will not required further testing.

Erosion protection materials used as bedding material will initially be tested when each type of material is produced, blended or placed. Thereafter, the testing shall be performed at a minimum frequency of one test for each 10,000 cubic yards or fraction thereof produced and placed. No durability testing will be required. The 30/70 blended bedding material shall be blended by weight and suitable mixing and/or blending hoppers equipped with a weighing devise shall be provided to ensure a consistent blend or mix is produced.

In-place bedding material gradations and depth checks will be performed at a frequency of one set of tests (depth and gradation) for every 500 square feet of Type A bedding material placed or blended bedding material introduced into the existing erosion protection material. A minimum 3-foot square test pit will be excavated to perform gradation/depth check tests.

4.5.1 Gradation Requirements

Erosion protection (riprap) materials shall be reasonably well graded within the limits presented in Tables 4.0 and 4.1. The sizes are specified in terms of square opening of U. S. Standard Sieves or by the nominal sizes of the materials.

Туре А	$(D_{50} = 0.5'')$	Type B $(D_{50} = 3")$		Type C $(D_{50} = 6'')$	
Sieve Size	Percent Passing	Sieve Size	Percent Passing	Sieve Size	Percent Passing
3"	100	6"	100	10"	100
1.5"	60 - 100	5"	50 - 100	. 9"	50 - 100
1"	40 - 100	4"	30 - 100	8"	20 - 100
3/4"	20 - 100	3"	0 - 50	6"	0 - 50
1/2"	5 - 50	2"	0 - 15	4"	0 - 15
3/8"	0 - 25				
No. 4	0 - 5				

Table 4.0Erosion Protection Gradation Requirements

Table 4.1	30/70 Blended Bedding Gradation Requirements
-----------	---

Cru	shed Rock	Quarry Fines (Average of existing material)		30/70 Bedding Blend (D ₅₀ = 0.64")	
Sieve Size	Percent Passing	Sieve Size	Percent Passing	Sieve Size	Percent Passing
2"	100	3⁄4"	100 .	2"	100
1.5"	80 - 100	3/8"	98	1.5"	80 - 100
1"	50 - 70	No. 4	77	3⁄4""	40 - 70
3/4"	30 - 50	No. 8	63	3/8"	20 - 50
3/8"	0 - 5	No. 16	55	No. 4	10 - 40
		No. 30	51	No. 200	0 - 10
		No. 50	47		
-		No. 100	30	,	
		No. 200	5.4		

4.6 Erosion Protection Placement

This section discusses construction (placement) of the erosion protection layer(s), erosion protection bedding and filters on the reclamation covers and associated hydraulic structures, e.g., toe aprons, apron channel, etc.

4.6.1 Sub-grade Preparation

In areas designated for existing riprap removal and replacement (repair method one), the existing riprap material shall be carefully removed in panels no wider than 50 feet and temporarily stockpiled on the adjoining/completed panel. Removed riprap shall be replaced as soon as is practicable after the minimum 3-inch thick Type A bedding layer has been placed and approved by the Owner's representative. In general, the removal panels will be oriented perpendicular to the slope and the actual width of panels will be determined in the field dependent on the capabilities of the Contractor's equipment. All riprap and bedding materials shall be placed in accordance with these Specifications.

In areas designated to receive bedding material vibrated into the existing riprap (repair method two), the 30/70 blended bedding material shall be spread uniformly, with loader type equipment, over the slope between the access route bands (shown on the Drawings). Test panels will be prepared on the existing slope to determine the most acceptable method and amount of bedding material required (to be applied on the slope) to ensure that a minimum of 4-inches of bedding material is vibrated or worked into the bottom portion of the existing 12-inch layer of Type C riprap. The number of passes and size of vibratory equipment shall also be determined on the test panels and the acceptable result shall be duplicated throughout the placement of subsequent bedding material. The access route/staging bands shall be plated with a minimum 3-inch thick layer of Type A bedding material (after the existing erosion protection material has been removed) which will act as a running or wear surface and a bedding layer for the riprap removed to construct the access band. Access/staging bands shall be provided as shown on the Drawings.

Surfaces to be prepared for placing erosion protection shall be cleared of rubbish and any deleterious material. Prior to placing erosion protection materials, the subsurface shall be graded to within +0.1 foot of the final design grade established on the drawings or as modified by the engineer in the field. All surfaces prepared to receive erosion protection materials and/or bedding material shall be proof rolled with a smooth drum roller or approved equivalent. A designated representative of the QC staff shall witness proof rolling. Damage to the prepared sub-grade by construction activities or erosional forces, i.e., storm runoff, etc., shall be repaired in accordance with these specifications prior to placing erosion protection materials.

Frozen or unsuitable materials shall not be used for sub-grade preparation. Preparing the subgrade surface shall occur when ambient temperatures permit adequate grading and proof rolling of the sub-grade. Placing erosion protection materials shall not be allowed when snow is present on the sub-grade.

4.6.2 Placement and Compaction

Erosion protection materials shall be placed to the lines and grades established on the Drawings described in these Specifications or as established by the engineer in the field.

Erosion protection materials shall be handled, loaded, transported, stockpiled, and placed in a manner that avoids nonconformance with the specifications due to segregation and degradation, including materials moved to and from stockpiles. Various placement methods used by the contractor that tend to segregate particle sizes within the layer will not be permitted.

Erosion protection material, up to a maximum nominal size of 12 inches, may be placed by end dumping and spread by bulldozer, hydraulic excavator, or approved equivalent. Dumped riprap shall be placed to its full course thickness in one operation and in such a manner as to avoid displacing the bedding material or sub-grade. The finished erosion protection layer shall be free from pockets of small stones and clusters of larger stones. Placing stone by dumping into chutes or by similar methods will likely cause segregation of the various sizes and will not be permitted. The desired distribution of the various sizes of stones throughout the mass shall be obtained by selective loading of the material at the quarry, by controlled dumping of successive loads during final placement, or by other methods of placement that produce the specified results. Rearranging of individual stones by mechanical equipment or by hand may be required to the extent necessary to obtain a well-keyed and reasonably well graded distribution of stone sizes as specified above. Larger pieces of riprap may require individual placement. Hand arrangement will be required only to the extent necessary to secure acceptable results. Stones shall be *Umetco Minerals Corporation* 255

selected and positioned so as to produce an essentially solid, densely placed face of rock with all stones firmly wedged in place. Any stones that are not firmly wedged shall be adjusted and additional selected stones inserted or existing stones replaced to achieve solid interlock.

Each layer of erosion protection materials shall be track-walked by two passes of Caterpillar D6 bulldozer, smooth drum roller, or approved equivalent. Erosion protection materials shall be spread in a manner that will achieve full coverage and a uniformly distributed well-keyed, densely placed layer.

Construction equipment other than spreading and compaction equipment shall not be allowed to move over the placed erosion protection and bedding layers except at equipment crossovers as designated by the QC representative.

4.6.3 Tolerances

The erosion protection (riprap) layers shall be placed to the limits and thickness shown on the drawings and within the following tolerances.

- 1) The top of the frost protection or sub-grade shall be within ± 0.1 foot of the design elevation or grade established on the drawing or as modified by the engineer in the field.
- 2) The thickness of erosion protection and bedding layers shall be no less than 90 percent of the design thickness shown on the drawings.
- 3) Local irregularities not exceeding the tolerances above will be permitted, provided that such irregularities do not form mounds, ridges, swales, or depressions that in the opinion of the QC Officer could cause concentrations of surface runoff.

5.0 Quality Control Plan

This section details the quality control and quality assurance activities to be performed.

The objectives of the quality control plan are to effectively control the quality of work performed, to verify that construction activities are performed in accordance with the approved plans and specifications, and provide adequate checks and audits to assure proper implementation of the quality control activities. Proper implementation of these activities will provide detailed documentation of the project and assure construction reclamation activities have been performed in accordance with the approved plans and specifications.

5.1 **Quality Control/Quality Assurance Personnel**

Quality control activities shall be implemented and managed by the QC Officer. These activities include field sampling, construction inspection, field testing, and laboratory testing. The QC Officer, appointed by the engineer, shall supervise field and laboratory QC technicians and control documentation of construction and quality control activities. The QC Officer shall have the specific authority and responsibility to reject work or material, to stop work, to require removal or placement, to specify and require appropriate corrective actions if it is determined work is not in conformance with the approved plans and specifications.

Quality assurance activities shall be implemented by the QA Officer who is an independent consultant and/or Umetco technical staff member with expertise in a specific aspect of reclamation work being performed. Quality assurance functions include pre-qualification of QC Umetco Minerals Corporation

personnel, verification of test procedures and results, equipment checks, and review of calculations and associated documentation.

5.2 Test Procedures and Documentation

QC procedures and report forms have been developed, approved, and utilized for reclamation activities associated with Gas Hills disposal cells, i.e., AGTI and A-9. These procedures and report forms (summarized below) will be used in the QC activities. Table 5.0 summarizes previously approved test procedures. Table 5.1 provides a summary of QC forms to be used in documenting QC sampling, testing, and inspection activities. Modification to these procedures and forms (from those previously reviewed and accepted) will be made only to the extent that reflects modification of ASTM standards or enhances/clarifies documentation associated with construction inspection and testing activities.

5.3 Environmental Quality, Health and Radiation Protection

Work will be performed in compliance with statutes, rules and regulations, licenses and permits rendered applicable under Source Material License No. SUA-648. Work will be monitored by the Owner in accordance with the site's Radiation Monitoring Procedures. Applicable procedures will be provided to the successful bidder. Procedures are available for review at Owner's Grand Junction offices prior to bidding.

Reclamation activities at the Gas Hills site are conducted in accordance with Radioactive Materials License SUA-648. This license requires that all equipment, vehicles and materials meet the established release criteria for fixed and removable surface contamination prior to leaving the site restricted area. These release criteria are intended to control the spread of radioactive materials off-site and keep personal exposure to radioactive materials as low as reasonably achievable (ALARA). Radiological scanning procedures are established for this site and will be utilized in execution of project work. These procedures are summarized as follows:

5.3.1 Surveys for Unrestricted Release

All equipment, vehicles and parts leaving the designated site restricted area or other areas identified as containing 11e.(2) materials will be surveyed to confirm the presence or absence of surface contamination. All light vehicles, equipment and parts leaving the designated restricted area or area where 11e.(2) materials are present will be washed to remove all visible soils and materials. The survey will be an alpha, beta/gamma survey, and a removable smear counted for alpha and beta/gamma activity. If surface activities exceed the established release limits, further decontamination will be required until the release limits can be achieved. These surveys will be conducted by the Umetco's Radiation Safety Officer (RSO) or designated individuals. The surface activity levels for each piece of equipment released for unrestricted use will be documented and signed by the RSO and maintained on file. A copy of the equipment release will accompany all parts, equipment and vehicles not routinely leaving the site.

5.3.2 Surveys for Conditional Release

5.3.2.1 Heavy Equipment Surveys

All heavy equipment leaving the designated restricted area or identified 11e.(2) areas will be washed to remove visible soils and materials from tires, treads and/or wheel wells. Heavy

equipment will be permitted to leave the site after removal of loose soils and materials. To verify that materials are not being tracked from the restricted area, 10 percent of the equipment will be subject to survey for fixed and removable contamination. Any equipment being transferred from the site for unrestricted release will have to meet all applicable release limits described above for unrestricted release.

5.3.2.2 Pre-Entry Surveys

All of the Contractor's equipment used at the Gas Hills site will be subject to being surveyed for beta/gamma and alpha surface contamination prior to entry onto the site. The results of these surveys will be documented and may be reviewed at the Gas Hills site. If the equipment does not pass the established surface contamination criteria limits, the Owner may require the equipment to be decontaminated before allowing entry onto the site.

Any decontamination for entry onto the site will be at the Contractor's expense.

Storage and handling of hazardous materials, including flammable or combustible liquids, shall be in accordance with applicable County, State, Federal Regulations and Owner polices.

Construction activities will be performed using methods that will prevent entrance or accidental spillage of hazardous or contaminated liquids into nearby gullies or washes.

During construction, care shall be taken by the Contractor to preserve the natural landscape and prevent any unnecessary destruction, scarring or defacing of the natural surroundings in the vicinity of the work.

Best Management Practices (BMPs) will be used to prevent sediment from being transported offsite due to storm water runoff. BMPs include, but are not limited to, such sediment control practices as interceptor dikes/ditches, filter fences, straw bales, temporary sediment basins, check dams or methods approved by the Owner's project representative.

Reasonable and practical efforts will be made to operate construction equipment in a manner that minimizes emissions of air contaminates. Fugitive dust from unpaved haul roads, construction activities and other areas of heavy vehicle use will be controlled by watering, vehicle speed and/or dust suppression agents approved by Owner. If, during times of dry conditions and/or high wind, the release of fugitive dust becomes uncontrollable, Owner or Owner's representative may request that the Contractor temporarily suspend construction activities until dust releases can be controlled or atmospheric conditions improve. No compensation for the suspension of Work to comply with air quality requirements due to atmospheric conditions or excessive dust releases will be made.

Table 5.0Summary of QC Test Procedures

Procedure No.	QC Procedure Title		
QC GHP - 1	Field Inspections		
QC GHP - 2	Sampling of Aggregates and Soils		
QC GHP - 3	Field Description of Soils		
QC GHP - 4	Particle Size Analysis		
QC GHP - 5	Size Analysis of Soil Finer Than No. 200 Sieve		
QC GHP - 6	Moisture Content of Soils		
QC GHP - 7	Atterberg Tests		
QC GHP - 8	Soil Classification for Engineering Purposes		
QC GHP - 9	Laboratory Compaction Test		
QC GHP - 10	In-Place Density Tests		
QC GHP - 11	Compacted Soil Layer Thickness		
QC GHP - 12	Particle Size Analysis of Natural and Man-Made Riprap Materials		
QC GHP - 13	Rock Protection Layer Thickness		

Table 5.1

5.1 Summary of QC Test and Inspection Forms

Form No.	QC Form Title		
F-1	Construction Activities Report		
F-2	Soil Sampling Log		
F-3	Gradation Analysis Worksheet		
F-4	Gradation Analysis with Hydrometer Worksheet		
F-5	Gradation Test Results		
F-6	Moisture & Density Worksheet		
F-7	Atterberg Limits 1-Point Worksheet		
F-8	Atterberg, -200, Moisture Density Worksheet		
F-9	Atterberg Limits 3-Point Worksheet		
F-10	Summary of Laboratory Tests		
F-11	Field Density (Sand Cone, Balloon)		
F-12	Laboratory Compaction Test		
F-13	Rock and Moisture Correction Calculations		
F-14	Moisture-Density Relationships - 1		
F-15	Moisture-Density Relationships - 2		
F-16	Nuclear Test Data		
F-17	Grouting Logs		
F-18	Compliance Report		
F-19	Field Change Order		
F-20	Design Change Order		

5.4 Test Frequencies

The minimum test frequencies performed as part of the QC program are detailed below in Table 5.2.

Test	Procedure	Standard	Frequency
	arrier, Frost Protectio	on Layer and Erosion Pr	otection
Field Moisture and Density	QC GHP - 10	ASTM D2922	1 test per 500 CY
		ASTM D3017	
Sand Cone Correlation	QC GHP - 10	ASTM D1556	1 test for every 10 nuclear
		ASTM D2216	gauge tests
Laboratory Compaction	QC GHP - 9	ASTM D698	1 test for every 10 field tests
			depending on variability of
			soils.
Soil Classification	QC GHP - 7	ASTM D2487	1 test per 1000 CY
Particle Size Analysis	QC GHP - 8	ASTM D4318	
Atterberg Limits	QC GHP - 12	ASTM D1140	
,		ASTM D422	
Erosion Protection/Bedding	QC GHP - 12		· · · · · ·
Materials			
• Gradation (Quarry Production)		ASTM C117,C136	1 test per 10,000 CY
• In-Place Bedding Depth		ASTM C117,C136	1 set of tests per 500 SF of
Check and Gradation			bedding material placed.
		dom Fill, Grading	
Field Moisture and Density	QC GHP - 10	ASTM D2922	1 test per 1000 CY
		ASTM D3017	
Sand Cone Correlation	QC GHP - 10	ASTM D1556	1 test for every 10 nuclear
		ASTM D2216	gauge tests
Laboratory Compaction	QC GHP - 9	ASTM D698	1 test for every 10 field tests
		r	depending on variability of
			soils.
Soil Classification	QC GHP - 7	ASTM D2487	1 test per 2000 CY
 Particle Size Analysis 	QC GHP - 8	ASTM D4318	
Atterberg Limits	QC GHP - 12	ASTM D1140	
		ASTM D422	

Table 5.2Minimum Test Frequencies

Appendix A Design Calculations and Gradation Plots

A-1 – Erosion Protection Calculations

Above Grade Tailings Impoundment, Profile 1, Segments 1 through 3, Above Grade Tailings Impoundment, Profile 2, Segments 1 through 3, Above Grade Tailings Impoundment, Profile 3, Segments 1 through 3, and A-9 Repository, Profile 1, Segments 1 through 6

A-2 – 30/70 Blended Bedding Material Design

30/70 Bedding Blend Calculations, and 30/70 Bedding Blend Gradation Plot

A-3 – Launch Rock Filter Design

Launch Rock Filter Material Gradation Plots

A-4 – Apron Channel Erosion Protection Design

Stephenson Method Erosion Protection Calculation, and Stephenson Method Worksheet used for Rational Formula determination of Unit Width Flow

Appendix A-1 – Erosion Protection Calculations Above Grade Tailings Impoundment, Profile 1, Segments 1 through 3, Above Grade Tailings Impoundment, Profile 2, Segments 1 through 3, Above Grade Tailings Impoundment, Profile 3, Segments 1 through 3, and A-9 Repository, Profile 1, Segments 1 through 6

	•		F	Rainfall Durat	ion	
Project: Gas Hills - AGTI Profile 1			<u>(min)</u>	<u>of 1-hour P</u>	MP	
Item: Segment 1			2.5	27.5	0.00	
Date: 11/30/	2010		5	45	0.00	
			10	62	0.00	
Comment:			15	74	68.48	
			20	82	0.00	
			30	89	0.00	
• •			45	95 ,	0.00	
			60	100	0.00	
lydrology:			-		68.48	
Length of Slope (L)	1254	feet				
Elevation Difference (H)	9	T feet				-
		1 1001				
PMP	8.7	inches				
		inches	efficient of	1 is recomm	ended for PMI	P applicatio
PMP		inches <i>Runoff Co</i>		1 is recomm -4620, sectic		P applicatio
PMP	8.7	inches Runoff Co (refer to N	UREG/CR-	-4620, sectio		
PMP Runoff Coefficient (C)	8.7	inches Runoff Co (refer to N	UREG/CR- UREG/CR-	-4620, sectic -4620, page	n 4.8.1)	
PMP Runoff Coefficient (C) Flow Concentration Factor (CF	8.7	inches Runoff Co (refer to N Refer to N Flow Conc	UREG/CR- UREG/CR-	-4620, sectic -4620, page	n 4.8.1)	
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S)	8.7 1 0.007	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft	UREG/CR- UREG/CR-	-4620, sectic -4620, page	n 4.8.1)	
PMP Runoff Coefficient (C) Flow Concentration Factor (CF) Slope (S) Slope; angle from horizontal (α	8.7 1 0.007 0.41	inches Runoff Co (refer to N Refer to N Flow Conc ft/ft degrees	UREG/CR- UREG/CR-	-4620, sectic -4620, page	n 4.8.1)	
PMP Runoff Coefficient (C) Flow Concentration Factor (CF) Slope (S) Slope; angle from horizontal (α Area; unit-width basis (Aw)	8.7 1 0.007 0.41 0.03	inches Runoff Co (refer to N Refer to N Flow Conc ft/ft degrees acres	UREG/CR- UREG/CR- centration F	-4620, sectic -4620, page Factor.	n 4.8.1) 68, for discus:	sion of
PMP Runoff Coefficient (C) Flow Concentration Factor (CF) Slope (S) Slope; angle from horizontal (α	8.7 1 0.007 0.41 0.03 0.21	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours	UREG/CR- UREG/CR- centration F	-4620, sectic -4620, page Factor. angular Hydr	n 4.8.1)	sion of
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S) Slope; angle from horizontal (o Area; unit-width basis (Aw) Time of Concentration (tc)	8.7 1 0.007 0.41 0.03 0.21 12.70	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes	UREG/CR- UREG/CR- centration F (SCS Tria tc = (11.9	-4620, sectic -4620, page Factor. angular Hydr L ³ / H) ^{0.385}	n 4.8.1) 68, for discuss ograph Theory	sion of ')
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S) Slope; angle from horizontal (α Area; unit-width basis (Aw) Time of Concentration (tc) % of 1-hour PMP	8.7 1 0.007 0.41 0.03 0.21 12.70 68.48	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes %	UREG/CR- UREG/CR- centration F (SCS Tria tc = (11.9 (determin	-4620, sectic -4620, page Factor. angular Hydr L ³ / H) ^{0.385} red from Tab	n 4.8.1) 68, for discuss ograph Theory le 2.1 NUREG	sion of ')
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S) Slope; angle from horizontal (α Area; unit-width basis (Aw) Time of Concentration (tc) % of 1-hour PMP PMP rainfall depth	8.7 1 0.007 0.41 0.03 0.21 12.70 68.48 5.96	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes % inches	UREG/CR- UREG/CR- centration F (SCS Tria tc = (11.9 (determin PMP x %	4620, sectic 4620, page Factor. L ³ / H) ^{0.385} led from Tab of 1-hour PM	n 4.8.1) 68, for discuss ograph Theory le 2.1 NUREG AP	sion of ') 4620)
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S) Slope; angle from horizontal (α Area; unit-width basis (Aw) Time of Concentration (tc) % of 1-hour PMP PMP rainfall depth Rainfall Intensity (i), see Note 1	8.7 1 0.007 0.41 0.03 0.21 12.70 68.48 5.96 28.15	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes % inches in/hr	UREG/CR- UREG/CR- centration F (SCS Tria tc = (11.9 (determin PMP x % i = PMP r	4620, sectic 4620, page Factor. L ³ / H) ^{0.385} led from Tab of 1-hour PM ainfall depth	n 4.8.1) 68, for discuss ograph Theory le 2.1 NUREG AP x (60/tc) Eq.	sion of ') 4620)
PMP Runoff Coefficient (C) Flow Concentration Factor (CF Slope (S) Slope; angle from horizontal (α Area; unit-width basis (Aw) Time of Concentration (tc) % of 1-hour PMP PMP rainfall depth	8.7 1 0.007 0.41 0.03 0.21 12.70 68.48 5.96	inches Runoff Co (refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes % inches	UREG/CR- UREG/CR- centration F (SCS Tria tc = (11.9 (determin PMP x % i = PMP ra q = (C i A	4620, section 4620, page Factor. L ³ / H) ^{0.385} led from Tab of 1-hour PM ainfall depth w) CF Eq.	n 4.8.1) 68, for discuss ograph Theory le 2.1 NUREG AP x (60/tc) Eq.	sion of () 4620) 4.52; 4620

Note 1 : If $Tc \le 2.5$ min then: i = PMP rainfall depth x (60/2.5 min)

Riprap Design: Safety Factors

esign, ballety racions		
Specific Weight of Liquid (γ)	62.4	
Specific Weight of Rock (Ss)	2.52	
Angle of Repose of Riprap (o)	32	(Refer to Fig. 4.8; Page 46; NUREG/CR-4620)
D ₅₀ of Riprap (D ₅₀)	0.38	inches (Input Trial Riprap D ₅₀)
Cover Slope (α)	0.41	degrees
Mannings Coefficient (n)	0.0222	$n = 0.0395 (D_{50})^{1/6} Eq. 4.41; 4620$
Depth of Flow (d)	0.3113	feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} <i>Eq. 4.55; 4620</i>
Bed Shear Stress (τ_o)	0.1394	lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ <i>E0. 4.21; 4620</i>
Stability Number (ŋ)	0.9748	$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20, 4620
Safety Factor =	1.0139	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620

Riprap Design: Abt and Johnson

 D_{50} (inches) =

0.56 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ 0.67 inches $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$ Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed $D_{50} =$ 3 inchesInterstitial Flow Velocity =1.38 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)Interstitial Flow Velocity =0.12 feet/second

1) Bedding Layer Placed (Heap Leach Design)

2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.

Erosion Pl Safety Fac	rotection stors Method - two gradient slope	2						
	· · ·			Rair	nfall Du	uration		
Project:	Gas Hills - AGTI Profile 1			<u>()</u>	<u>min)</u>	% of 1-hou	r PM <u>P</u>	
ltem:	Segment 2				2.5	27.5	0.00	
Date:	11/30/2010)			5	45	0.00	
				×	10	62	0.00	
Comment:					15	74	0.00	
					20	82	78.50	
Hydrology					30	89	0.00	
,	Upper Top Slope:				45	95	0.00	
	Length of Slope (L)	1254	feet		- 0 60	100	0.00	
	Elevation Difference (H)	9	feet		00	100	78.50	
	Elevation Difference (11)		leer				70.00	
	Lower Top Slope:						,	
	Length of Slope (L)	1130	feet					
`	Elevation Difference (H)	70	feet					
	Elevation Difference (1)	. 70	leet					
	PMP	8.7	inches				· · · ·	
				attiniant of a to up			ID Baa	4
	Runoff Coefficient (C)	1		efficient of 1 is re			viP applica	tions.
	Flow Concentration Factor (CF)	1		UREG/CR-4620,			:- af	
	Flow Concentration Factor (CF)			IUREG/CR-4620,		ob, tor alscu	SSION OI	
	~		FIOW CON	centration Factor.				
	Lincor Ton Clance							
	Upper Top Slope:	0.01	£4./£4					
	Slope (S)	0.01	ft/ft					
	Slope; angle from horizontal	0.41	degrees					
	Area; unit-width basis (Aw)	0.03 0.21	acres			- -	A	
	Time of Concentration (tc)		hours	(SCS Triangula		ograph Theo	ry)	
		12.70	minutes	tc = (11.9 L ³ / H)0.385			
	·							
	Lower Top Slope:	0.0010	e. 10.					
	Slope (S)	0.0619	ft/ft					
	Slope; angle from horizontal (θ)	3.54	degrees					
	Area; unit-width basis (Aw)	0.05	acres					
	Time of Concentration (tc)	0.09	hours	(Kirpich Method	,			
		5.11	minutes	$tc = (11.9 L^3 / H)$) ^{0.385} pa	age D-3; STI	D .	
	Total tc for sideslopes (tc)	17.81	minutes	(tc top) + (tc slo	ne)			
	% of 1-hour PMP	78.50	%	(determined from		10 2 1 NII IDE	G 1620)	
	PMP rainfall depth	6.83	inches	PMP x % of 1-h			u 4020)	
	Rainfall Intensity (i), see Note 1	23.01	in/hr	i = PMP rainfall			1 50. 160	20
	Peak Flow Rate (q)	1.26	cfs/ft				. 4.32, 402	0
	I Eak FIUW HALE (Y)	1.20	CIS/IL	q = (C i Aw) CF			aluate)	
				(Rational Formu	na tor	unit wiatri an	aiysis)	

Rip	prap Design: Safety Factors	<u> </u>	1
	Specific Weight of Liquid (γ)	62.4	
)	Specific Weight of Rock (Ss)	2.52	
	Angle of Repose of Riprap (φ)	35	(Refer to Fig. 4.8; Page 46; NUREG/CR-4620)
	D_{50} of Riprap (D_{50})	3.0	inches (Input Trial Riprap D₅₀)
			· ·
	Cover Slope (α)	3.54	degrees
	Mannings Coefficient (n)	0.0313	$n = 0.0395 (D_{50})^{1/6}$ Eq. 4.41; 4620

0.0313		$n = 0.0395 (D_{50})^{23} Eq. 4.47; 4620$
0.2612	feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 4620
1.0097	lbs/sq. ft.	$ τ_{o} = \gamma \delta \Sigma E\theta. \ 4.21; \ 4620 $
0.8942		$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620
1.0159		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620

Riprap Design: Abt and Johnson

Depth of Flow (d) Bed Shear Stress (τ_o) Stability Number (η)

D ₅₀ (inches) =	1.80 inches	D ₅₀ = 5.23 q ^{0.56} S ^{0.43}
D ₅₀ (inches) =	2.16 inches	D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20

Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed D₅₀ =

Safety Factor =

Interstitial Flow Velocity = Interstitial Flow Velocity = 4.43 inches/second 0.37 feet/second

3 inches

 $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)

1) Bedding Layer Placed (Heap Leach Design)

Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.

	Protection Calculation <u>ctors Method</u>					· .	
					Duration		
	: Gas Hills - AGTI Profile 1			<u>(min)</u>	% of 1-hou		
	: Segment 3			. 2.5	27.5	0.00	
Date	: 11/30/201	10		5	45	0.00	
				10	62	0.00	
Comment	:			15	74	0.00	
				20	82	0:00	
Hydrolog				30	89	82.03	
	Segment 1	·		45	95	0.00	
-	Length of Slope (L)	1254	feet	60	100	0.00	
	Elevation Difference (H)	9	feet			82.03	
	Segment 2		-				
	Length of Slope (L)	1130	feet				
	Elevation Difference (H)	70	feet				
				•			
	Segment 3		_			•	
	Length of Slope (L)	493	feet				
	Elevation Difference (H)	50	feet			~	
			•				
	PMP	8.7	inches				
	Runoff Coefficient (C)	1	Runoff Co	efficient of 1 is recom	mended for PI	MP applicat	ions.
				UREG/CR-4620, sec			
	Flow Concentration Factor (CF)	1		UREG/CR-4620, pag		ssion of	
	()	L		centration Factor.	,		
	Segment 1				•		
	Slope (S)	0.01	ft/ft				
	Slope; angle from horizontal	0.41	degrees	•			,
,	Area; unit-width basis (Aw)	0.03	acres		·		
	Time of Concentration (tc)	0.21	hours	(SCS Triangular Hy	drograph Theo	rv)	
		12.70	minutes	$tc = (11.9 L^3 / H)^{0.385}$			
	· · · · · ·	12.40	minutes				
	Segment 2						
	Slope (S)	0.06	ft/ft			`	
	Slope; angle from horizontal (θ)	3.54	degrees	,			
	Area; unit-width basis (Aw)	0.05	acres				
	Time of Concentration (tc)	0.09	hours	(Kirpich Method)			
	Time of Concentration (ic)		,			-	
		5.11	minutes	$tc = (11.9 L^3 / H)^{0.385}$	page D-3; ST		
•	Segment 3						
	•	0.4044	<i>c</i>				
	Slope (S)	0.1014	ft/ft				
	Slope; angle from horizontal (θ)	5.79	degrees				
	Area; unit-width basis (Aw)	0.07	acres				
	Time of Concentration (tc)	0.04	hours	(Kirpich Method)			۰.
	· · · ·	2.23	minutes	tc = (11.9 L ³ / H) ^{0.385}	page D-3; STH	,	
	· *						
	Total tc for sideslopes (tc)	20.04	minutes	(tc top) + (tc slope)			
	% of 1-hour PMP	82.03	%	(determined from Ta	ble 2.1 NURE	G 4620)	
	PMP rainfall depth	7.14	inches	PMP x % of 1-hour		- /	
	Rainfall Intensity (i), see Note 1	21.36	in/hr	i = PMP rainfall dept		4.52: 4620) .
· .	Peak Flow Rate (q)	1.41	cfs/ft	q = (CiAw) CF Eq			-
	(4)	,	0.0/11	(Rational Formula fo		alvsis)	
	· · ·		,	(, iutoriur i orriula it	a una wuun an	ury 010)	

Riprap Design: Safety Factors Specific Weight of Liquid (γ) 62.4 Specific Weight of Rock (Ss) 2.52 Angle of Repose of Riprap (ϕ) 38 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620) D₅₀ of Riprap (D₅₀) 5.0 inches (Input Trial Riprap D₅₀) Cover Slope (a) 5.79 degrees Mannings Coefficient (n) 0.0341 $n = 0.0395 (D_{50})^{1/6}$ Eq. 4.41; 4620 Depth of Flow (d) ((q x n)/1.486(S)^{1/2})^{3/5} Eq. 4.55; 4620 0.2539 feet Bed Shear Stress (To) lbs/sq. ft. $\tau_0 = \gamma \, \delta \Sigma \quad E\theta. \ 4.21; 4620$ 1.6067 Stability Number (n) 0.8537 $η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620 Safety Factor = 1.0122 SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620

Riprap Design: Abt and Johnson

D_{50} (inches) =	2.37 inches	$D_{50} = 5.23 q^{0.56}$	S. ^{0.43}
D ₅₀ (inches) =	2.84 inches	$D_{50} = 5.23 q^{0.56}$	S ^{0.43} x 1.20

Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed D₅₀ = 6 inches

Interstitial Flow Velocity = Interstitial Flow Velocity = 8.24 inches/second 0.69 feet/second Vv = Wm^{0.5} i ^{0.54} (Leps (1973)

Erosion Protection Calculation Stephenson Method for Slopes Greater than 10%

	Gas Hills - AGTI Profile 1		•	Rainfall Dur			
	Segment 3			<u>(min)</u>	<u>% of 1-hou</u>	r PMP	
Date:	11/30/201	0		2.5	27.5	0.00	
				5	45	0.00	
Comment:				10	62	0.00	
	·	,		15	.74	0.00	
	· ·			20	82	0.00	
				30	89	82.03	
		۰.		45	95	0.00	
	·			60	100	0.00	
Hydrology				».		82.03	
	First Top Slope:						
	Length of Slope (L)	1254	feet				
	Elevation Difference (H)	9	feet				
	Side Slope:						
	Length of Slope (L)	1130	feet				
	Elevation Difference (H)	70	feet				
	Durie of Tele American						
	Buried Toe Apron:	400	fa				
	Length of Slope (L)	<u>493</u> 50	feet			`	
	Elevation Difference (H)		feet				
	PMP	8.7	inches				
	Runoff Coefficient (C)			efficient of 1	is recomme	ended for PMP	applications
				UREG/CR-46			applications.
	Flow Concentration Factor (CF)					58, for discussi	ion of
				centration Fa		, , , , , , , , , , , , , , , , , , ,	0.1. 0.
,	First Top Slope:						-
	Slope (S)	0.01	ft/ft				
	Slope; angle from horizontal	0.41	degrees				
	Area; unit-width basis (Aw)	0.0288	acres				
	Time of Concentration (tc)	0.2116	hours	(Kirpich Met			
		12.70	minutes	$tc = (11.9 L^3)$	³ / H) ^{0.385}		
•	Second Top Slope:						
	Slope (S)	0.06	ft/ft				
	Slope; angle from horizontal	3.54	degrees				
	Area; unit-width basis (Aw)	0.0259	acres				
	Time of Concentration (tc)	0.0852	hours	(Kirpich Met	•		
		5.11	minutes	$tc = (11.9 L^3)$	′ / H)⁰ ^{.385}		
	Buried Toe Apron:						-
	Slope (S)	0.1014	ft/ft				
	Slope; angle from horizontal (θ)		degrees				,
	Area; unit-width basis (Aw)	0.0660	acres				
	Time of Concentration (tc)	0.0372	hours	(Kirpich Met	•		· ,
		2.23	minutes			ge D-3; STP	
	Total tc for sideslopes (tc)	20.04	minutes	(tc top) + (T			•
	% of 1-hour PMP	. 82.03	%	•		2.1 NUREG	4620)
	PMP rainfall depth	7.14	inches	PMP x % of			
	Rainfall Intensity (i), seé Note 1	21.36	in/hr			(60/tc) <i>Eq.</i> 4	.52; 4620
	Peak Flow Rate (q)	1.41	cfs/ft	q = (C i Aw)			
				(Rational Fo	ormula for u	nit width analy	vsis)
							-

R A	gn: ockfill Porosity (n) elative Density of Rock (s) ngle of Friction (φ) mpirical Factor (C)	0.4 2.52 40 degrees 0.25 (varies fro crushed g	om 0.22 for gravel and	pebbles to 0.27 for	· · ·
	D ₅₀ =	0.24 feet 2.85 inches		·	
D	₅₀ = q(tan θ) ^{7/6} n ^{1/6} /C g ^{1/2} ((1-n)(s	-1) cos θ (tan φ - tan (ə)) ^{5/3}) ^{2/3} Eq 4.28; 4620		
		acceleration of gravit	ty (g) = 32.174 feet/sec	cond ²	
P A	YPICAL VALUES: orosity of Rock Layer (n) ngle of Friction	0.39 to 0.46 37 to 42			
R	Limy Sandstone -	2.42 to 2.74 2.14 to 2.67 2.20 to 2.50	· · · · ·		
· .	Quartzite - Basalt - Granite -	2.58			-
Riprap Desig	gn: Abt and Johnson				
				43	
	D ₅₀ (inches) = D ₅₀ (inches) =	-	D ₅₀ = 5.23 q ^{0.56} S ⁰ D ₅₀ = 5.23 q ^{0.56} S ⁰	43 (00	
		-	$D_{50} = 5.23 \text{q}$ S	x 1.20	
Interstitial F	low Velocity based on Design Design/Placed D ₅₀ =	(Placed D ₅₀)	· · ·		· · ·
Interstitial F	low Velocity based on Design	(Placed D ₅₀)	cond Vv = Wr	^{0.5} i ^{0.54} (Leps (1973)	
Interstitial F	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se	cond Vv = Wr		· · · · · · · · · · · · · · · · · · ·
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	cond Vv = Wr	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	econd Vv = Wn nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	econd Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	econd Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	econd Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	econd Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	cond Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	
	low Velocity based on Design Design/Placed D ₅₀ = Interstitial Flow Velocity = Interstitial Flow Velocity =	(Placed D ₅₀) 6 inches 8.24 inches/se 0.69 feet/seco	cond Vv = Wm nd	1 ^{0.5} i ^{0.54} (Leps (1973)	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Date: 12/1/2010 5 45 30.68 Comment: 10 62 0.00 Comment: 15 74 0.00 20 82 0.00 30 89 0.00 45 95 0.00 60 100 0.00 90 60 100 0.00 87 Runoff Coefficient of 1 is recommended for PM 1 PMP 8.7 Runoff Coefficient of 1 is recommended for PM Runoff Coefficient (C) 1 Refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discus Flow Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theo. Slope (S) 0.012 ft/ft Slope (S) 0.05 hours (SCS Triangular Hydrograph Theo. Slope (S) 0.05 hours (SCS Triangular Hydrograph Theo. Stational Formula for unit width basis (Aw) 0.05 hour PMP <th></th>	
Comment: 10 62 0.00 $15 74 0.00$ $20 82 0.00$ $30 89 0.00$ $45 95 0.00$ $60 100 0.00$ $45 95 0.00$ $60 100 0.00$ $45 95$ $100 0.00$ 1	
Comment: $ \begin{array}{c} 15 & 74 & 0.00 \\ 20 & 82 & 0.00 \\ 30 & 89 & 0.00 \\ 45 & 95 & 0.00 \\ 60 & 100 & 0.00 \\ 87 & 30.68 \\ \hline \\ PMP \\ Runoff Coefficient (C) \\ Flow Concentration Factor (CF) \\ Flow Concentration Factor (CF) \\ \hline \\ Flow Concentration Factor (CF) \\ \hline \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ \\ Flow Concentration Factor (CF) \\ \hline \\ \\ \hline \\ Flow Concentration Factor (CF) \\ \hline \\ \\ Fl$	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
601000.0030.68Hydrology: Length of Slope (L) Elevation Difference (H) PMP Runoff Coefficient (C)246 1feet tet 	
30.68Length of Slope (L)Elevation Difference (H) 246 feetPMPinches 8.7 Runoff Coefficient (C) 1 Runoff Coefficient of 1 is recommended for PMFlow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, section 4.8.1)Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discusFlow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discusSlope (S) 0.012 ft/ftSlope; angle from horizontal (α) 0.70 degreesArea; unit-width basis (Aw) 0.01 acresTime of Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theo. 2.95 minutestc = (11.9 L ³ / H) ^{0.335} % of 1-hour PMP 30.68 %Rainfall Intensity (i), see Note 1 54.21 PMP rainfall depth 2.67 Rainfall Intensity (i), see Note 1 54.21 Indrib row Rate (q) 0.31 Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)Riprap Design: Safety Factors 30.62 Specific Weight of Rock (Ss) 30.2 Angle of Repose of Riprap (ϕ) 30.21 0.32 inches (Input Trial Riprap Des)Cover Slope (α) 0.70 Mannings Coefficient (n) 0.0214 0.32 $n = 0.0395$ (Ds0) ¹⁶ Eq. 4.41; 4620Depth of Flow (d) 0.1446 Bed Shear Stress (τ_0) 0.1100 Ibs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ Ed Sh	
Length of Slope (L) Elevation Difference (H) PMP Runoff Coefficient (C) Flow Concentration Factor (CF) Slope (S) Area; unit-width basis (Aw) Time of Concentration (tc) Market (Area; Unit-Width Basis (Aw) Concentration (tc) Market (Area; Unit-Width Basis (Aw) Time of Concentration (tc) Market (Area; Unit-Width Basis (Aw) Concentration (tc) Market (Area; Unit-Width Basis (Aw) Concentration (tc) Market (Area; Unit-Width Basis (Aw) Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min) Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Liquid (γ) Angle of Repose of Riprap (ϕ) Das of Riprap (Das) Cover Slope (α) Mannings Coefficient (n) Depth of Flow (d) Depth of Flow (d) Depth of Flow (d) Depth of Flow (d) Safety Factor = 1.0058 SF = cos α tan ϕ γ tan ϕ + sin α	
Length of Slope (L) Elevation Difference (H) PMP Runoff Coefficient (C) Flow Concentration Factor (CF) Slope (S) Slope (S) Area; unit-width basis (Aw) Time of Concentration (tc) Note 1 - hour PMP Rainfall Intensity (i), see Note 1 Rainfall depth 2.67 Rainfall dep	
PMP Runoff Coefficient (C)8.7 Inchesinches Runoff Coefficient of 1 is recommended for PM (refer to NUREG/CR-4620, section 4.8.1)Flow Concentration Factor (CF)1Refer to NUREG/CR-4620, page 68, for discuss Flow Concentration Factor.Slope (S)0.012ft/ftSlope; angle from horizontal (α)0.70degreesArea; unit-width basis (Aw)0.01acresTime of Concentration (tc)0.05hours(SCS Triangular Hydrograph Theo.2.95minutestc = (11.9 L ² / H)^{0.385}% of 1-hour PMP30.68%(determined from Table 2.1 NUREFPMP rainfall depth2.67inchesPMP x% of 1-hour PMPRainfall Intensity (i), see Note 154.21in/hri = PMP rainfall depth x (60/c). Eq.Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFeq. 4.43; 4620Riprap Design: Safety FactorsSpecific Weight of Liquid (γ) Specific Weight of Acok (Ss) Angle of Repose of Riprap (ϕ) Dso of Riprap (Dso)0.70degreesMannings Coefficient (n)0.0214n = 0.0395 (Dso)^{16}Eq. 4.41; 4620Depth of Flow (d)0.1446feet((q x n)/1.486(S)^{10})^{35}Eq. 4.55; 46.Bed Shear Stress (τ_0)0.1100[bs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ Eg. 4.20; 420Stability Number (ft)0.9746 $\eta = 21 \tau_0 / (2c - 1) \gamma \Delta_{30}$ Eg. 4.20; 420Stability Number (ft)0.9746 $\eta = 21 \tau_0 / (2c - 1) \gamma \Delta_{30}$ Eg. 4.20; 40	
Runoff Coefficient (C)1Runoff Coefficient of 1 is recommended for Ph. (refer to NUREG/CR-4620, section 4.8.1)Flow Concentration Factor (CF)1Refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor.Slope (S)0.012ft/ftSlope; angle from horizontal (α)0.70degreesArea; unit-width basis (Aw)0.01acresTime of Concentration (tc)0.05hours2.95minutestc = (11.9 L ³ / H)^{0.385}% of 1-hour PMP30.68%PMP rainfall depth2.67Rainfall Intensity (i), see Note 154.21Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFEq. 4.43; 4620 (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	
$\begin{array}{c c} (refer to NUREG/CR-4620, section 4.8.1) \\ \hline (refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor. \\ \hline 1 \\ Refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor. \\ \hline 1 \\ Slope; angle from horizontal (\alpha) 0.70 degrees Area; unit-width basis (Aw) 0.01 acres Triangular Hydrograph Theorematic Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theorematic Concentration (tc) 0.01 cfs/ft q = (C 1.49) CF Eq. 4.43; 4620 (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/c) Eq. (Fational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min) \\ Riprap Design: Safety Factors Specific Weight of Rock (Ss) 0.3 inches (Input Trial Riprap D_{50}) \\ Cover Slope (\alpha) 0.70 degrees Mannings Coefficient (n) 0.0214 n = 0.0395 (D_{50})^{16} Eq. 4.41; 4620 Depth of Flow (d) 0.1446 feet ((q x n)/1.486(S))^{16} Se Eq. 4.55; 460 Bed Shear Stress (r_a) 0.1100 Ibs/sq. ft. r_a = \gamma \delta \Sigma Ed.$	
Flow Concentration Factor (CF)1Refer to NUREG/CR-4620, page 68, for discus Flow Concentration Factor.Slope (S)0.012ft/ftSlope; angle from horizontal (α)0.70degreesArea; unit-width basis (Aw)0.01acresTime of Concentration (tc)0.05hours(SCS Triangular Hydrograph Theorem2.95minutestc = (11.9 L ³ / H) ^{0.385} % of 1-hour PMP30.68%(determined from Table 2.1 NUREFPMP rainfall depth2.67inchesPMP x% of 1-hour PMPRainfall Intensity (I), see Note 154.21in/hri = PMP rainfall depth x (60/tc) Eq.Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFEq. 4.43; 4620Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	IP application
$Flow Concentration Factor.$ Slope (S) $0.012 ft/ft$ Slope; angle from horizontal (α) $0.70 degrees$ Area; unit-width basis (Aw) $0.01 acres$ Time of Concentration (tc) $0.05 hours (SCS Triangular Hydrograph Theoremath{Delta})$ $2.95 minutes tc = (11.9 L3 / H)^{0.395}$ % of 1-hour PMP $30.68 \% (determined from Table 2.1 NURE)$ PMP rainfall depth $2.67 inches PMP x \% \text{ of 1-hour PMP}$ Rainfall Intensity (i), see Note 1 $54.21 in/hr i = PMP \text{ rainfall depth x (60/tc) Eq.}$ Peak Flow Rate (q) $0.31 cfs/ft q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)$ Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Ack (SS) Angle of Repose of Riprap (ϕ) $D_{50} \text{ of Riprap } (D_{50})$ $Cover Slope (\alpha) 0.70 degrees Mannings Coefficient (n) 0.0214 n = 0.0395 (D_{50})^{16} Eq. 4.41; 4620 Depth of Flow (d) 0.1446 feet ((q x n)/1.486(S)^{12})^{35} Eq. 4.55; 46. Bed Shear Stress (\tau_0) 0.9746 \eta = 21 \tau_0 / (2\sigma - 1) \gamma \Delta_{50} E9. 4.20; 46$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ssion of
Slope; angle from horizontal (α) 0.70 degrees Area; unit-width basis (Aw) 0.01 acres Time of Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theo. 2.95 minutes tc = (11.9 L ³ / H) ^{0.385} % of 1-hour PMP 30.68 % (determined from Table 2.1 NUREI PMP rainfall depth 2.67 inches PMP x % of 1-hour PMP Rainfall Intensity (i), see Note 1 54.21 in/hr i = PMP rainfall depth x (60/c) Eq. Peak Flow Rate (q) 0.31 cfs/ft q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min) Riprap Design: Safety Factors Specific Weight of Liquid (γ) D_{50} of Riprap (D ₅₀) Cover Slope (α) 0.70 degrees Mannings Coefficient (n) 0.0214 n = 0.0395 (D ₅₀) ^{1/6} Eq. 4.41; 4620 Depth of Flow (d) 0.1446 feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 46. Bed Shear Stress (τ_0) 0.9746 $\eta = 21 \tau_0 / (2\sigma - 1) \gamma \Delta_{50}$ E6. 4.20; 40 Safety Factor = 1.0058 SF = cos α tan ϕ / η tan $\phi + \sin \alpha$	
Slope; angle from horizontal (α) 0.70 degrees Area; unit-width basis (Aw) 0.01 acres Time of Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theo. 2.95 minutes tc = (11.9 L ³ / H) ^{0.385} % of 1-hour PMP 30.68 % (determined from Table 2.1 NURE) PMP rainfall depth 2.67 inches PMP x % of 1-hour PMP Rainfall Intensity (i), see Note 1 54.21 in/hr i = PMP rainfall depth x (60/c) Eq. Peak Flow Rate (q) 0.31 cfs/ft q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min) Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D ₅₀ of Riprap (D ₅₀) Cover Slope (α) 0.70 degrees Mannings Coefficient (n) 0.0214 n = 0.0395 (D ₅₀) ^{1/6} Eq. 4.41; 4620 Depth of Flow (d) 0.1446 feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 46. Bed Shear Stress (τ_0) 0.9746 $\eta = 21 \tau_0 / (2\sigma - 1) \gamma \Delta_{50}$ E6. 4.20; 40 Safety Factor = 1.0058 SF = cos α tan ϕ / η tan $\phi + \sin \alpha$	
Area; unit-width basis (Aw)0.01acresTime of Concentration (tc)0.05hours(SCS Triangular Hydrograph Theo.2.95minutestc = (11.9 L ³ / H) ^{0.385} % of 1-hour PMP30.68%(determined from Table 2.1 NURE)PMP rainfall depth2.67inchesPMP x % of 1-hour PMPRainfall Intensity (i), see Note 154.21in/hri = PMP rainfall depth x (60/tc) Eq.Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFEq. 4.43; 4620(Rational Formula for unit width anNote 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	
Time of Concentration (tc)0.05hours(SCS Triangular Hydrograph Theo.% of 1-hour PMP30.68%(determined from Table 2.1 NURE)PMP rainfall depth2.67inchesPMP x % of 1-hour PMPRainfall Intensity (i), see Note 154.21in/hri = PMP rainfall depth x (60/c) Eq.Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFEq. 4.43; 4620Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n/)
% of 1-hour PMP30.68%(determined from Table 2.1 NUREDPMP rainfall depth2.67inchesPMP x % of 1-hour PMPRainfall Intensity (i), see Note 154.21in/hri = PMP rainfall depth x (60/c) Eq.Peak Flow Rate (q)0.31cfs/ftq = (C i Aw) CFEq. 4.43; 4620Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	
PMP rainfall depth Rainfall Intensity (i), see Note 12.67inchesPMP x % of 1-hour PMP i = PMP rainfall depth x (60/c) Eq. $q = (C i Aw) CF Eq. 4.43; 4620$ (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (D_{50})62.4 2.52 32 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3 Cover Slope (α) Mannings Coefficient (n)0.70degrees 0.2144 n = 0.0395 (D_{50}) ^{1/6} Eq. 4.41; 4620 0.1446 Depth of Flow (d) Bed Shear Stress (τ_0) Stability Number (η)0.9746 0.9746 n = 21 $\tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ E0. 4.20; 400 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	G 4620)
Rainfall Intensity (i), see Note 1 54.21 in/hr $i = PMP$ rainfall depth x (60/c) Eq.Peak Flow Rate (q) 0.31 cfs/ft $q = (C i Aw) CF$ $Eq. 4.43; 4620$ (Rational Formula for unit width anNote 1 : If Tc <= 2.5 min then: $i = PMP$ rainfall depth x (60/2.5 min)Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D_{50} of Riprap (D_{50}) 62.4 2.52 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3 inches (Input Trial Riprap D_{50})Cover Slope (α) Mannings Coefficient (n) 0.70 degrees 0.214 Depth of Flow (d) Bed Shear Stress (τ_0) 0.1446 feet (($q \times n$)/1.486(S)^{1/2})^{3/5} Eq. 4.25; 46.20 0.1100 Ibs/sq. ft. Safety Factor = 0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ Ed Shear Stress (τ_0) 0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ Safety Factor = 1.0058 SF = cos α tan ϕ / η tan $\phi + \sin \alpha$	
Peak Flow Rate (q)0.31cfs/ft $q = (C i Aw) CF$ $Eq. 4.43; 4620$ (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D_{50} of Riprap (D_{50}) 62.4 2.52 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3 inches (Input Trial Riprap D_{50})Cover Slope (α) Mannings Coefficient (n)0.70degrees 0.214 n = 0.0395 (D_{50}) $1/6$ Eq. 4.41; 4620 0.214 Depth of Flow (d) Bed Shear Stress (τ_0) Stability Number (η)0.9746n = 21 $\tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ Eq. 4.20; 400 0.9746 Select Safety Factor = Select Safety Factor =0.058SF = cos α tan ϕ / η tan $\phi + \sin \alpha$	4.52: 4620
(Rational Formula for unit width an (Rational Formula for unit width an Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)	· · · · ·
Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D ₅₀ of Riprap (D ₅₀)62.4 2.52 32 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3Cover Slope (α)0.70 0.3degreesMannings Coefficient (n)0.70 0.0214degreesDepth of Flow (d)0.1446 0.1446feet (((q x n)/1.486(S))^{1/2})^{3/5} Eq. 4.55; 46.20) 0.3Bed Shear Stress (τ_0)0.1100 0.9746lbs/sq. ft. $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ Safety Factor =1.0058SF = cos α tan ϕ / η tan $\phi + \sin \alpha$	alysis)
Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D ₅₀ of Riprap (D ₅₀)62.4 2.52 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3Cover Slope (α)0.70 0.3degreesMannings Coefficient (n)0.0214n = 0.0395 (D ₅₀)^{1/6} Eq. 4.41; 4620 0.1446Depth of Flow (d)0.1446 (feet ((q x n)/1.486(S)^{1/2})^{3/5} Eq. 4.55; 46.40) 0.97460.1100 n = 21 τ_0 ($\Sigma \sigma - 1$) $\gamma \Delta_{50}$ E0. 4.20; 460 SF = cos α tan ϕ / η tan ϕ + sin α	
Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D ₅₀ of Riprap (D ₅₀) $\overline{62.4}$ 2.52 32 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3 inches (Input Trial Riprap D ₅₀)Cover Slope (α) Mannings Coefficient (n)0.70 0.0214degrees 0.0214Depth of Flow (d) Bed Shear Stress (τ_0) Stability Number (η)0.1446 0.9746feet (($q \times n$)/1.486(S)) ^{1/2}) ^{3/5} ($2 \sigma - 1$) $\gamma \Delta_{50}$ E9.4.20; 462 BF = cos α tan ϕ / η tan $\phi + \sin \alpha$	
Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D_{50} of Riprap (D_{50}) $\overline{62.4}$ $2.5232(Refer to Fig. 4.8; Page 46; NUREG/CR-4620,0.3Cover Slope (\alpha)Mannings Coefficient (n)0.700.0214degrees0.0214Depth of Flow (d)Bed Shear Stress (\tau_0)Stability Number (\eta)0.700.9746degrees\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}Eq. 4.41; 46200.97460.9746SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	
Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D_{50} of Riprap (D_{50}) 2.52 32 (Refer to Fig. 4.8; Page 46; NUREG/CR-4620, 0.3 Cover Slope (α) 0.70 0.214 degreesMannings Coefficient (n) 0.214 0.214 $n = 0.0395 (D_{50})^{1/6}$ $Eq. 4.41; 4620Depth of Flow (d)0.14460.11000.14461bs/sq. ft. \tau_o = \gamma \delta \SigmaE0.421; 4620Stability Number (\eta)0.97460.9746\eta = 21 \tau_o / (\Sigma \sigma - 1) \gamma \Delta_{50}SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	
Angle of Repose of Riprap (ϕ)32(Refer to Fig. 4.8; Page 46; NUREG/CR-4620, D_{50} of Riprap (D_{50})0.3inches (Input Trial Riprap D_{50})Cover Slope (α)0.70degreesMannings Coefficient (n)0.214n = 0.0395 (D_{50}) ^{1/6} Eq. 4.41; 4620Depth of Flow (d)0.1446feet (((q x n)/1.486(S)) ^{1/2}) ^{3/5} Eq. 4.55; 46.Bed Shear Stress (τ_0)0.1100lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ E0. 4.21; 4620Stability Number (η)0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ E0. 4.20; 46Safety Factor =1.0058SF = cos α tan ϕ / η tan ϕ + sin α	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
Mannings Coefficient (n) 0.0214 $n = 0.0395 (D_{50})^{1/6}$ $Eq. 4.41; 4620$ Depth of Flow (d) 0.1446 feet $((q \times n)/1.486(S)^{1/2})^{3/5}$ $Eq. 4.55; 46.$ Bed Shear Stress (τ_0) 0.1100 lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ $E\theta. 4.21; 4620$ Stability Number (η) 0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ $E\theta. 4.20; 460$ Safety Factor = 1.0058 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	
Mannings Coefficient (n) 0.0214 $n = 0.0395 (D_{50})^{1/6}$ $Eq. 4.41; 4620$ Depth of Flow (d) 0.1446 feet $((q \times n)/1.486(S)^{1/2})^{3/5}$ $Eq. 4.55; 46.$ Bed Shear Stress (τ_0) 0.1100 lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ $E\theta. 4.21; 4620$ Stability Number (η) 0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ $E\theta. 4.20; 460$ Safety Factor = 1.0058 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	_
Depth of Flow (d) 0.1446 feet $(((q \times n)/1.486(S)^{1/2})^{3/5}$ Eq. 4.55; 46.Bed Shear Stress (τ_0) 0.1100 lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ E0. 4.21; 4620Stability Number (η) 0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ E0. 4.20; 460Safety Factor = 1.0058 SF = cos $\alpha \tan \phi / \eta \tan \phi + \sin \alpha$	•
Depth of Flow (d)0.1446feet $(((q \times n)/1.486(S)^{1/2})^{3/5}$ Eq. 4.55; 46.Bed Shear Stress (τ_0)0.1100lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ E0. 4.21; 4620Stability Number (η)0.9746 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{50}$ E0. 4.20; 460Safety Factor =1.0058SF = cos $\alpha \tan \phi / \eta \tan \phi + \sin \alpha$	τ.
Bed Shear Stress (τ_0)0.1100lbs/sq. ft. $\tau_o = \gamma \delta \Sigma$ $\mathcal{E}\theta. 4.21; 4620$ Stability Number (η)0.9746 $\eta = 21 \tau_o / (\Sigma \sigma - 1) \gamma \Delta_{s0}$ $\mathcal{E}\theta. 4.20; 460$ Safety Factor =1.0058 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	
Stability Number (η)0.9746 $\eta = 21 \tau_o / (\Sigma \sigma - 1) \gamma \Delta_{50}$ $E\theta. 4.20; 4\theta$ Safety Factor =1.0058 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	-
Safety Factor =1.0058SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$	20
	1. ,
Riprap Design: Abt and Johnson	
D_{50} (inches) = 0.41 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$	
$D_{50} \text{ (inches)} = 0.41 \text{ inches} \qquad D_{50} = 5.23 \ q^{0.56} \ S^{0.43}$ 0.49 inches $D_{50} = 5.23 \ q^{0.56} \ S^{0.43} \ x \ 1.20$	

Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed D₅₀ = 0.5 inches

Interstitial Flow Velocity = Interstitial Flow Velocity = 0.73 inches/second 0.06 feet/second Vv = Wm^{0.5} i ^{0.54} (Leps (1973)

1) Bedding Layer Placed (Heap Leach Design)

2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.

2

Erosion Protection

Safety Factors Method - two gradient slope **Rainfall Duration** Project: Gas Hills - AGTI Profile 2 (min) % of 1-hour PMP Item: Segment 2 2.5 27.5 0.00 Date: 12/1/2010 5 0.00 45 10 62 47.16 Comment: 15 74 0.00 20 82 0.00 Hydrology: 30 89 0.00 Upper Top Slope: 45 95 0.00 Length of Slope (L) 246 100 0.00 feet 60 Elevation Difference (H) 3 feet 47.16 Lower Top Slope: Length of Slope (L) 545 feet Elevation Difference (H) 42 feet PMP 8.7 inches Runoff Coefficient (C) 1 Runoff Coefficient of 1 is recommended for PMP applications. (refer to NUREG/CR-4620, section 4.8.1) Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discussion of Flow Concentration Factor. Upper Top Slope: Slope (S) 0.01 ft/ft Slope; angle from horizontal 0.70 degrees Area; unit-width basis (Aw) 0.01 acres Time of Concentration (tc) 0.05 hours (SCS Triangular Hydrograph Theory) 2.95 $tc = (11.9 L^3 / H)^{0.385}$ minutes Lower Top Slope: Slope (S) 0.0771 ft/ft Slope; angle from horizontal (0) 4.41 degrees Area; unit-width basis (Aw) 0.02 acres Time of Concentration (tc) 0.04 hours (Kirpich Method) Ż.68 minutes tc = (11.9 L3 / H)0.385 page D-3; STP Total tc for sideslopes (tc) 5.63 minutes (tc top) + (tc slope) % of 1-hour PMP 47.16 % (determined from Table 2.1 NUREG 4620) PMP rainfall depth 4.10 inches PMP x % of 1-hour PMP Rainfall Intensity (i), see Note 1 43.69 in/hr i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620 Peak Flow Rate (q) 0.79 cfs/ft q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width analysis)

	Design: Safety Factors	00.4	
	Specific Weight of Liquid (γ) Specific Weight of Rock (Ss)	<u>62.4</u> 2.52	
	Angle of Repose of Riprap (ϕ)		Fig. 4.8; Page 46; NUREG/CR-4620)
	D₅₀ of Riprap (D₅₀)		nput Trial Riprap D₅₀)
	Cover Slope (α)	4.41 degrees	3
	Mannings Coefficient (n)	0.0308	$n = 0.0395 (D_{50})^{1/6}$ Eq. 4.41; 4620
	Depth of Flow (d)	0.1835 feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} <i>Eq. 4.55; 4620</i>
	Bed Shear Stress (τ_o)	0.8823 bs/sq. f	$t_{o} = \gamma \delta \Sigma$ <i>Eθ. 4.21; 4620</i>
	Stability Number (η)	0.8682	$η = 21 τ_o / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620
	Safety Factor =	1.0195	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620
.	Desium Abt and Jahuaan	· .	
кіргар	Design: Abt and Johnson		
	D ₅₀ (inches) =	1.53 inches	D ₅₀ = 5.23 q ^{0.56} S ^{0.43}
	D ₅₀ (inches) =	1.83 inches	$D_{50} = 5.23 \text{ g}^{0.56} \text{ S}^{0.43} \text{ x} 1.20$
Intersti	itial Flow Velocity based on Design (Design/Placed $D_{50} =$	Placed D ₅₀) 3 inches	
	Interstitial Flow Velocity = Interstitial Flow Velocity =	4.98 inches/se 0.41 feet/seco	
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
·	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
·	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
·	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
·	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd
	Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leac	0.41 feet/secc h Design)	nd

	rotection Calculation				• •	
Salety Pa	<u>Store method</u>			Rain	fall Duration	
Project:	Gas Hills - AGTI Profile 2					our PMP
	Segment 3				2.5 27.5	0.00
Date:	12/1/2010	5			5 45	0.00
					10 62	60.64
Comment:					15 74	0.00
				:	20 82	0.00
Hydrology	/:			;	30 . 89	0.00
	Segment 1		_		45 95	0.00
	Length of Slope (L)	246	feet		50 100	0.00
·	Elevation Difference (H)	3	feet			60.64
	Segment 2					•
	Length of Slope (L)	545	feet			
	Elevation Difference (H)	42	feet			
	Elevation Difference (1)	-74	, eet		,	
	Segment 3					
	Length of Slope (L)	907	feet			
•	Elevation Difference (H)	70	feet			
			- 			
	PMP	8.7	inches			
•	Runoff Coefficient (C)	1				PMP applications.
				UREG/CR-4620,		
•	Flow Concentration Factor (CF)	1		IUREG/CR-4620,	page 68, for dis	scussion of
			FIOW CON	centration Factor.		
	Segment 1					
	Slope (S)	0.01	ft/ft			
	Slope; angle from horizontal	0.70	degrees			
	Area; unit-width basis (Aw)	0.01	acres			•
	Time of Concentration (tc)	0.05	hours	(SCS Triangular	Hydrograph Th	neory)
		2.95	minutes	$tc = (11.9 L^3 / H)$	0.385	
	Segment 2	0.00	£1/£1			
	Slope (S)	0.08 4.41	ft/ft	1		
	Slope; angle from horizontal (θ) Area; unit-width basis (Aw)	4.41	degrees			· .
	Time of Concentration (tc)	0.02	acres hours	(Kirpich Method)		
	Time of concentration (ic)					
X		2.68	minutes	tc = (11.9 L ³ / H)	page D-3; 3	517
	Segment 3					
	Slope (S)	0.0772	ft/ft			
	Slope; angle from horizontal (θ)	4.41	degrees			
	Area; unit-width basis (Aw)	0.04	acres			•
	Time of Concentration (tc)	0.07	hours	(Kirpich Method)	I	
		3.97	minutes	$tc = (11.9 L^3 / H)$		STP
		0.00		(1-1) (1-1-1)	1	· · · ·
	Total to for sideslopes (tc)	9.60	minutes	(tc top) + (tc slop		
	% of 1-hour PMP	60.64	. %	(determined from		HEG 4620)
	PMP rainfall depth	5.28	inches	PMP x % of 1-ho		F. 4 50, 4000
	Rainfall Intensity (i), see Note 1	32.97	in/hr	i = PMP rainfall (
	Peak Flow Rate (q)	1.29	cfs/ft	q = (C i Aw) CF		
	· · · ·			(Rational Formu	ia for unit width	anaiysis)

Riprap Design: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D ₅₀ of Riprap (D ₅₀)	62.4 2.52 	(<i>Refer to Fig. 4.8; Page 46; NUREG/CR-4620)</i> inches (Input Trial Riprap D₅₀)
Cover Slope (α)	4.41	degrees
Mannings Coefficient (n)	0.0323	$n = 0.0395 (D_{50})^{1/6} Eq. 4.41; 4620$
Depth of Flow (d)	0.2521	feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 4620
Bed Shear Stress (τ_o)	1.2142	lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ E0. 4.21; 4620
Stability Number (η)	0.8961	$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620
Safety Factor =	1.0025	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620
Riprap Design: Abt and Johnson		

D ₅₀ (inches) =	2.00 inches	$D_{50} = 5.23 q^{0.56} S^{0.43}$
D ₅₀ (inches) =	2.40 inches	$D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$

Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed D₅₀ = ____6 inches

Interstitial Flow Velocity = Interstitial Flow Velocity = 7.11 inches/second 0.59 feet/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)

-2

Erosion Protection Calculation:

	Method for Slopes Less that	n 10%					
<u>Oulery racions</u>	<u>Method Ior propos Loco II.</u>				Rainfall Duration	1	
Project: Gas	Hills - AGTI Profile 3			<u>(min)</u>	<u>% of 1-hour PMF</u>	2	
Item: Seg			•	2.5	27.5	27.50	
Date:	12/1/2010		•	5	45	0.00	
				10	62	0.00	
Comment:				15	74	0.00	
				20	82	0.00	
				30	89	0.00	
	· · ·			45	95	0.00	
• •		•		60	100	0.00	
Hydrology:						27.50	
	gth of Slope (L)	237	feet				
	vation Difference (H)	5	feet				
· PMF	• •	8.7	inches				
Run	off Coefficient (C)	1	Runoff Co	efficient of 1	l is recommended t	for PMP application	tions.
			(refer to N	UREG/CR-4	4620, section 4.8.1,)	
Flov	v Concentration Factor (CF)	1	Refer to N	UREG/CR-4	4620, page 68, for (discussion of	
			Flow Cond	entration Fa	actor.		
Slop	be (S)	0.021	ft/ft				
Slop	be; angle from horizontal (α)	1.21	degrees				
Area	a; unit-width basis (Aw)	0.01	acres				
Tim	e of Concentration (tc)	0.04	hours	(SCS Trial	ngular Hydrograph	Theory)	
•		2.32	minutes	tc = (1.1.9	L ³ / H) ^{0.385}		
% 0	f 1-hour PMP	27.50	%	(determine	ed from Table 2.1 N	IUREG 4620)	
PMF	P rainfall depth	2.39	inches	•	of 1-hour PMP	,	
Rair	nfall Intensity (i), see Note 1	57.42	in/hr	i = PMP ra	infall depth x (60/to	c) Eq. 4.52; 462	20
Pea	k Flow Rate (q)	0.31	cfs/ft		v) CF Eq. 4.43; 4		
				(Rational I	Formula for unit wic	th analysis)	

Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

Riprap Design: Safety Factors

Specific Weight of Liquid (γ)	62.4	
Specific Weight of Rock (Ss)	2.52	
Angle of Repose of Riprap (32	(Refer to Fig. 4.8; Page 46; NUREG/CR-4620)
D ₅₀ of Riprap (D ₅₀)	0.48	inches (Input Trial Riprap D₅₀)
Cover Slope (α)	1.21	degrees
Mannings Coefficient (n)	0.0231	$n = 0.0395 (D_{50})^{1/6} Eq. 4.41; 4620$
Depth of Flow (d)	0.1302	feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} <i>Eq. 4.55; 4620</i>
Bed Shear Stress (τ_{o})	0.1714	lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma E\theta. \ 4.21; \ 4620$
Stability Number (η)	0.9485	$η = 21 τ_0 / (Σσ - 1) γ Δ_{so}$ Eθ. 4.20; 4620
Safety Factor =	1.0179	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620

Riprap Design: Abt and Johnson

 D_{50} (inches) =

= 0.52 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ 0.62 inches $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$

Interstitial Flow Velocity based on Design (Placed D_{50})

Design/Placed D₅₀ = 0.5 inches

Interstitial Flow Velocity = Interstitial Flow Velocity = 0.99 inches/second 0.08 feet/second Vv = Wm^{0.5} i ^{0.54} (Leps (1973)

Safety Factors Method - two gradient slope **Rainfall Duration** Project: Gas Hills - AGTI Profile 3 % of 1-hour PMP <u>(min)</u> Item: Segment 2 27.5 0.00 2.5 12/1/2010 Date: 45 0.00 5 10 62 46.20 Comment: 74 0.00 15 20 82 0.00 89 0.00 Hydrology: 30 Upper Top Slope: 45 95 0.00 Length of Slope (L) 237 0.00 feet 60 100 Elevation Difference (H) 5 feet 46.20 Lower Top Slope: Length of Slope (L) 682 feet Elevation Difference (H) 60 feet PMP 8.7 inches Runoff Coefficient (C) 1 Runoff Coefficient of 1 is recommended for PMP applications. (refer to NUREG/CR-4620, section 4.8.1) Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discussion of Flow Concentration Factor. Upper Top Slope: Slope (S) 0.02 ft/ft Slope; angle from horizontal 1.21 degrees Area; unit-width basis (Aw) 0.01 acres Time of Concentration (tc) 0.04 hours (SCS Triangular Hydrograph Theory) 2.32 $tc = (11.9 L^3 / H)^{0.385}$ minutes Lower Top Slope: Slope (S) 0.0880 ft/ft Slope; angle from horizontal (θ) 5.03 degrees Area; unit-width basis (Aw) 0.02 acres Time of Concentration (tc) 0.05 hours (Kirpich Method) 3.03 minutes tc = (11.9 L3 / H)^{0.385} page D-3; STP Total tc for sideslopes (tc) 5.35 minutes (tc top) + (tc slope)% of 1-hour PMP 46.20 % (determined from Table 2.1 NUREG 4620) PMP rainfall depth 4.02 inches PMP x % of 1-hour PMP

Note 1 : If Tc \leq 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

45.06

0.95

in/hr

cfs/ft

i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620

q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width analysis)

Rainfall Intensity (i), see Note 1

Peak Flow Rate (q)

Erosion Protection

Riprap Desig	n: Safety Factors		-	
	pecific Weight of Liquid (γ)	62.4	1	
	pecific Weight of Rock (Ss)	2.52		<i>.</i>
An	ngle of Repose of Riprap (φ)	35	- ·	fig. 4.8; Page 46; NUREG/CR-4620)
D ₅₀	₀ of Riprap (D₅₀)	3.37	jinches (In	put Trial Riprap D₅₀)
. Co	over Slope (α)		degrees	
Ma	annings Coefficient (n)	0.0320		n = 0.0395 $(D_{50})^{1/6}$ Eq. 4.41; 4620
De	epth of Flow (d)	0.2009	feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 4620
	ed Shear Stress (τ_0)	1.1031	lbs/sq. ft.	$τ_0 = \gamma \delta \Sigma E\theta. \ 4.21; \ 4620$
	ability Number (ŋ)	0.8697	•	$n = 21 \tau_0 / (Σσ - 1) γ Δ_{s0}$ Eθ. 4.20; 4620
				$11 - 21$ kg / (20) - 1) / $\Delta s_0 = DU, 4, 20, 4020$
Riprap Desig	Safety Factor = n: Abt and Johnson	1.0013		0 0 0 0 0 0
Riprap Desig	Safety Factor = n: Abt and Johnson	1.0013) inches	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620
Riprap Desig	Safety Factor =	1.0013 1.79) inches 5 inches	
Riprap Desig	Safety Factor = n: Abt and Johnson D ₅₀ (inches) =	1.0013 1.79		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620 D ₅₀ = 5.23 q ^{0.56} S ^{0.43}
	Safety Factor = n: Abt and Johnson D ₅₀ (inches) =	1.0013 1.79 2.15		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620 D ₅₀ = 5.23 q ^{0.56} S ^{0.43}
	Safety Factor = n: Abt and Johnson D ₅₀ (inches) = D ₅₀ (inches) =	1.0013 1.79 2.15 Iaced D₅₀)		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620 D ₅₀ = 5.23 q ^{0.56} S ^{0.43}
	Safety Factor = n: Abt and Johnson D ₅₀ (inches) = D ₅₀ (inches) = ow Velocity based on Design (P	1.0013 1.79 2.15 Iaced D ₅₀) 3	inches	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620 $D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$

Safety Factors Method Rainfall Duration % of 1-hour PMP Project: Gas Hills - AGTI Profile 3 <u>(min)</u> Item: Segment 3 2.5 27.5 0.00 Date: 12/1/2010 45 0.00 5 10 62 61.24 Comment: 15 74 0.00 20 82 0.00 Hydrology: 30 89 0.00 0.00 Segment 1 45 95 Length of Slope (L) 237 feet 60 100 0.00 Elevation Difference (H) 5 feet 61.24 Segment 2 Length of Slope (L) 682 feet Elevation Difference (H) 60 feet Seament 3 Length of Slope (L) 678 feet Elevation Difference (H) 22 feet PMP 8.7 inches Runoff Coefficient (C) 1 Runoff Coefficient of 1 is recommended for PMP applications. (refer to NUREG/CR-4620, section 4.8.1) Flow Concentration Factor (CF) 1 Refer to NUREG/CR-4620, page 68, for discussion of Flow Concentration Factor. Segment 1 Slope (S) 0.02 ft/ft Slope; angle from horizontal 1.21 degrees Area; unit-width basis (Aw) 0.01 acres Time of Concentration (tc) 0.04 hours (SCS Triangular Hydrograph Theory) 2.32 $tc = (11.9 L^3 / H)^{0.385}$ minutes Segment 2 Slope (S) 0.09 ft/ft Slope; angle from horizontal (0) 5.03 degrees Area; unit-width basis (Aw) 0.02 acres Time of Concentration (tc) 0.05 hours (Kirpich Method) tc = (11.9 L3 / H)^{0.385} page D-3; STP 3.03 minutes Segment 3 0.0324 ft/ft Slope (S) Slope; angle from horizontal (0) 1.86 degrees Area; unit-width basis (Aw) 0.04 acres Time of Concentration (tc) 0.07 hours (Kirpich Method) 4.42 minutes tc = (11.9 L3 / H)^{0.385} page D-3; STP Total tc for sideslopes (tc) 9.78 minutes (tc top) + (tc slope)% of 1-hour PMP 61.24 % (determined from Table 2.1 NUREG 4620) PMP rainfall depth 5.33 inches PMP x % of 1-hour PMP Rainfall Intensity (i), see Note 1 32.70 in/hr i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620 Peak Flow Rate (q) 1.20 q = (C i Aw) CF Eq. 4.43; 4620 cfs/ft (Rational Formula for unit width analysis)

Note 1 : If Tc \leq 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

Erosion Protection Calculation

Riprap Design: Safety Factors

Specific Weight of Liquid (γ)	62.4	
Specific Weight of Rock (Ss)	2.52	
Angle of Repose of Riprap (ø)	38	(Refer to Fig. 4.8; Page 46; NUREG/CR-4620)
D₅₀ of Riprap (D₅₀)	1.7	inches (Input Trial Riprap D ₅₀)
Cover Slope (α)	1.86	 degrees
Mannings Coefficient (n)	0.0285	$n = 0.0395 (D_{50})^{1/6}$ Eq. 4.41; 4620
Depth of Flow (d)	0.2909	feet ((q x n)/1.486(S) ^{1/2}) ^{3/5} <i>Eq. 4.55; 4620</i>
Bed Shear Stress (τ_o)	0.5890	lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma E\theta. 4.21; 4620$
Stability Number (η)	0.9206	$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Εθ. 4.20; 4620
Safety Factor =	1.0389	SF = cos α tan ϕ / η tan ϕ + sin α Eq. 4.27; 4620

Riprap Design: Abt and Johnson

Interstitial Flow Velocity based on Design (Placed D_{50})

Design/Placed D₅₀ = 6 inches

Interstitial Flow Velocity = Interstitial Flow Velocity =

4.45 inches/second 0.37 feet/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)

Erosion Protection Calculation: Safety Factors Method

Project:	Gas Hills - AGTI Profile 3	;			Rainfall Duration (min) <u>% of 1-hour PMP</u>	
Item:	Segment 4		-		2.5 27.5 0.00	
Date:		12/1/2010			5 45 0.00	
•	•				10 62 0.00	
Comment:				•	15 74 67.30	
					20 82 0.00	
Hydrology	•				30 89 0.00	
nyarology	Segment 1				45 95 0.00	
	Length of Slope (L)	Г	237	feet		
	Elevation Difference (H)	ŀ	5			
	Elevation Difference (H)	L	5	feet	67.30	
			· .			
	Segment 2	г		· · .	·	
	Length of Slope (L)	Ļ	682	feet		
	Elevation Difference (H)	L	60	feet	• • • • • • •	
	Segment 3	-			,	
	Length of Slope (L)		678	feet		
	Elevation Difference (H)		22	feet	· · · ·	
		_				
	Segment 4				· · ·	
	Length of Slope (L)	Г	410	feet		
	Elevation Difference (H)		23	feet		
		-				
	PMP	Г	8.7	inches		÷
	Runoff Coefficient (C)	· F	1		efficient of 1 is recommended for PMP application	ns.
		. L			IUREG/CR-4620, section 4.8.1)	
	Flow Concentration Factor	·(CF) [1		IUREG/CR-4620, page 68, for discussion of	
					centration Factor.	
	Segment 1		`			
	Slope (S)		0.02	ft/ft		
	Slope; angle from horizont	al .	1.21	degrees		
	Area; unit-width basis (Aw		0.01	acres		
	Time of Concentration (tc)	/	0.04	hours	(SCS Triangular Hydrograph Theory)	
			2.32	minutes	$tc = (11.9 L^3 / H)^{0.385}$	
	Segment 2			e. /e.		
	Slope (S)	-1 (0)	0.09	ft/ft		
	Slope; angle from horizont		5.03	degrees		
	Area; unit-width basis (Aw	,	0.02	acres		
	Time of Concentration (tc)		0.05	hours	(Kirpich Method)	
			3.03	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP	
	Segment 3				· · · ·	
	Slope (S)		0.03	ft/ft	· · · · · · · · · · · · · · · · · · ·	
	Slope; angle from horizont	al (θ)	1.86	degrees		
-	Area; unit-width basis (Aw		0.04	acres		
	Time of Concentration (tc)	,	0.07	hours	(Kirpich Method)	
	Comment 4		4.42	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP	
	Segment 4		0.00	£1.15.		
	Slope (S)	-1 (0)	0.06	ft/ft		
	Slope; angle from horizont		3.21	degrees	· .	
	Area; unit-width basis (Aw)	0.05	acres		
	Time of Concentration (tc)		0.04	hours	(Kirpich Method)	
			2.43	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP	
-						

	Total tc for sideslopes (tc) % of 1-hour PMP PMP rainfall depth Rainfall Intensity (i), see Note 1 Peak Flow Rate (q)	12.21 minutes 67.30 % 5.86 inches 28.78 in/hr 1.33 cfs/ft	(tc top) + (tc slope) (determined from Table 2.1 NUREG 4620) PMP x % of 1-hour PMP i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620 q = (C i Aw) CF Eq. 4.43; 4620 (Rational Formula for unit width analysis)
	Note 1 : If Tc <= 2.5 min then: i = PMF	P rainfall depth x (60/2	2.5 min)
Riprap De	esign: Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D ₅₀ of Riprap (D ₅₀)		<i>Fig. 4.8; Page 46; NUREG/CR-4620)</i> iput Trial Riprap D₅₀)
	Cover Slope (α) Mannings Coefficient (n) Depth of Flow (d) Bed Shear Stress (τ_o) Stability Number (η) Safety Factor =	3.21 degrees 0.0310 0.2756 feet 0.9649 lbs/sq. ft. 0.9156 1.0058	$\begin{split} n &= 0.0395 \ (D_{50})^{1/6} Eq. \ 4.41; \ 4620 \\ &((q \ x \ n)/1.486(S)^{1/2})^{3/5} Eq. \ 4.55; \ 4620 \\ &\tau_o &= \gamma \ \delta \ \Sigma E\theta. \ 4.21; \ 4620 \\ &\eta &= 21 \ \tau_o \ / \ (\Sigma \sigma \ -1) \ \gamma \ \Delta_{so} E\theta. \ 4.20; \ 4620 \\ &SF &= \cos \alpha \ tan \ \varphi \ / \ \eta \ tan \ \varphi \ + \ sin \ \alpha Eq. \ 4.27; \ 4620 \end{split}$
Riprap De	esign: Abt and Johnson		
Interstitia	D ₅₀ (inches) = D ₅₀ (inches) = I <mark>l Flow Velocity based on Design (Pla</mark>	1.77 inches 2.13 inches ced D₅₀)	$D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$
)	Design/Placed D ₅₀ =	6 inches	χ.

Interstitial Flow Velocity = Interstitial Flow Velocity = 5.99 inches/second 0.50 feet/second Vv = Wm^{0.5} i ^{0.54} (Leps (1973)

Dustant					Rainfall Duration		
	Gas Hills - A-9 Segment 1	•		<u>(min)</u> 2.5	<u>% of 1-hour PMP</u> 27.5	· 0.00	
Date:	-			2.5	45	0.00 0.00	
pulo.				· 10	62	48.34	
Comment:			· ·	15	74	0.00	
	· · ·			20	82	0.00	
				30	89	0.00	
			. '	45	95	0.00	
1 to cal # = -				60	100	0.00	
Hydrology		E71 1	fact			48.34	
	Length of Slope (L) Elevation Difference (H)	<u>571</u> 6	feet feet				
	PMP	8.7	inches				
	Runoff Coefficient (C)			efficient of 1	is recommended fo	r PMP application	IS.
	× /		(refer to N	UREG/CR-4	620, section 4.8.1)		
	Flow Concentration Factor (CF)	1	Refer to N	UREĠ/CR-4	620, page 68, for di	scussion of	
			Flow Cond	entration Fa	actor.		•
		0.044	e. 11.				
	Slope (S) Slope; angle from horizontal (α)	0.011 0.60	ft/ft				
	Area; unit-width basis (Aw)	0.60	degrees acres				14 - C
	Time of Concentration (tc)	0.10	hours	(SCS Triar	ngular Hydrograph Ti	heorv)	
		5.98	minutes			·	
	% of 1-hour PMP	48.34	%		d from Table 2.1 NU	REG 4620)	
	PMP rainfall depth	4.21	inches		f 1-hour PMP	,	
	Rainfall Intensity (i), see Note 1	42.18	in/hr		nfall depth x (60/tc)		
	Peak Flow Rate (q)	0.55	cfs/ft) CF Eq. 4.43; 462 Formula for unit width		
· · · · ·	sign: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D ₅₀ of Riprap (D ₅₀)				e 46; NUREG/CR-46	520)	
		<u> </u>	ncnes (In	put Trial Rip	rap D ₅₀)		•
	Cover Slope (α)	0.60	degrees				•
	Mannings Coefficient (n)	0.0224		n = 0.0395	(D ₅₀) ^{1/6} Eq. 4.41; 40	520	
	Depth of Flow (d)	0.2219	feet		86(S) ^{1/2}) ^{3/5} Eq. 4.55;	*	
	Bed Shear Stress (τ_0)	0.1455			50(0) ; Eq. 4.03, 50. 4.21; 4620		
	Stability Number (ŋ)	0.9664	1. v.,	* .	Σσ –1) γ Δ ₅₀ Εθ. 4.20); 4620	
	Safety Factor =	1.0177			$\tan \phi / \eta \tan \phi + \sin \theta$		0.
							•
Riprap De	sign: Abt and Johnson						
Riprap De		-		_	0.56 0.40		
Riprap De	sign: Abt and Johnson D ₅₀ (inches) =		nches	D ₅₀ = 5.23			
Riprap De			nches nches		q ^{0.56} S ^{0.43} q ^{0.56} S ^{0.43} x 1.20		
	D ₅₀ (inches) =	0.64 i					-
		0.64 i					-
	D ₅₀ (inches) =	0.64 i n D50:	nches	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	,	-
	D ₅₀ (inches) = Flow Velocity based on SF Design Interstitial Flow Velocity =	0.64 i D50: 0.60 i	nches nches/sec	D ₅₀ = 5.23		eps (1973)	-
	D ₅₀ (inches) =	0.64 i D50: 0.60 i	nches	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	eps (1973)	
	D ₅₀ (inches) = Flow Velocity based on SF Design Interstitial Flow Velocity =	0.64 i D50: 0.60 i	nches nches/sec	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	eps (1973)	
	D ₅₀ (inches) = Flow Velocity based on SF Design Interstitial Flow Velocity =	0.64 i D50: 0.60 i	nches nches/sec	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	eps (1973)	-
	D ₅₀ (inches) = Flow Velocity based on SF Design Interstitial Flow Velocity =	0.64 i D50: 0.60 i	nches nches/sec	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	eps (1973)	-
	D ₅₀ (inches) = Flow Velocity based on SF Design Interstitial Flow Velocity =	0.64 i D50: 0.60 i	nches nches/sec	D ₅₀ = 5.23	q ^{0.56} S ^{0.43} x 1.20	eps (1973)	- 1

· · · ·

					Rainfall Du	ration	
	: Gas Hills - A-9			•	<u>(min)</u>	<u>% of 1-hour</u>	PMP
Item:	: Segment 2	•			2.5	27.5	0.00
Date	11/29/2010				5	45	0.00
					10	62	54.47
Comment	•		,		15	74	0.00
5	· .				20	82	0.00
lydrology					30	89	0.00
	Upper Top Slope:	E-74	1 44.44	-	45	95	0.00
	Length of Slope (L) Elevation Difference (H)	<u>571</u> 6	feet feet		60	100	0.00
		0	leet				54.47
	Lower Top Slope:						
	Length of Slope (L)	377	feet				
	Elevation Difference (H)	39	feet				
		· · · · · · · · · · · · · · · · · · ·	_				
	PMP	8.7	inches				
	Runoff Coefficient (C)	1		efficient of 1			1P applicati
				UREG/CR-4			
	Flow Concentration Factor (CF)	1		IUREG/CR-4		58; for discus	ssion of
	•		FIOW CON	centration Fa	ctor.		
	Upper Top Slope:						
	Slope (S)	0.01	ft/ft				
	Slope; angle from horizontal	0.60	degrees	r			
	Area; unit-width basis (Aw)	0.01	acres				
	Time of Concentration (tc)	0.10	hours	(SCS Trian	gular Hydro	graph Theor	у)
	· · ·	5.98	minutes	tc = (11.9 L			
	Lower Top Slope:	0 4 00 4					
	Slope (S)	0.1034	ft/ft				
	Slope; angle from horizontal (θ)	5.91	degrees				
	Area; unit-width basis (Aw) Time of Concentration (tc)	0.02	acres	/Kirniah Ma	thad)		-
	nme of Concentration (tc)	0.03	hours	(Kirpich Me		D A A	
		1.80	minutes	tc = (11.9 L	° / H)°.3∞ pa	ige D-3; STF	
	Total tc for sideslopes (tc)	7.78	minutes	(tc top) + (tc	slone)		
	% of 1-hour PMP	54.47	%			e 2.1 NURE(F 4620)
	PMP rainfall depth	4.74	inches	PMP x % o	f 1-hour PM	IP	

% of 1-hour PMP54.47%(determined from Table 2.1 NUREG 4620)PMP rainfall depth4.74inchesPMP x % of 1-hour PMPRainfall Intensity (i), see Note 136.52in/hri = PMP rainfall depth x (60/tc) Eq. 4.52; 4620Peak Flow Rate (q)0.79cfs/ftq = (C i Aw) CFEq. 4.43; 4620(Rational Formula for unit width analysis)

1

	· · · · · ·				
			· · ·		
			· · ·		
Riprap De	esign: Safety Factors				
Tubich pr	Specific Weight of Liquid (γ)	62.4			
	Specific Weight of Rock (Ss)	2.52			
-	Angle of Repose of Riprap (ø)		Fig. 4.8; Page 46; NUREG/CR-4	4620)	
	D_{50} of Riprap (D_{50})	3.5 inches (Ir	nput Trial Riprap D₅₀)		
		5.04		-	
	Cover Slope (a)	5.91 degrees		(000	
	Mannings Coefficient (n)	0.0322	$n = 0.0395 (D_{50})^{1/6} Eq. 4.41;$		
	Depth of Flow (d)	0.1726 feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.5	5; 4620	-
	Bed Shear Stress (τ_{o})		$ τ_{o} = γ \delta \Sigma E\theta. \ 4.21; 4620 $		
	Stability Number (η)	0.8457	$\eta = 21 \tau_{o} / (\Sigma \sigma - 1) \gamma \Delta_{50} E\theta. \ 4.$		
•	Safety Factor =	1.0075	$SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \phi$	nα <i>Eq. 4.27; 4620</i>	
				1	
Riprap De	esign: Abt and Johnson				
	· · · J · · · · · · · · · · · · · · · · · · ·		•		
	D ₅₀ (inches) =	1.73 inches	$D_{50} = 5.23 q^{0.56} S^{0.43}$		-
•	D ₅₀ (inches) =	2.08 inches	$D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$		
		2.00 1101103			
	Design/Placed D ₅₀ =	3 inches		· .	
	Interstitial Flow Velocity =	5.84 inches/se	cond $Vv = Wm^{0.5} i^{0.54}$ (l ens (1973)	
	Interstitial Flow Velocity =	0.49 feet/secor	•		
			· ·		
	Bedding Layer Placed (Heap Lead				
2)	Because segment 2 slope is very	close to 10%, segmer	nt will also be evaluated using S	tephenson Method.	•
	· .				
			· .		
	•				
	·		· · · · ·	· · ·	
	,				
		•		1	
	•				

For Analys	sis of Top discharge to Sideslope			Ra	ainfall Durat	ion	,
				<u>(min)</u>	<u>% of 1-hou</u>	<u>r PMP</u>	
	Gas Hills - A-9			2.5	27.5	0.00	
Item:	Segment 2			5	45	0.00	
Date:	11/30/2010			10 ·	62	54.47	
				15	74	0.00	
Comment:	:		· ·	20	82	0.00	
				30	89	0.00	
				45	95	0.00	
Hydrology	/:			60	100	0.00	
	Top Slope:		_			54.47	
	Length of Slope (L)	571.	feet.				
	Elevation Difference (H)	6	feet				
	Side Slope:		_			,	
	Length of Slope (L)	377	feet				
	Elevation Difference (H)	39	feet				
	PMP	8.7] inches				
	Runoff Coefficient (C)	1		afficient of t		and of fax DMD appli	aatian
				emcient of t	us recomme	annen inr Pivie annu	сянон
	:	L				ended for PMP appli	cation
	:	·	(refer to N	UREG/CR-4	620, section	n 4.8.1)	
	Flow Concentration Factor (CF)		(refer to N <i>Refer to N</i>	UREG/CR-4 IUREG/CR-4	620, section 6 <i>20, page</i> (
	Flow Concentration Factor (CF)	·	(refer to N <i>Refer to N</i>	UREG/CR-4	620, section 6 <i>20, page</i> (n 4.8.1)	
	Flow Concentration Factor (CF)	1	(refer to N Refer to N Flow Cond	UREG/CR-4 IUREG/CR-4	620, section 6 <i>20, page</i> (n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S)	0.01	(refer to N <i>Refer to N</i> <i>Flow Conc</i> ft/ft	UREG/CR-4 IUREG/CR-4	620, section 6 <i>20, page</i> (n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal	1	(refer to N Refer to N Flow Cond	UREG/CR-4 IUREG/CR-4	620, section 6 <i>20, page</i> (n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S)	0.01	(refer to N Refer to N Flow Cond ft/ft degrees	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 620, page (actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw)	0.01 0.60 0.01	(refer to N Refer to N Flow Cond ft/ft degrees acres hours	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 6 <i>20, page (</i> actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc)	0.01 0.60 0.01 0.10	(refer to N Refer to N Flow Cond ft/ft degrees acres	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 6 <i>20, page (</i> actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i>	0.01 0.60 0.01 0.10	(refer to N Refer to N Flow Cond ft/ft degrees acres hours	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 6 <i>20, page (</i> actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S)	1 0.01 0.60 0.01 0.10 5.98 0.10	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 6 <i>20, page (</i> actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ)	0.01 0.60 0.01 0.10 5.98	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes	UREG/CR-4 IUREG/CR-4 centration Fa	620, section 6 <i>20, page (</i> actor.	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = (11.9 L	620, section 6 <i>20, page (</i> actor. ethod) - ³ / H) ^{0.385}	n 4.8.1) 68, for discussion of	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = (11.9 L (SCS Trian	620, section 6 <i>20, page (</i> actor. ethod) - ³ / H) ^{0.385} gular Hydro	n 4.8.1)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = (11.9 L (SCS Trian tc = (11.9 L	620, section 6 <i>20, page (</i> actor. ethod) - ³ / H) ^{0.385} gular Hydro - ³ / H) ^{0.385} pa	n 4.8.1) <i>58, for discussion of</i> ograph Theory)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Total tc for sideslopes (tc)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 7.78	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes minutes	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = $(11.9 L$ (SCS Trian tc = $(11.9 L$ (tc top) + (1)	620, section 6 <i>20, page (</i> actor. ethod) - ³ / H) ^{0.385} gular Hydro - ³ / H) ^{0.385} <i>pa</i> Fc slope)	n 4.8.1) 58, for discussion of ograph Theory) age D-3; STP	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Total tc for sideslopes (tc) % of 1-hour PMP	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 7.78 54.47	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes minutes %	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = $(11.9 L$ (SCS Trian tc = $(11.9 L$ (tc top) + (1) (determine	620, section 620, page (actor. ethod) - ³ / H) ^{0.385} gular Hydro - ³ / H) ^{0.385} pa fc slope) d from Tabl	n 4.8.1) 58, for discussion of ograph Theory) age D-3; STP e 2.1 NUREG 4620)	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Total tc for sideslopes (tc) % of 1-hour PMP PMP rainfall depth	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 7.78 54.47 4.74	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes minutes % inches	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = $(11.9 L$ (SCS Trian tc = $(11.9 L$ (tc top) + (1) (determine PMP x % o	620, section 620, page (actor. ethod) - ³ / H) ^{0.385} gular Hydro - ³ / H) ^{0.385} pa Gular Hydro - ³ / H) ^{0.385} pa fo slope) d from Tabl f 1-hour Plv	n 4.8.1) 58, for discussion of ograph Theory) age D-3; STP e 2.1 NUREG 4620) 1P	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Total tc for sideslopes (tc) % of 1-hour PMP PMP rainfall depth Rainfall Intensity (i), see Note 1	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 7.78 54.47 4.74 36.52	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes minutes % inches in/hr	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = (11.9 L (SCS Trian tc = (11.9 L (tc top) + (1 (determine PMP x % o i = PMP rai	620, section 620, page (actor. ethod) - ³ / H) ^{0.385} gular Hydro - ³ / H) ^{0.385} pa To slope) d from Tabl of 1-hour Plv nfall depth to	n 4.8.1) 58, for discussion of ograph Theory) age D-3; STP e 2.1 NUREG 4620) 1P x (60/tc) Eq. 4.52; 4	
	Flow Concentration Factor (CF) <i>Top Slope:</i> Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) <i>Side Slope:</i> Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Total tc for sideslopes (tc) % of 1-hour PMP PMP rainfall depth	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 7.78 54.47 4.74	(refer to N Refer to N Flow Cond ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes minutes % inches	UREG/CR-4 IUREG/CR-4 centration Fa (Kirpich Me tc = (11.9 L (SCS Trian tc = (11.9 L (tc top) + (1 (determine PMP x % o i = PMP rai q = (C i Aw	620, section 620, page (actor. ethod) - ³ / H) ^{0.385} pa Figular Hydro - ³ / H) ^{0.385} pa Figular Hydro - ³ / H) ^{0.385} pa Figular Hydro Figular Hydro F	n 4.8.1) 58, for discussion of ograph Theory) age D-3; STP e 2.1 NUREG 4620) 1P x (60/tc) Eq. 4.52; 4	

	$D_{s_0} = 0.16 \text{freet} \\ 1.98 \text{inches} \\ D_{s_0} = q(\tan \theta)^{s_0} n^{s_0} / C g^{s_0} ((1-n)(s-1) \cos \theta (\tan \phi \cdot \tan \theta))^{s_0} / Eq. 4.28; 4620 \\ acceleration of gravity (g) = 32.174 \ \text{feet/second}^2 \\ TYPICAL VALUES: \\ Property of Rook Layer (n) & 0.39 to 0.46 \\ Angle of Friction & 37 to 4.2 \\ Relative Density of Rook (s): \\ Limestone - 2.42 to 2.74 \\ Limy Sandstone - 2.14 to 2.50 \\ Quartzle - 2.86 \\ Basalt - 2.58 \\ Grante - 2.41 \\ \text{Riprep Design: Abt and Johnson} \\ D_{30} (nches) = 1.73 \ \text{inches} D_{50} = 5.23 \ q^{0.56} \ S^{0.43} \\ D_{30} (nches) = 2.08 \ \text{inches} \\ D_{30} (nches) = 2.08 \ \text{inches} \\ D_{30} (nches) = 0.208 \ \text{inches} \\ D_{30} = 5.23 \ q^{0.55} \ S^{0.43} \times 1.20 \\ \text{Interstitial Flow Velocity based on Design (Placed D_{50})} \\ Design/Placed D_{50} = \boxed{3} \ \text{inches} \\ Property = 5.84 \ \text{inches/second} \\ Vv = Wm^{0.5} \ e^{0.54} \ (\text{Leps (1973)}) \\ \text{interstitial Flow Velocity = 5.84 \ inches/second} \\ 1) \ Bedding Layer Placed (Heap Leach Design) \\ 2) \ Because segment 2 \ \text{slope is very close to 10\%, segment will also be evaluated using Stephenson Method.} \\ \end{cases}$	Ro Re Ang	h: Stephenson ckfill Porosity (n) lative Density of Rock (s) gle of Friction (φ)	0.4 2.52 40 degre			
1.98 inches $D_{se} = q(\tan \theta)^{3e} n^{10} / C g^{12} ((1+n)(s-1) \cos \theta (\tan \phi + \tan \theta))^{3e})^{23} Eq 4.28; 4620$ acceleration of gravity (g) = 32.174 feet/second ² TYPICAL VALUES: Porosity of Rock (se): Limestone - 2.42 to 2.74 Histatvo Donaty of Rock (se): Limestone - 2.24 to 2.74 Limy Sandstone - 2.24 to 2.76 Quartzite - 2.66 Basatt - 2.50 Guartzite - 2.66 Basatt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson D ₅₀ (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5+0.54}$ (Leps (1973) interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	1.98 inches $D_{so} = q(\tan \theta)^{36} n^{36} / 0^{36} / (1-n)(s-1) \cos \theta (\tan \phi + \tan \theta))^{50} P^{20} Eq. 4.28; 4620$ acceleration of gravity (g) = 32.174 feet/second ² TYPICAL VALUES: Porosity of Rock (a): Limestone - 2.42 to 2.74 Limy Sandstone - 2.24 to 2.74 Limy Sandstone - 2.24 to 2.76 Guartzite - 2.66 Basatt - 2.58 Granite - 2.41 Riptap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.66} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{50}) Design/Placed D_{50} =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Em	pirical Factor (C)			d pebbles to 0.27 for	
$D_{sg} = q(lan \theta)^{sg} n^{sg} / C g^{sg} ((1-n)(s-1) \cos \theta (lan \phi - tan \theta))^{(50)}^{sg} Eq. 4.28; 4620$ $acceleration of gravity (g) = 32.174 feet/second^2$ TYPICAL VALUES: Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (c): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quarizite - 2.68 Basalt - 2.58 Granite - 2.61 Granite - 2.41 Riprap Design: Abt and Johnson $D_{30} (inches) = 1.73 inches D_{30} = 5.23 q^{0.48} S^{0.43} D_{30} (inches) = 2.08 inches D_{50} = 5.23 q^{0.48} S^{0.43} \times 1.20 Interstitial Flow Velocity based on Design (Placed D_{30}) Design/Placed D_{40} =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm0.5 i 0.34 (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.$	$D_{so} = q(\tan \theta)^{st} n^{st} / C g^{st} ((1-n)(s-1) \cos \theta (\tan \phi - \tan \theta))^{(50)^{(50)}} Eq. 4.28; 4620$ $acceleration of gravity (g) = 32.174 feet/second^{2}$ TYPICAL VALUES: Porosity of Rock Layer (n) O.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (c): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quarizer - 2.66 Basait - 2.58 Granite - 2.61 Basait - 2.58 Granite - 2.61 Composition 0 ge (conces) = 1.73 inches D_{50} = 5.23 q^{0.58} S^{0.43} D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.58} S^{0.43} \times 1.20 Interstitial Flow Velocity based on Design (Placed D_{50}) Design/Placed D_{50} = [1.73 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.		D	9 ₅₀ = 0.16 feet	t		
acceleration of gravity (g) = 32.174 feet/second²TYPICAL VALUES: Poresity of Rock Layer (n)0.39 to 0.46 Angle of Friction Tumestone - 2.42 to 2.74 Limy Sandstone - 2.214 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.58 Granite - 2.41Riprap Design: Abt and JohnsonData (inches) = 1.73 inches Data (inches) = 2.08 inchesData (inches) = 1.73 inches Data (inches) = 0.81 inchesData (inches) = 1.73 inches Data (inches) = 0.81 inchesData (inches) = 1.73 inches Data (inches) = 0.80 inchesData (inches) = 1.73 inches Data (inches) = 0.81 inchesData (inches) = 0.81 inchesData (inches) = 0.81 inchesData (inches) = 0.81 inchesData (inches) = 0.49 feet/secondV = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/secondInterstitial Flow Velocity = 0.49 feet/secondInterstitial Flow Velocity = 0.49 feet/secondV = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/secondV = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/secondInterstitial Flow Velocity = 0.49 feet/secondV = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second <td< th=""><th>acceleration of gravity (g) = 32.174 feet/second² TYPICAL VALUES: Poresity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.58 Granite - 2.41 Sandstone - 2.41 Dage (inches) = 1.73 inches $D_{gg} = 5.23 q^{0.56} S^{0.43}$ Dage (inches) = 2.08 inches $D_{gg} = 5.23 q^{0.56} S^{0.43}$ Dage (inches) = 2.08 inches $D_{gg} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{gg}) Design/Placed D_{gg} =</th><th></th><th></th><th>1.98 inche</th><th>25</th><th></th><th></th></td<>	acceleration of gravity (g) = 32.174 feet/second ² TYPICAL VALUES: Poresity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.58 Granite - 2.41 Sandstone - 2.41 Dage (inches) = 1.73 inches $D_{gg} = 5.23 q^{0.56} S^{0.43}$ Dage (inches) = 2.08 inches $D_{gg} = 5.23 q^{0.56} S^{0.43}$ Dage (inches) = 2.08 inches $D_{gg} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D _{gg}) Design/Placed D _{gg} =			1.98 inche	25		
TYPICAL VALUES: Porosity of Rock Layer (n) Angle of Friction0.39 to 0.46 37 to 42Relative Density of Rock (s): Limestone - 2.44 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.58 Granite - 2.41Riprap Design: Abt and Johnson D_{50} (inches) = D_{50} (inches) = D_{50} (inches) = D_{50} (inches) = D_{50} (inches) = D_{50} (inches) = D_{50} (inches) = $D_{50} = 5.23 q^{0.56} S^{0.43}$ $S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{50})Design/Placed $D_{50} = \boxed{3}$ inchesInterstitial Flow Velocity = N Velocity =0.49 feet/second1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	TYPICAL VALUES: Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.24 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson D_{50} (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	D ₅₀	$= q(tan \theta)^{7/6} n^{1/6} / C g^{1/2} ((1-r))^{1/6}$	n)(s-1) cos θ (tan φ - tan	θ)) ^{5/3}) ^{2/3} Eq 4.28; 4620)	
Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.44 to 2.77 Limy Sandstone - 2.20 to 2.67 Sandstone - 2.20 to 2.67 Granite - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson D ₅₀ (inches) = 1.73 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₆₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.20 to 2.67 Sandstone - 2.20 to 2.67 Granite - 2.66 Basati - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.49}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =	· ,	•	acceleration of gra	vity (g) = 32.174 feet/s	econd²	
Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.44 to 2.77 Limy Sandstone - 2.20 to 2.67 Sandstone - 2.20 to 2.67 Granite - 2.66 Basalt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson D ₅₀ (inches) = 1.73 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.20 to 2.67 Sandstone - 2.20 to 2.67 Granite - 2.66 Basati - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson D_{50} (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed $D_{50} = \boxed{3}$ inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	TY	PICAL VALUES:				
Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartitle - 2.66 Basalt - 2.53 Granite - 2.41 Riprep Design: Abt and Johnson D_{50} (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) $Design/Placed D_{50} = \boxed{3}$ inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartile - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson D_{30} (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{30} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) $Design/Placed D_{50} = \boxed{3}$ inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Po	rosity of Rock Layer (n)				
Limestone - 2.42 to 2.74 Limy Sandstone - 2.214 to 2.67 Sandstone - 2.20 to 2.50 Quartzite - 2.66 Bast - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson D_{s0} (inches) = 1.73 inches $D_{s0} = 5.23 q^{0.66} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D _{s0}) Design/Placed D _{s0} = 3]inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartzite - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson D_{g0} (inches) = 1.73 inches $D_{g0} = 5.23 q^{0.66} S^{0.43}$ D_{g0} (inches) = 2.08 inches $D_{g0} = 5.23 q^{0.66} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D _{g0}) $Design/Placed D_{g0} = 3$ inches Interstitial Flow Velocity = 5.84 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.			37 to 42			
Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartite - 2.66 Basalt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson $D_{90} (inches) = 1.73 inches D_{90} = 5.23 q^{0.56} S^{0.43}$ $D_{90} (inches) = 2.08 inches D_{90} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₉₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	He	• • • •	$n_{0} = 2.42 \text{ to } 2.74$		•	
Sandstone - 2.20 to 2.50 Quartite - 2.65 Basalt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Sandstone - 2.20 to 2.50 Quartite - 2.68 Basalt - 2.53 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₈₀) Design/Placed D ₅₀ = 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.						
Quartzite - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =	Quartzlie - 2.66 Basalt - 2.58 Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.						
Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Granite - 2.41 Riprap Design: Abt and Johnson $D_{50} (inches) = 1.73 inches D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} (inches) = 2.08 inches D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.				·		
Riprap Design: Abt and Johnson D_{s0} (inches) = 1.73 inches $D_{g0} = 5.23 \ q^{0.56} \ S^{0.43}$ D_{s0} (inches) = 2.08 inches $D_{g0} = 5.23 \ q^{0.56} \ S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{s0}) Design/Placed $D_{s0} = $ Design/Placed $D_{s0} = $ 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{-0.54} (Leps (1973) interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Riprap Design: Abt and Johnson D_{50} (inches) = 1.73 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 2.08 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{50}) Design/Placed $D_{50} = $ Design/Placed $D_{50} = $ 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.						
D ₅₀ (inches) = 1.73 inches D ₅₀ = 5.23 q ^{0.58} S ^{0.43} D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.58} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = 3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	D ₅₀ (inches) = 1.73 inches D ₅₀ = 5.23 q ^{0.58} S ^{0.43} D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.58} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = 3inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.		Gran	Ite - 2.41			
D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Riprap Desig	n: Abt and Johnson				
D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	D ₅₀ (inches) = 2.08 inches D ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.					0.43	
Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.		D ₅₀ (inche				
Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Design/Placed D ₅₀ =3 inches Interstitial Flow Velocity = 5.84 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.		D (inche				
Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Interstitial Flow Velocity = 0.49 feet/second 1) Bedding Layer Placed (Heap Leach Design) 2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Interstitial Flo			D ₅₀ = 5.23 q ⁵⁵⁵ S	x 1.20	
2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Interstitial Flo	w Velocity based on Desi	gn (Placed D ₅₀)			
2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	2) Because segment 2 slope is very close to 10%, segment will also be evaluated using Stephenson Method.	Interstitial Flo	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit	gn (Placed D₅₀) ₅₀ =3 inches y =5.84 inches/	'second Vv = W		
		Interstitial Flo	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit	gn (Placed D₅₀) ₅₀ =3 inches y =5.84 inches/	'second Vv = W		
		1) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec .each Design)	/second Vv = W cond	m ^{0.5} i ^{0.54} (Leps (1973)	nod.
		1) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec .each Design)	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec each Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Metl	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec each Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Metl	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec each Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is w	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec each Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec each Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Metl	
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	· · ·
		1) Be 2) Be	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	· · ·
		1) Bea 2) Bea	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	· · · ·
		1) Bea 2) Bea	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is w	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec Leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	· · · ·
		1) Bea 2) Bea	w Velocity based on Desi Design/Placed D Interstitial Flow Velocit Interstitial Flow Velocit dding Layer Placed (Heap L cause segment 2 slope is ve	gn (Placed D ₅₀) ₅₀ = 3 inches y = 5.84 inches/ y = 0.49 feet/sec Leach Design) ery close to 10%, segm	'second Vv = W cond ent will also be evaluat	m ^{0.5} i ^{0.54} (Leps (1973) ed using Stephenson Meti	· · ·

· ,

—	Protection Calculation <u>ctors Method</u>			• •		
				Rainfall D		
	: Gas Hills - A-9			<u>(min)</u>	<u>% of 1-hour</u>	
	: Segment 3		•	2.5	27.5	0.00
Date	: 11/30/2010)		5	45	0.00
Commont		_		10	62	58.34
Comment				15 20	74 82	0.00 0.00
Ludrolog	A.P.	۴.		30	82 89	0.00
Hydrolog	Segment 1			45	89 95	0.00
	Length of Slope (L)	571	feet	45 60	100	0.00
	Elevation Difference (H)	6	feet	00	100	58.34
	Segment 2					
	Length of Slope (L)	377	feet			
	Elevation Difference (H)	39	feet			
	Segment 3					
	Length of Slope (L)	161	feet			
	Elevation Difference (H)	10	feet			
	1			· · ·		
	PMP	8.7	inches			
	Runoff Coefficient (C)	1	Runoff Co	efficient of 1 is recomn	nended for PN	IP applications.
			(refer to N	UREG/CR-4620, section	on 4.8.1)	
	Flow Concentration Factor (CF)	1	Refer to N	IUREG/CR-4620, page	68, for discus	sion of
				centration Factor.		
	Segment 1					
	Slope (S)	0.01	_ft/ft			
	Slope; angle from horizontal	0.60	degrees			
	Area; unit-width basis (Aw)	0.01	acres			
	Time of Concentration (tc)	0.10	hours	(SCS Triangular Hyd	rograph Theor	у)
		5.98	minutes	tc = (11.9 L ³ / H) ^{0.385}		
	Segment 2					
	Slope (S)	0.10	ft/ft			
	Slope; angle from horizontal (θ)	5.91	degrees			
	Area; unit-width basis (Aw)	0.02	acres			
	Time of Concentration (tc)	0.03	hours	(Kirpich Method)		
		1.80	minutes	$tc = (11.9 L^3 / H)^{0.385} \mu$	age D-3; STF	,
			÷			
	Segment 3					
	Slope (S)	0.06	ft/ft			
	Slope; angle from horizontal (θ)	3.55	degrees			
	Area; unit-width basis (Aw)	0.03	acres	· · · ·		
	Time of Concentration (tc)	0.02	hours	(Kirpich Method)		
		1.14	minutes	$tc = (11.9 L^3 / H)^{0.385} p$	age D-3; STF)
					~	
	Total tc for sideslopes (tc)	8.92	minutes	(tc top) + (tc slope)	·	. ~
	% of 1-hour PMP	58.34	%	(determined from Tab		G 4620)
	PMP rainfall depth	5.08	inches	PMP x % of 1-hour P		
	Rainfall Intensity (i), see Note 1	34.13	in/hr	i = PMP rainfall depth		4.52; 4620
	Peak Flow Rate (q)	0.87	cfs/ft	q = (C i Aw) CF Eq.		
				(Rational Formula for	unit width and	alysis)
· .						

Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

Riprap De	sign: Safety Factors Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (ϕ) D ₅₀ of Riprap (D ₅₀)		ig. 4.8; Page 46; NUREG/CR-4620) out Trial Riprap D₅₀)
	Cover Slope (α)	3.55 degrees	
	Mannings Coefficient (n)	0.0300	n = 0.0395 $(D_{50})^{1/6}$ Eq. 4.41; 4620
	Depth of Flow (d)	0.2034 / feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 4620
	Bed Shear Stress (τ_o)	0.7884 lbs/sq. ft.	$ τ_{o} = γ \delta Σ Eθ. \ 4.21; \ 4620 $
	Stability Number (η)	0.9108	$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620
	Safety Factor =	1.0081	SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620
Riprap De	sign: Abt and Johnson		
	D ₅₀ (inches) =	1.46 inches	$D_{50} = 5.23 q^{0.56} S^{0.43}$
	D_{50} (inches) =	1.76 inches	$D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$
Interstitia	I Flow Velocity based on Design (I	Placed D ₅₀)	
	Design/Placed D ₅₀ =	6 inches	
	Interstitial Flow Velocity = Interstitial Flow Velocity =	6.32 inches/sec 0.53 feet/secon	

. •

·<u>2</u>

				•			
	Protection Calculation:						
Salely ra	ictors Method			Rainfa	Il Duration		
Proiect	:: Gas Hills - A-9			(mi		ur PMP	
	: Segment 4			2.5	-	0.00	
Date	-	10 [,]		. 5	45	0.00	
				10) 62	0.00	
Comment			- <u>-</u>	15		0.00	
			•	20		76.90	
Hydrolog				30		0.00	
	Segment 1		1 <i>t</i> 1	45		0.00	
	Length of Slope (L)	571	feet	60	0 100	0.00 76.90	
	Elevation Difference (H)	6	feet			76.90	·
	Segment 2						
· .	Length of Slope (L)	377	feet				
	Elevation Difference (H)	-39	feet		·		
		00					
	Segment 3					•	
	Length of Slope (L)	161	feet			•	
	Elevation Difference (H)	10	feet				
			_	•			
	Segment 4						
	Length of Slope (L)	1354	feet				·
	Elevation Difference (H)	39	feet				
	PMP	8.7	inches				
	PMP Runoff Coefficient (C)	8.7	Runoff Co	efficient of 1 is reco		PMP applica	atio
	Runoff Coefficient (C)	1	Runoff Co (refer to N	UREG/CR-4620, se	ection 4.8.1)		atio
		1	Runoff Co (refer to N <i>Refer to N</i>	UREG/CR-4620, se IUREG/CR-4620, p	ection 4.8.1)		atio
	Runoff Coefficient (C)	1	Runoff Co (refer to N <i>Refer to N</i>	UREG/CR-4620, se	ection 4.8.1)		atior
	Runoff Coefficient (C) Flow Concentration Factor (CF)	1	Runoff Co (refer to N <i>Refer to N</i>	UREG/CR-4620, se IUREG/CR-4620, p	ection 4.8.1)		atio
	Runoff Coefficient (C)	1	Runoff Co (refer to N <i>Refer to N</i>	UREG/CR-4620, se IUREG/CR-4620, p	ection 4.8.1)		atio
	Runoff Coefficient (C) Flow Concentration Factor (CF) <i>Segment 1</i> Slope (S) Slope; angle from horizontal)	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i>	UREG/CR-4620, se IUREG/CR-4620, p	ection 4.8.1)		atio
	Runoff Coefficient (C) Flow Concentration Factor (CF) <i>Segment 1</i> Slope (S)	0.01 0.01 0.60 0.01	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc	cussion of	atio
	Runoff Coefficient (C) Flow Concentration Factor (CF) <i>Segment 1</i> Slope (S) Slope; angle from horizontal	0.01 0.60 0.01 0.10	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	atio
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw)	0.01 0.01 0.60 0.01	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2	1 0.01 0.60 0.01 0.10 5.98	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S)	1 0.01 0.60 0.01 0.10 5.98 0.10	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees	UREG/CR-4620, se IUREG/CR-4620, p centration Factor.	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1}	ection 4.8.1) age 68, for disc 1ydrograph The	cussion of	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ)	0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1} (Kirpich Method)	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1}	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1} (Kirpich Method)	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (0) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1} (Kirpich Method)	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	ation
· ·	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (0) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (0)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees	UREG/CR-4620, se IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = (11.9 L ³ / H) ^{0.1} (Kirpich Method)	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (0) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (0) Area; unit-width basis (Aw)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$	ection 4.8.1) age 68, for disc lydrograph The	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (0) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (0)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method)	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	atio
·	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	atio
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 4	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02 1.14	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method)	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 4 Slope (S)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02 1.14 0.03	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method)	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 4 Slope (S) Slope; angle from horizontal (θ)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02 1.14 0.03 1.65	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method)	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 4 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02 1.14 0.03 1.65 0.06	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours	UREG/CR-4620, so <i>IUREG/CR-4620, p</i> <i>centration Factor.</i> (SCS Triangular H tc = $(11.9 L^3 / H)^{0.1}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.1}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.1}$	ection 4.8.1) age 68, for disc Hydrograph The 3995 page D-3; S	cussion of eory)	ation
	Runoff Coefficient (C) Flow Concentration Factor (CF) Segment 1 Slope (S) Slope; angle from horizontal Area; unit-width basis (Aw) Time of Concentration (tc) Segment 2 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 3 Slope (S) Slope; angle from horizontal (θ) Area; unit-width basis (Aw) Time of Concentration (tc) Segment 4 Slope (S) Slope; angle from horizontal (θ)	1 0.01 0.60 0.01 0.10 5.98 0.10 5.91 0.02 0.03 1.80 0.06 3.55 0.03 0.02 1.14 0.03 1.65	Runoff Co (refer to N <i>Refer to N</i> <i>Flow Cond</i> ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours minutes ft/ft degrees acres hours	UREG/CR-4620, so IUREG/CR-4620, p centration Factor. (SCS Triangular H tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method) tc = $(11.9 L^3 / H)^{0.3}$ (Kirpich Method)	ection 4.8.1) age 68, for disc lydrograph The ³⁸⁵ page D-3; S	cussion of eory) TP	atio

. . . ji .

Peak Flow, Rate (q)1.35cfs/ft $q = (C \mid Aw)$ CFEq. 4.43; 4620 (Rational Formula for unit width analysis)Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (50/2.5 min) Riprap Design: Specific Weight of Rook (Ss) Angle of Repose of Riprap (e) Dgo of Riprap (Dso)Dso of Riprap (Dso)Cover Slope (a)1.65degreesMannings Coefficient (n)0.0285Depth of Flow (d)0.3238feet ((q x n)/1.486(S)^{10})^{16} Eq. 4.41; 4520 Depth of Flow (d)0.3238feet ((q x n)/1.486(S)^{10})^{16} Eq. 4.42; 4620 Stability Number (n)0.9094 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{a0} E9.4.20; 4620$ Safety Factor =1.0532SF = cos α tan ϕ / η tan ϕ sin α Eq. 4.27; 462Riprap Design: Abt and JohnsonDso (inches) =1.62 inchesDso (inches) =1.62 inchesDesign/Placed Dso =Design/Placed Dso =Interstitial Flow Velocity =0.24 feet/secondVv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity =0.24 feet/second	% PN Ra	otal tc for sideslopes (tc) of 1-hour PMP MP rainfall depth ainfall Intensity (i), see Note 1	16.81 76.90 6.69 23.88	% inches in/hr	(tc top) + (tc slope) (determined from Table 2.1 NUREG 462 PMP x % of 1-hour PMP i = PMP rainfall depth x (60/tc) Eq. 4.52	
Riprap Design: Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D ₃₀ of Riprap (D ₅₀) 62.4 2.52 36 (<i>Refer to Fig. 4.8; Page 46; NUREG/CR-4620</i>) inches (Input Trial Riprap D ₅₀)Cover Slope (α)1.65 0.0285degrees n = 0.0395 (D ₅₀) ⁴⁶ Eq. 4.41; 4620 Degth of Flow (d) 0.3238Depth of Flow (d)0.3238 0.5819n = 0.0395 (D ₅₀) ⁴⁶ Eq. 4.41; 4620 Degth of Flow (d) 0.3238Bed Shear Stress (τ_0)0.5819 0.5819lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma$ E0.4.21; 4620 Safety Factor = 1.0532Safety Factor =1.0532SF = cos $\alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 462Riprap Design: Abt and JohnsonD ₅₀ (inches) = 1.62 inchesD ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20Design/Placed D ₅₀ =3 inchesD ₅₀ = 5.23 q ^{0.56} S ^{0.43} x 1.20Interstitial Flow Velocity based on Design (Placed D ₅₀) 0.24 feet/secondVv = Wm ^{0.5} i ^{0.54} (Leps (1973)) 0.24 feet/second	Pe	ak riow Hale (q)	1.35	CIS/II		;)
Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D_{st} of Riprap (D_{st}) 62.4 2.52 36 1.7 inches (Input Trial Riprap D_{st})Cover Slope (α) Mannings Coefficient (n) Depth of Flow (d) Bed Shear Stress (τ_{o}) 0.5819 1.65 0.5819 0.5819 0.5819 0.5924 0.5819 0.5934 0.5944 0.524 0.544 0.524 0.544 0.524 0.544 0.524 0.544 0.524 0.544 0.524 0.544 0.524 0.524 0.544 0.524 0.524 0.524 0.524 0.524 0.544 0.524 0.544 0.524 0.544 0.524 0.544 0.524 	No	ote 1 : If Tc <= 2.5 min then: i = F	MP rainfall o	depth x (6	0/2.5 min)	
Specific Weight of Liquid (γ) Specific Weight of Rock (Ss) Angle of Repose of Riprap (φ) D_{st} of Riprap (D_{st}) 62.4 2.52 36 1.7 1.7 1.7 1.65 1.7 1.7 1.65 1.7 1.65 1.7 1.7 1.65 1.62 1.7 1.65 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.7 1.65 1.62 <td>Riprap Desig</td> <td>n:</td> <td></td> <td></td> <td>:</td> <td></td>	Riprap Desig	n:			:	
Angle of Repose of Riprap (ϕ) D_{so} of Riprap (D_{so}) Cover Slope (α) Mannings Coefficient (n) Depth of Flow (d) Bed Shear Stress (τ_0) Safety Factor = 1.0532 Riprap Design: Abt and Johnson D_{so} (inches) = 1.35 inches D_{so} (inches) = 1.62 inches D_{so} = 5.23 q ^{0.56} S ^{0.43} D_{so} (inches) = 1.62 inches D_{so} = 5.23 q ^{0.56} S ^{0.43} x 1.20 Interstitial Flow Velocity based on Design (Placed D _{so}) Design/Placed D _{so} = 3 Interstitial Flow Velocity = 2.93 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) O.24 feet/second	Sp	pecific Weight of Liquid (γ)				
$D_{so} \text{ of Riprap } (D_{so})$ $1.7 \text{ inches (Input Trial Riprap } D_{so})$ $Cover Slope (\alpha)$ 1.65 degrees $Mannings Coefficient (n)$ $0.0285 \text{ n} = 0.0395 (D_{so})^{16} Eq. 4.41; 4620$ $Depth of Flow (d)$ $0.3238 \text{ feet} ((q \times n)/1.486(S)^{1/2})^{45} Eq. 4.55; 4620$ $Bed Shear Stress (\tau_0)$ $0.5819 \text{ lbs/sq. ft. } \tau_0 = \gamma \delta \Sigma E\theta. 4.21; 4620$ $Stability Number (\eta)$ $0.9094 \qquad \eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{so} E\theta. 4.20; 4620$ $Safety Factor = 1.0532 \qquad SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha Eq. 4.27; 462$ Riprap Design: Abt and Johnson $D_{so} (\text{inches}) = 1.35 \text{ inches} \qquad D_{so} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D_{so}) $D_{esign}/Placed D_{so} = 3 \text{ inches}$ $Interstitial Flow Velocity = 2.93 \text{ inches/second} \qquad Vv = Wm^{0.5} i^{0.54} \text{ (Leps (1973))}$ $Interstitial Flow Velocity = 0.24 \text{ feet/second}$,	- · · · ·		Doforto [
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Co	over Slope (α)	1.65	degrees		
Bed Shear Stress (τ_0) 0.5819 lbs/sq. ft. $\tau_0 = \gamma \delta \Sigma E\theta. 4.21, 4620$ Stability Number (η) 0.9094 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{30} E\theta. 4.20; 4620$ Safety Factor = 1.0532 SF = cos α tan ϕ / η tan ϕ + sin $\alpha Eq. 4.27; 4620$ Riprap Design: Abt and Johnson D_{50} (inches) = 1.35 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) = 1.62 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = 3 inches Interstitial Flow Velocity = 2.93 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second	Ma	annings Coefficient (n)			n = 0.0395 $(D_{50})^{1/6}$ Eq. 4.41; 4620	
Stability Number (n)0.9094 $\eta = 21 \tau_0 / (\Sigma \sigma - 1) \gamma \Delta_{s0}$ E9. 4.20; 4620Safety Factor =1.0532SF = cos α tan ϕ / η tan ϕ + sin α Eq. 4.27; 4620Riprap Design: Abt and Johnson D_{50} (inches) =1.35 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) =1.62 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀)Design/Placed D ₅₀ =3 inchesInterstitial Flow Velocity =2.93 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)Interstitial Flow Velocity =0.24 feet/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)	De	epth of Flow (d)	0.3238	feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} <i>Eq. 4.55; 4620</i>	
Safety Factor =1.0532 $SF = \cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ $Eq. 4.27; 4623$ Riprap Design: Abt and Johnson D_{50} (inches) =1.35 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) =1.62 inches $D_{50} = 5.23 q^{0.56} S^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀)Design/Placed D ₅₀ =3 inchesInterstitial Flow Velocity =2.93 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)Interstitial Flow Velocity =0.24 feet/second			0.5819	bs/sq. ft.	$\tau_{o} = \gamma \delta \Sigma E\theta. \ 4.21; \ 4620$	
Riprap Design: Abt and Johnson D_{50} (inches) =1.35 inches $D_{50} = 5.23 q^{0.56} S^{0.43}$ D_{50} (inches) =1.62 inches $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀)Design/Placed D ₅₀ =OutputInterstitial Flow Velocity =2.93 inches/secondVv = Wm ^{0.5} i ^{0.54} (Leps (1973)Interstitial Flow Velocity =0.24 feet/second	St					
$D_{50} \text{ (inches)} = 1.35 \text{ inches} \qquad D_{50} = 5.23 \text{ q}^{0.56} \text{ S}^{0.43}$ $D_{50} \text{ (inches)} = 1.62 \text{ inches} \qquad D_{50} = 5.23 \text{ q}^{0.56} \text{ S}^{0.43} \times 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) $Design/Placed D_{50} = 3 \text{ inches}$ Interstitial Flow Velocity = 2.93 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973)) Interstitial Flow Velocity = 0.24 feet/second		Safety Factor =	1.0532		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha Eq. 4$.	.27; 4620
$D_{50} \text{ (inches)} = 1.62 \text{ inches} \qquad D_{50} = 5.23 \text{ q}^{0.56} \text{ S}^{0.43} \text{ x } 1.20$ Interstitial Flow Velocity based on Design (Placed D ₅₀) $Design/Placed D_{50} = 3 \text{ inches}$ Interstitial Flow Velocity = 2.93 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second	Riprap Desig	n: Abt and Johnson				
Interstitial Flow Velocity based on Design (Placed D ₅₀) Design/Placed D ₅₀ = <u>3</u> inches Interstitial Flow Velocity = 2.93 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second		D ₅₀ (inches) =	1.35 ir	nches	$D_{50} = 5.23 q^{0.56} S^{0.43}$	
Design/Placed $D_{50} =$ 3 inches Interstitial Flow Velocity = 2.93 inches/second $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second	۰	D_{50} (inches) =	1.62 ir	iches	$D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$	
Interstitial Flow Velocity = 2.93 inches/second Vv = Wm ^{0.5} i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second	Interstitial Fl	ow Velocity based on Design (Placed D ₅₀)			
Interstitial Flow Velocity = 2.93 inches/second $Vv = Wm^{0.5}$ i ^{0.54} (Leps (1973) Interstitial Flow Velocity = 0.24 feet/second		Design/Placed D ₅₀ =	3 ir	iches		
Interstitial Flow Velocity = 0.24 feet/second						
						3)
		· · ·				
				•		
		•				
		•				
		۰ .			1	
					•	
					· .	

RIPRAP DESIGN:

Stephenson Method for Slopes Greater than 10%

Project	Gas Hills A-9					
	Segment 5			Rainfall Duration	hour PMP	
Date:	-	0		<u>(min) % of 1</u> 2.5 27.		
Date.	1700/201	0		5 45		
Comment:	Segment 5			10 62		•
000000	eegen		,	15 74		
		-		20 82		
				30 89		
				45 95		
				60 100		
Hydrology	7:			00 100	78.01	
., .,	Segment 1	•	•			
	Length of Slope (L)	571	feet			
	Elevation Difference (H)	6	feet			
			_		1	
	Segment 2					
	Length of Slope (L)	377	feet			•
· .	Elevation Difference (H)	39	feet	•		
			-			
	Segment 3		-			,
	Length of Slope (L)	161	feet			
:	Elevation Difference (H)	10	feet			
				• •		
	Segment 4	1054	л., г			
	Length of Slope (L)	1354	feet			
	Elevation Difference (H)	39	feet ´			
•	Segment 5					
	Length of Slope (L)	120	feet			
	Elevation Difference (H)	15	feet			
			_			
	PMP	8.7	inches			
	Runoff Coefficient (C)	1		efficient of 1 is reco		/IP applications.
		r		UREG/CR-4620, se		· ·
	Flow Concentration Factor (CF)	1		IUREG/CR-4620, pa	ge 68, for discu	ssion of
	Segment 1		FIOW CON	centration Factor.		
	Slope (S)	0.01	ft/ft			·
	Slope; angle from horizontal	0.60			•	
	Area; unit-width basis (Aw)	0.0131	degrees acres			
	Time of Concentration (tc)	0.0131	hours	(Kirpich Method)		
	Time of Concentration (ic)				15	
	Sogmont 2	5.98	minutes	$tc = (11.9 L^3 / H)^{0.38}$	-	
	Segment 2 Slope (S)	0 10	\$ +/ \$ +			
	Slope; angle from horizontal	0.10 5.91	ft/ft			
	Area; unit-width basis (Aw)	5.91 0.0087	degrees			x
	Time of Concentration (tc)	0.0300	acres	(Kirnich Mothed)		
	The of Concentration (tc)		hours	(Kirpich Method)	5	
_	Sogment 2	1.80	minutes	$tc = (11.9 L^3 / H)^{0.38}$	-	
	Segment 3 Slope (S)	0.06	ft/ft			
	Slope (S) Slope; angle from horizontal (θ)	3.55	degrees		•	
	Area; unit-width basis (Aw)	0.0255	acres			
	Time of Concentration (tc)	0.0200	hours	(Kirpich Method)		
		1.14		$tc = (11.9 L^3 / H)^{0.38}$	5 no co D 2, CT	2
		1.14	minutes	$\mathbf{U} = (1 \cdot 3 \mathbf{L}^{\circ} / \mathbf{m})^{\circ \circ \circ}$	page 0-3; ST	-

	Segment 4			
	Slope (S)	0.03	ft/ft	
	Slope; angle from horizontal (θ)	1.65	degrees	
	Area; unit-width basis (Aw)	0.0565	acres	
	Time of Concentration (tc)	0.1315	hours	(Kirpich Method)
		7.89	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP
	Segment 5			
	Slope (S)	0.13	ft/ft	· ·
•	Slope; angle from horizontal (θ)	7.13	degrees	
	Area; unit-width basis (Aw)	0.0593	acres	
	Time of Concentration (tc)	0.0116	hours	(Kirpich Method)
	•	0.69	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP
	Total tc for sideslopes (tc)	17.51	minutes	(tc top) + (Tc slope)
	% of 1-hour PMP	78.01	%	(determined from Table 2.1 NUREG 4620)
	PMP rainfall depth	6.79	inches	PMP x % of 1-hour PMP
	Rainfall Intensity (i), see Note 1	23.26	in/hr	i = PMP rainfall depth x (60/tc) Eq. 4.52 ; 4620
	Peak Flow Rate (q)	1.38	cfs/ft	q = (C i Aw) CF Eq. 4.43; 4620
				(Rational Formula for unit width analysis)

Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

Riprap Design: Stephenson

Rockfill Porosity (n) Relative Density of Rock (s) Angle of Friction (ϕ) Empirical Factor (C)

	0.4 2.52 40 0.26	degrees (varies from 0.22 for gravel and pebbles to 0.27 for	
_		crushed granite)	
, =	0.28	feet	

D ₅₀ =	0.28	feet
	3.34	inches

$$\begin{split} D_{50} = q(\tan \theta)^{7/6} n^{1/6} / C g^{1/2} ((1-n)(s-1) \cos \theta (\tan \phi - \tan \theta))^{5/3})^{2/3} & Eq \ 4.28; \ 4620 \\ acceleration \ of \ gravity \ (g) = 32.174 \ feet/second^2 \end{split}$$

TYPICAL VALUES:

Porosity of Rock Layer (n)	0.39 to 0.46
Angle of Friction	37 to 42
Relative Density of Rock (s):	
Limestone	- 2.42 to 2.74
Limy Sandstone	
Sandstone	- 2.20 to 2.50
Quartzite	- 2.66
Basalt	- 2.58
Granite	- 2.41

Riprap Design: Abt and Johnson

 D_{50} (inches) = D_{50} (inches) = $D_{50} = 5.23 q^{0.56} S^{0.43}$ $D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$

Interstitial Flow Velocity based on Design (Placed D₅₀)

Design/Placed D₅₀ =

Interstitial Flow Velocity = Interstitial Flow Velocity = 9.23 inches/second 0.77 feet/second

2.56 inches

3.07 inches

6 inches

 $Vv = Wm^{0.5} i^{0.54}$ (Leps (1973)

Hydrology:

RIPRAP DESIGN:

Safety Factors Method for three Gradient Top Slope

11/30/2010

571

6

377

39

161

10

1354

39

120

15

124

8

feet

Project: Gas Hills - A-9 Item: Segment 6 Date:

Segment 1

Segment 2 Length of Slope (L)

Length of Slope (L)

Elevation Difference (H)

Rainfall Duration (min) % of 1-hour PMP 2.5 27.5 0.00 5 45 0.00 10 62 0.00 15 74 0.00 20 82 79.48 30 89 0.00 45 95 0.00 0.00 60 100 79.48

Segment 3	
Length of Slope (L)	
Elevation Difference	(H)

Elevation Difference (H)

Segment 4 Length of Slope (L) Elevation Difference (H)

Segment 5 Length of Slope (L) Elevation Difference (H)

Segment 6 Length of Slope (L) Elevation Difference (H)

PMP Runoff Coefficient (C)

Segment 1

Flow Concentration Factor (CF)

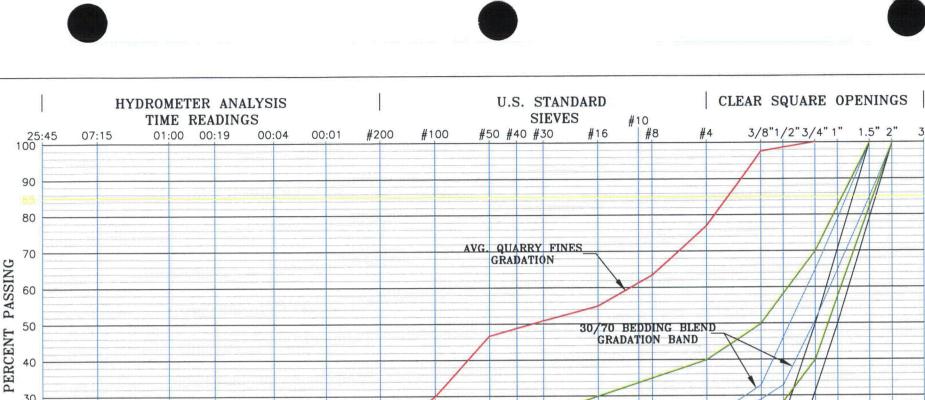
- 8.7	inches
1	Runoff Coefficient of 1 is recommended for PMP applications.
_	(refer to NUREG/CR-4620, section 4.8.1)
1	Refer to NUREG/CR-4620, page 68, for discussion of
	Flow Concentration Factor.
0.01	ft/ft

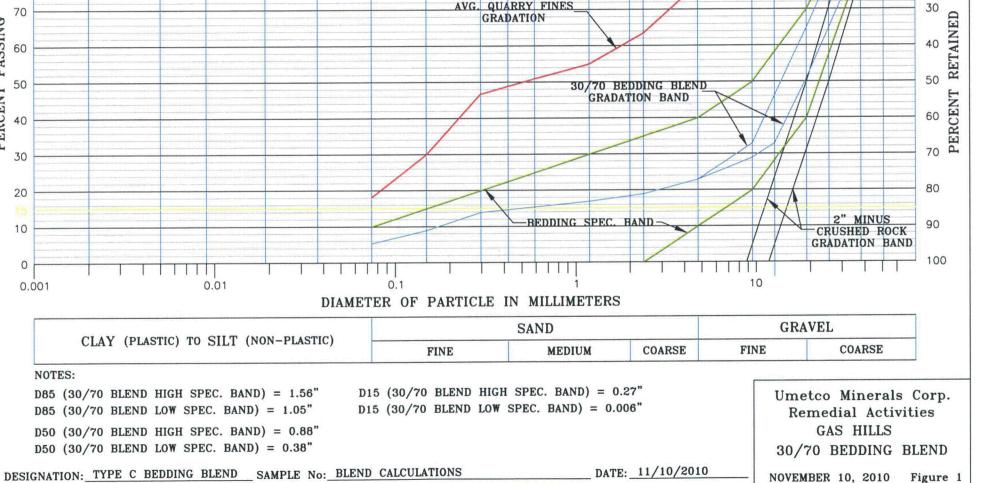
eegment			
Slope (S)	0.01	ft/ft	
Slope; angle from horizontal	0.60	degrees	
Area; unit-width basis (Aw)	0.01	acres	
Time of Concentration (tc)	0.10	hours	(SCS Triangular Hydrograph Theory)
•	5.98	minutes	$tc = (11.9 L^3 / H)^{0.385}$
Segment 2			
Slope (S)	0.10	ft/ft	
Slope; angle from horizontal (θ)	5.91	degrees	
Area; unit-width basis (Aw)	0.02	acres	
Time of Concentration (tc)	0.03	hours	(Kirpich Method)
	1.80	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP
Segment 3			
Slope (S)	0.06	ft/ft	
Slope; angle from horizontal (θ)	3.55	degrees	
Area; unit-width basis (Aw)	0.03	acres	·
Time of Concentration (tc)	0.02	hours	(Kirpich Method)
	1.14	minutes	tc = (11.9 L ³ / H) ^{0.385} page D-3; STP

	•							
	Segment 4			· · ·				
		0.00	ft/ft	· · · · ·				
	Slope (S) Slope; angle from horizontal (θ)	0.03		· · ·				
		1.65	degrees					
	Area; unit-width basis (Aw)	0.06	acres					
	Time of Concentration (tc)	0.13	hours	(Kirpich Method)				
		7.89	minutes	tc = (11.9 L ³ / H) ^{0.385}				
	Segment 5							
	Slope (S)	0.13	ft/ft	n an				
	Slope; angle from horizontal (θ)	7.13	degrees	· · · · ·				
	Area; unit-width basis (Aw)	0.06	acres					
•	Time of Concentration (tc)	0.01	hours	(Kirpich Method)				
	•	0.69	minutes	tc = (11.9 L³ / H) ^{0.385} page D-3; ŚTP				
	Segment 6							
	Slope (S)	0,06	ft/ft					
	Slope; angle from horizontal (θ)	3.69	degrees					
	Area; unit-width basis (Aw)	0.06	acres					
	Time of Concentration (tc)	0.02	hours	(Kirpich Method)				
		0.92	minutes	tc = (11.9 L ³ / H) ^{0,385} page D-3; STP				
		0.52	minutes	c = (11.9 c / H) page 0-3, 31F				
•	Total tc for sideslopes (tc)	18.43	minutoo	(to top) + (to plops)				
	% of 1-hour PMP	79.48	minutes %	(tc top) + (tc slope) (determined from Table 2.1 NUREG 4620)				
	PMP rainfall depth	6.91	inches	PMP x % of 1-hour PMP				
	Rainfall Intensity (i), see Note 1	22.52	in/hr					
	Peak Flow Rate (q)	1.40	cfs/ft	i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620 q = (C i Aw) CF Eq. 4.43; 4620				
	Fear How Hate (q)	1.40	015/11	(Rational Formula for unit width analysis)				
	Note 1 : If Tc <= 2.5 min then: i =	PMP rainfall	l denth v /6					
Rinran De	sign: Safety Factors							
mpiup be	Specific Weight of Liquid (γ)	62.4	l					
	Specific Weight of Rock (Ss)	2.52						
2	Angle of Repose of Riprap (φ)	40	(Refer to F	ig. 4.8; Page 46; NUREG/CR-4620)				
, ,	D_{50} of Riprap (D_{50})	3:3		put Trial Riprap D_{50})				
	Cover Slope (a)	3.69	degrees					
	Mannings Coefficient (n)	0.0319	409.000	n = 0.0395 $(D_{50})^{1/6}$ Eq. 4.41; 4620				
	, =							
	Depth of Flow (d)	0.2775	feet	((q x n)/1.486(S) ^{1/2}) ^{3/5} Eq. 4.55; 4620				
	Bed Shear Stress (τ_o)	1.1173	lbs/sq. ft.	$ τ_{o} = γ \delta Σ E\theta. \ 4.21; \ 4620 $				
	Stability Number (η)	0.8996		$η = 21 τ_0 / (Σσ - 1) γ Δ_{50}$ Eθ. 4.20; 4620				
	Safety Factor =	1.0222		SF = $\cos \alpha \tan \phi / \eta \tan \phi + \sin \alpha$ Eq. 4.27; 4620				
Riprap De	sign: Abt and Johnson							
	D ₅₀ (inches) =	1.94	inches	$D_{50} = 5.23 q^{0.56} S^{0.43}$				
	D ₅₀ (inches) =		inches	$D_{50} = 5.23 q^{0.56} S^{0.43} x 1.20$				
	D_{50} (incres) =	2.33	Inches	$D_{50} = 5.25 \text{q}$ S X 1.20				
Interstitial Flow Velocity based on Design (Placed D_{50})								
Design/Placed D ₅₀ = 6 inches								
	Interstitial Flow Velocity = 6.45 inches/second $Vv = Wm^{0.5}$ i ^{0.54} (Leps (1973)							
	Interstitial Flow Velocity =		feet/second	· · · · · ·				
	,							

Appendix A-2 – 30/70 Blended Bedding Material Design 30/70 Bedding Blend Calculations, and 30/70 Bedding Blend Gradation Plot

Gas Hills Bedding Blend Calculations (11-10-2010): 30% (fines) / 70% Crushed Rock (High Band Crushed Rock Gradation)

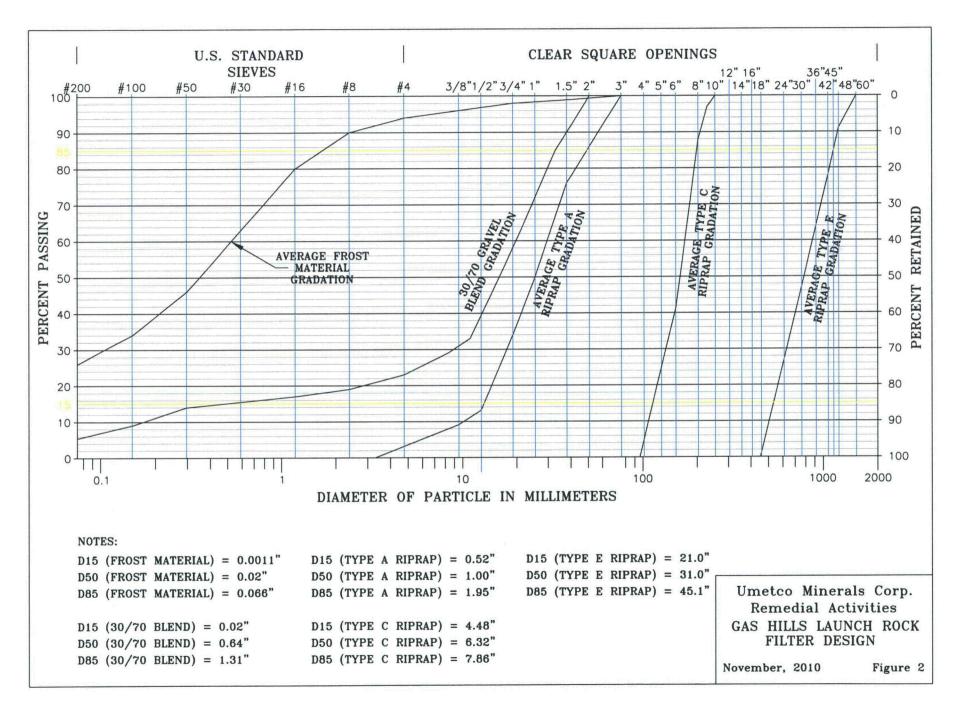

Material	Aggregate	1 (Fines)*	Aggregate	2 (2" Max)	Aggregate	∋ 3 (N/A)			
% used		30		. 70		·	Į		
Sieve	% Pass	% Blend	% Pass	% Blend	% Pass	% Blend	Total Blend	Target Value	Design Range
2	100	- 30	100	70			100	100	100
1 1/2	100	30	79	55			85		80 -100
1 .	100	30	50	35	· ·		65	<72	
0.75 (3/4)	100	30	30	21			51		40 - 70
0.5 (1/2)	99	30	5	3.5			33		
0.375 (3/8)	98	29		. 0			29		20 - 50
No. 4	77	23			· ·		23		10 - 60
No. 8	63	19					19		
No.16	55	17					17		
No. 30	51	15					15		
No. 50	47	14					14		
No. 100	30	9					9		
No. 200	18.0	5.4					5.4		0 - 10


Gas Hills 30/70 Bedding Blend Calculations (11-10-2010): 30% (fines) / 70% 2-inch Minus Crushed Rock (Low Band Crushed Rock Gradation)

Material	Aggregate	1 (Fines)*	Aggregate	2 (2" Max)	Aggregat	e 3 (N/A)			
% used		30		· 70	3				
								· · · · · · · · · · · · · · · · · · ·	
Sieve	% Pass	% Blend	% Pass	% Blend	% Pass	% Blend	Total Blend	Target Value	Design Range
2	100	30	100	.70			100	100	100
1 1/2	100	30	100	70			100		80 -100
1	100	30	70	49			79	<72	
0.75 (3/4)	100	30	50	35			65		40 - 70
0.375 (3/8)	98	· 29	5	3.5			33		20 - 50
No. 4	77	23					23		10 - 40
No. 8	63	19					19		
No.16	55	17		·	·		17		
No. 30	51	15					15		
No. 50	47	14					14		
No. 100	30	9					9	·	
No. 200	18.0	5.4				·	5.4	•	0 - 10

* Average of Quarry Fine Gradations Tested During Quarry Processing

Umetco Minerals Corporation



3/8"1/2"3/4"1" 1.5" 2"

3"

Appendix A-3 – Launch Rock Filter Design Launch Rock Filter Material Gradation Plots

Appendix A-4 – Apron Channel Erosion Protection Design Stephenson Method Erosion Protection Calculation, and

Stephenson Method Erosion Protection Calculation, and Stephenson Method Worksheet used for Rational Formula determination of Unit Width Flow

RIPRAP DESIGN:

Stephenson Method for Slopes Greater than 10%

		RaInfall Duratio	on
Project: Gas Hills	(min)	<u>% of 1-hour PMF</u>	2
Item: Discharge Apron	2.5	27.5	0.00
Date: 8/4/2010	5	45	0.00
	10	62	59.00
Comment: Apron channel on Above	15	74	0.00
Grade TI. Southwest of	20	82	0.00
Wetlands	30	89	0.00
100 yr., 24 hr precip. = 3.2"	45	95	0.00
PMP = 8.7 in/hr	60	100	0.00
	• •	• •	59.00

Hydrology:

Length of Slope (L)	2310.13	feet
Elevation Difference (H)	133	feet
PMP	8.7	inches
Runoff Coefficient (C)	1	Recommended runoff coefficient of 1 be used for PMF
		applications. (refer to NUREG CR-4620, section 4.8.1)
Flow Concentration Factor (CF)	3	Refer to NUREG/CR-4620, page 68, for discussion of
		Flow Concentration Factor (enter 0 If not PMP application)

ft/ft

	0.00	11/11	
Slope; angle from horizontal (θ)	3.30	degrees	
Area; unit-width basis (Aw)	0.05	acres	
Time of Concentration (tc)	0.15	hours	(Kirich Method)
	9.12 ·	minutes	$tc = (11.9 L^3 / H)^{0.385}$
% of 1-hour PMP	59.00		(determined from Table 2.1 NUREG 4620)
PMP rainfall depth	5.13	inches	PMP x % of 1-hour PMP
Rainfall Intensity (i), see Note 1	33.78	inches/hour	i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620
Peak Flow Rate (q)	5.37	cfs/ft	q = (C i Aw) CF Eq. 4.43; 4620
			(Rational Formula for unit width analysis)

0.4

0.05

Riprap Design:

Slopo (S)

Rockfill Porosity (n) Relative Density of Rock (s) Angle of Friction (¢) Empirical Factor (C)

2.5640degrees0.25(varies from 0.22 for gravel and pebbles to 0.27 for
crushed granite; NUREG/CR-4620 page 48)

D ₅₀ =	0.33795	feet
	4.06	inches

 $D_{50} = (q(\tan \theta)^{7/6} n^{1/6} / C g^{1/2} ((1-n)(s-1) \cos \theta (\tan \phi - \tan \theta))^{5/3})^{2/3} Eq 4.28; 4620$ acceleration of gravity (g) = 32.174 feet/second²

Note 1 : If Tc <= 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

TYPICAL	VALUES:
---------	---------

Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartzite - 2.66 Basalt - 2.58 Granite - 2.41

Flow Concentration Factor:

The Flow Concentration Factor is multiplied by the peak flow rate. Flow Concentration Factor is incorporated into the design process to account for cover modifications resulting from differential settlement, collapsing soils, marginal quality control in cover placement, erosion, major hydraulic events and monitoring disturbance. It is reasonable to assume that values between 2 and 3 are attainable with only a slight evolutionary chage in the cover. Flow Concentration Factor is not utilized in NRC/STP or DOE/TAD design procedures.

RIPRAP	DESIGN.
--------	---------

Stephenson Method for Slopes Greater than 10%

		Rainfall Duration	
Project: Gas Hills	(min)	<u>% of 1-hour PMP</u>	•
Item: Discharge Apron	2.5	27.5	0.00
Date: 8/4/2010	5	45	0.00
	10	62	59.00
Comment: Determine unit flow for	15	.74	0.00
Abt/Johnson sizing calculation.	20	⁶ 82	0.00
Use flow concentration of 1, to	30	89	0.00
obtain unit flow.	45	95	0.00
PMP = 8.7 in/hr	60	100	0.00
			59.00

Hydrology:

-		
Length of Slope (L)	2310.13	feet
Elevation Difference (H)	133	feet
PMP	8.7	inches
Runoff Coefficient (C)	1	Recommended runoff coefficient of 1 be used for PMF
		applications. (refer to NUREG CR-4620, section 4.8.1)
Flow Concentration Factor (CF)	1	Refer to NUREG/CR-4620, page 68, for discussion of
		Flow Concentration Factor (enter 0 if not PMP application)
	Elevation Difference (H) PMP Runoff Coefficient (C)	Elevation Difference (H) 133 PMP 8.7 Runoff Coefficient (C) 1

Slope (S)	0.06	ft/ft	
Slope; angle from horizontal (θ)	3.30	degrees	
Area; unit-width basis (Aw)	0.05	acres	
Time of Concentration (tc)	0.15	hours	(Kirich Method)
	9.12	minutes	tc = (11.9 L ³ / H) ^{0.385}
% of 1-hour PMP	59.00		(determined from Table 2.1 NUREG 4620)
PMP rainfall depth	5.13	inches	PMP x % of 1-hour PMP
Rainfall Intensity (i), see Note 1	33.78	inches/hour	i = PMP rainfall depth x (60/tc) Eq. 4.52; 4620
Peak Flow Rate (q)	1.79	cfs/ft	q = (C i Aw) CF Eq. 4.43; 4620
			(Rational Formula for unit width analysis)

Riprap Design:

Rockfill Porosity (n) Relative Density of Rock (s) Angle of Friction (\$) Emplrical Factor (C) 0.25

degrees (varies from 0.22 for gravel and pebbles to 0.27 for crushed granite; NUREG/CR-4620 page 48)

D ₅₀ =	0.16246	feet
	1.95	inches

0.4

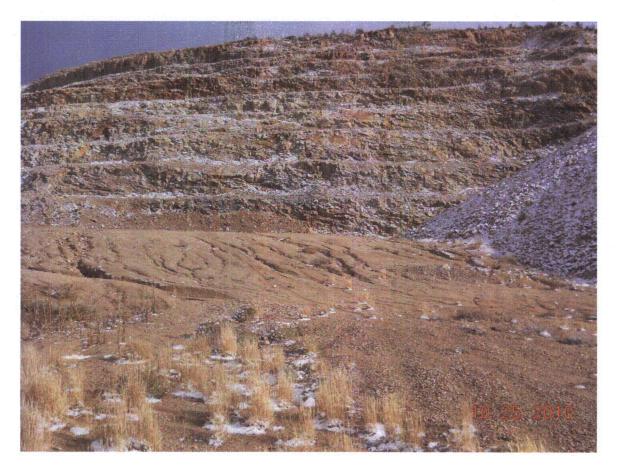
2.56

40

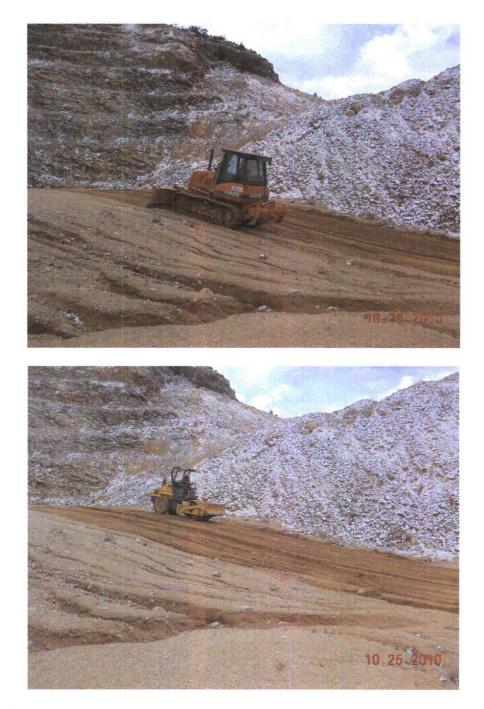
 $D_{50} = (q(\tan \theta)^{7/6} n^{1/6} / C g^{1/2} ((1-n)(s-1) \cos \theta (\tan \phi - \tan \theta))^{5/3})^{2/3} Eq 4.28; 4620$ acceleration of gravity (g) = 32.174 feet/second²

Note 1 : If Tc \leq 2.5 min then: i = PMP rainfall depth x (60/2.5 min)

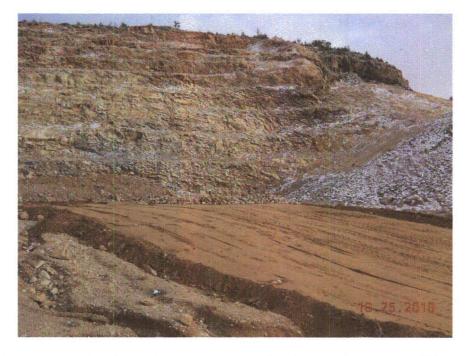
TYPICAL VALUES:


Porosity of Rock Layer (n) 0.39 to 0.46 Angle of Friction 37 to 42 Relative Density of Rock (s): Limestone - 2.42 to 2.74 Limy Sandstone - 2.14 to 2.67 Sandstone - 2.20 to 2.50 Quartzite -2.66 Basalt -2.58 Granite -2.41

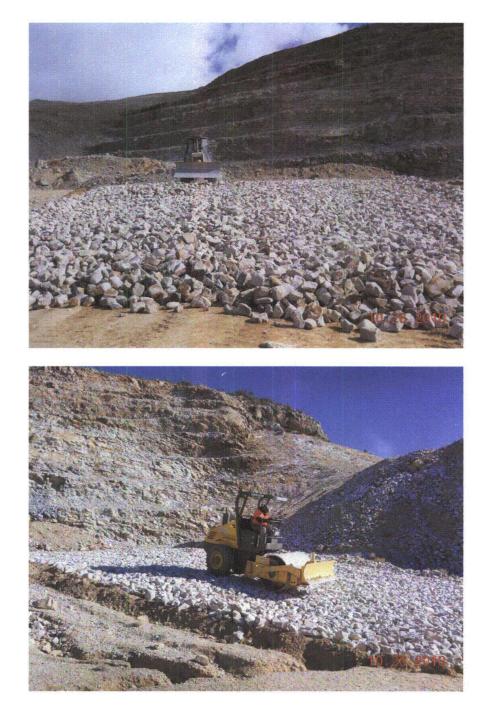
Flow Concentration Factor:

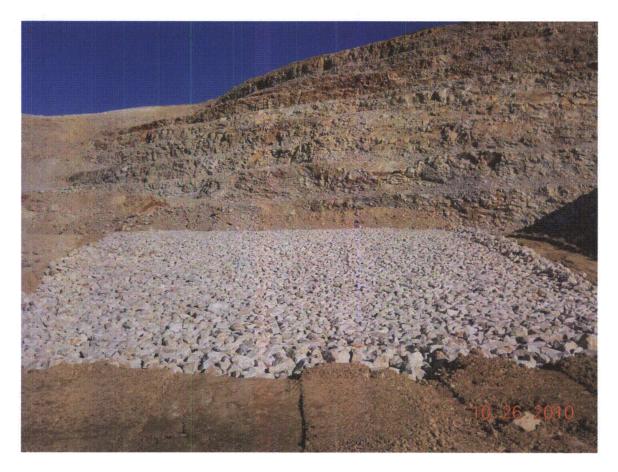

The Flow Concentration Factor is multiplied by the peak flow rate. Flow Concentration Factor is incorporated into the design process to account for cover modifications resulting from differential settlement, collapsing soils, marginal quality control in cover placement, erosion, major hydraulic events and monitoring disturbance. It is reasonable to assume that values between 2 and 3 are attainable with only a slight evolutionary chage in the cover. Flow Concentration Factor is not utilized in NRC/STP or DOE/TAD design procedures.

Appendix B Constructability Verification Field Tests Field Test Photographs, and Gradation Plot of Materials Used In Field Tests


Appendix B Constructability Verification Field Test Photographs

Test pad location at the Rattlesnake Quarry (pre-preparation).


The test pad area was shaped and compacted prior to the placement of Type C erosion protection material.

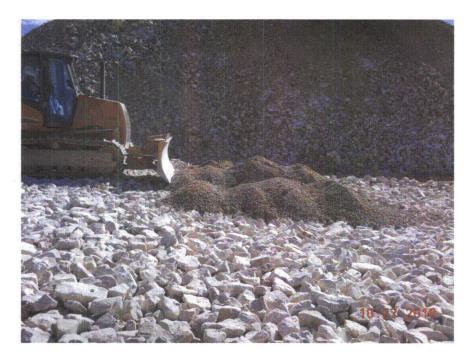

The completed sub-grade for the test pad prior to placement of Type C erosion protection material.

Type C erosion protection placement on the test pad slope. Riprap was placed to provide a minimum layer thickness of 12 inches.

Type C erosion protection placement. Riprap was graded, tracked walked and rolled with a smooth drum compactor to duplicate the placement techniques employed on the AGTI and A-9 Repositories.

The completed Type C erosion protection material test pad.

The test pad is approximately 100 feet wide by 100 feet long with slopes varying from 7(H):1(V) to 4(H):1(V) which replicates the existing slopes on the AGTI and A-9 Repositories.

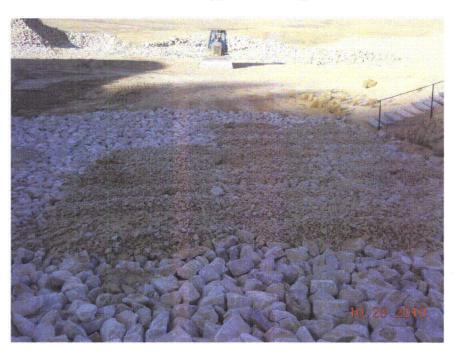

Blending and placement of the 30/70 blended bedding material. Bedding blend consisted of 30% quarry fines and 70% imported 1-inch minus crushed rock

Photograph of the 30/70 blended bedding material.

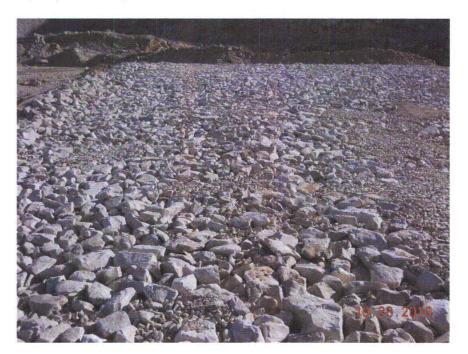
Loader spreading/sprinkling of bedding material on the surface of the riprap.

Conventional dumping of 30/70 bedding material on the surface, spread with a dozer.

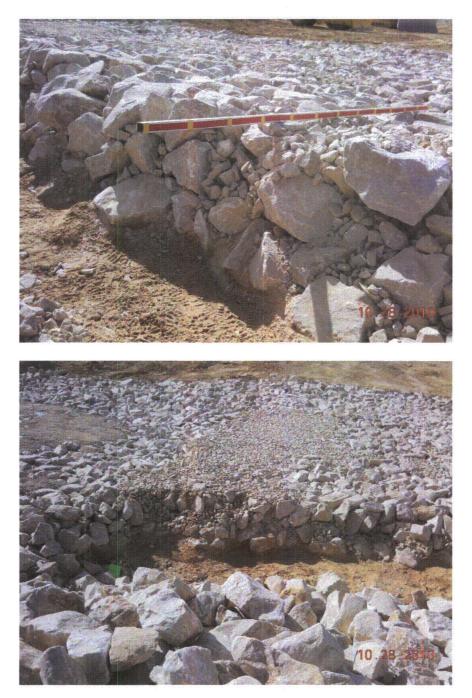
Both placement methods (loader spread and conventional dump/dozer spread), were tracked walked and rolled with a vibratory smooth drum compactor.



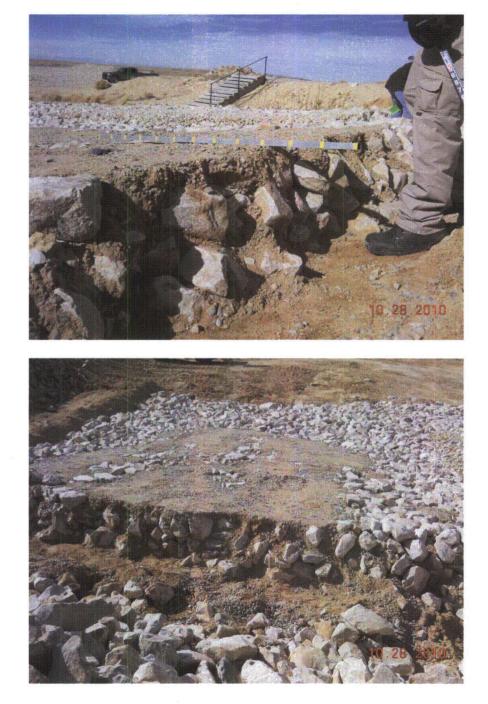
Smooth drum rolling the 30/70 blend bedding material placed by conventional methods.



The surface of the riprap layer after the bedding material placements were track walked and rolled with a vibratory compactor. The area in the bottom of the photograph is the area where the bedding was placed by sprinkling over the surface. The bedding material in this area was worked down to the bottom of the riprap layer. The area at the top of the photograph was placed by the conventional method, where the bedding material is visible on the surface. While, the bedding filled the voids throughout the riprap layer, the more conventional dump/spread placement method resulted in wasted bedding material.



Type A bedding material, loader spread/sprinkled across the riprap slope. The amount of material placed on the surface varies from 1 to 2 inches on the right side of the photo to 4 to 5 inches on the left side.



The finished surface of the Type A Bedding material placement area after the area was dozer tracked walked and rolled by a vibratory smooth drum compactor. The Type A material was worked into the bottom of the of the riprap layer.

Verification Results

Type A bedding placed by loader spreading (various surface amounts) and track walked/vibrated into place. Note, full section/depth penetration with the bedding worked into the bottom of the riprap section.

30/70 Blend bedding material placed by conventional dump/dozer spread and dozer track walked/vibrated into place. Note full penetration of bedding material in riprap layer, visible bedding material on surface and amount of waste.

30/70 Blend bedding placed by loader spread/sprinkling 1 to 3 inches thick then dozer tracked and vibratory rolled with a smooth drum roller 4 passes with each piece of equipment. The bedding material fills the voids in the bottom portion of the riprap section. The upper portion of the riprap section is clean (no waste).

View of the area where the 30/70 Blend bedding material was sprinkled from 1 inch thick on the right side to 3 inches thick on the left side of the photograph.

In conclusion, the results of field testing indicate that the bedding materials up to and including 3-inch minus material, can effectively be worked into the existing Type C erosion protection material layer. Loader spreading of the material is the most desirable and economical bedding placement method. Therefore, a bedding material comprised of 70 percent 2-inch minus crushed rock and 30 percent quarry fines and spread with loader type equipment is proposed as a viable method to introduce bedding material into the existing Type C erosion protection material where no rill damage has occurred on the AGTI and A-9 Repositories.

Appendix C 2011 Construction Cost Estimates Above Grade Tailings Impoundment, 2011 Construction Cost Estimate, and A-9 Repository, 2011 Construction Cost Estimate

Above Grade Tailings Impountment, 2011 Construction Cost Estimate

Reclamation Construction Task	Quantity	Unit	Unit Cost	Overhead (10%)	Profit (10%)	Unit Cost w/O&P	Amount
Erosion Protection Repair					<u>.</u>		
Mobilization/Demobilization	1.	Lump Sum	\$50,000.00	\$5,000.00	\$5,000.00	\$60,000.00	\$60,000.00
Develop Constr. Water Source	1	Lump Sum	\$12,500.00	\$1,250.00	\$1,250.00	\$15,000.00	\$15,000.00
Establish Access Routes	1	Lump Sum	\$12,500.00	\$1,250.00	\$1,250.00	\$15,000.00	\$15,000.00
Process 30/70 Bedding (Quarry)	17,260	Cubic Yards	\$7.50	\$0.75	\$0.75	\$9.00	\$155,340.00
Place Type A Bedding	11,425	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$137,100.00
Place 30/70 Bedding	17,260	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$207,120.00
R&R Existing Type C Riprap	31,380	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$376,560.00
Launch Rock Filter						4	
Exc. Launch Rock Filter Trenches	2,950	Cubic Yards	\$5.00	\$0.50	\$0.50	\$6.00	\$17,700.00
Place Launch Rock Filter (U/S & D/S)	2,300	Cubic Yards	\$20.00	\$2.00	\$2.00	\$24.00	\$55,200.00
Backfill Launch Rock Filter Trench (U/S)	1,800	Cubic Yards	\$5.00	\$0.50	\$0.50	\$6.00	\$10,800.00
Channel Apron							
Establish Access Routes	1	Lump Sum	\$15,000.00	\$1,500.00	\$1,500.00	\$18,000.00	\$18,000.00
Prepare Apron Channel Sub-Grade	300	Linear Feet	\$50.00	\$5.00	\$5.00	\$60.00	\$18,000.00
Place Type A Bedding	700	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$8,400.00
Place Type C Riprap	1,900	Cubic Yards	\$20.00	\$2.00	\$2.00	\$24.00	\$45,600.00
Reclaim Overall AGTI Site	1	Lump Sum	\$27,500.00	\$2,750.00	\$2,750.00	\$33,000.00	\$33,000.00

 Total Cost =
 \$1,172,820.00

 Contingency (15%) =
 \$175,923.00

 Total Estimated Cost =
 \$1,348,743.00

A-9 Repository, 2011 Construction Cost Estimate

Reclamation Construction Task	Quantity	Unit	Unit Cost	Overhead (10%)	Profit (10%)	Unit Cost w/O&P	Amount
Erosion Protection Repair							
Mobilization/Demobilization	1	Lump Sum	\$50,000.00	\$5,000.00	\$5,000.00	\$60,000.00	\$60,000.00
Develop Constr. Water Source	1 ·	Lump Sum	\$12,500.00	\$1,250.00	\$1,250.00	\$15,000.00	\$15,000.00
Establish Access Routes	1	Lump Sum	\$12,500.00	\$1,250.00	\$1,250.00	\$15,000.00	\$15,000.00
Process 30/70 Bedding (Quarry)	2,860	Cubic Yards	\$7.50	\$0.75	\$0.75	\$9.00	\$25,740.00
Place Type A Bedding	2,380	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$28,560.00
Place 30/70 Bedding	2,860	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$34,320.00
R&R Existing Type C Riprap	9,520	Cubic Yards	\$10.00	\$1.00	\$1.00	\$12.00	\$114,240.00
						Total Cost =	\$292,860.00

Total Cost =

\$43,929.00 Contingency (15%) =

Total Estimated Cost = \$336,789.00

Total Estimated 2011 Construction Cost = \$1,685,532.00

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLE :

GAS HILLS, WYOMING

VICINTY AND LOCATION MAPS

THESE DRAWINGS CAN BE ACCESSED WITHIN THE ADAMS PACKAGE WITHIN THIS PACKAGE...

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLE :

GAS HILLS, WYOMING

EVALUATION OF HYDROLOGY AND EROSION PROTECTION DESIGN CRITICAL HYDRAULIC PROFILE

THESE DRAWINGS CAN BE ACCESSED WITHIN THE ADAMS PACKAGE WITHIN THIS PACKAGE

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED DRAWING NO:

GAS HILLS, WYOMING

ABOVE – GRADE TAILINGS IMPOUNDMENT EVALUATION OF STTLEMENT SURVEY

THESE DRAWINGS CAN BE ACCESSED WITHIN THE ADAMS PACKAGE WITHIN THIS PACKAGE...

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: DRAWING NO:

GAS HILLS, WYOMING

A-9 REPOSITORY EVALUATION OF SETTLEMENT SURVEY

D04

THESE DRAWINGS CAN BE ACCESSED WITHIN THE ADAMS PACKAGE WITHIN THIS PACKAGE...

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED

GAS HILLS, WYOMING

ABOVE-GRADE TAILINGS IMPOUNDMENT DESIGN ENHANCEMENT EROSION AND RILL REPAIR PLAN

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE DOCUMENT/REPORT NO.

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

GAS HILLS, WYOMING ABOVE-GRADE TAILINGS IMPOUNDMENT EROSION AND RILL REPAIR PLAN SECTIONS AND DETAILS

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE DOCUMENT/REPORT NO.

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

GAS HILLS, WYOMING

A-9 REPOSITORY EROSION AND RILL REPAIR PLAN

WITH IN THIS PACKAGE...OR BY SEARCHING USING THE DOCUMENT/REPORT NO.

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

GAS HILLS, WYOMING

EROSION CONTROL APRON CHANNEL PLAN AND DETAILS

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE DOCUMENT/REPORT NO.

D08x