Crystal River Unit #3

Presentation to PNSC
Containment Update & Discussion
of Repair Options

November 16th, 2009
Presented by: Garry Miller

Steam Generator Replacement (SGR) Opening
(between Buttresses 3 and 4)

SGR Opening Dimensions
- Outer: 25' 6" x 24' 0"
- Concrete Opening: 16' 0" x 27' 0"

Hydro-Demolition & Liner Removal Sequence

Delamination Close-up

Condition Assessment Techniques

Completed or Planned
- Impulse Response (IR) Scanning of Containment Wall Surfaces
 - Comprehensive on external exposed surfaces
 - Representative sampling inside buildings
- Core bores
 - Use to cross-check IR results
 - Includes visual inspection/documentation of surface inside the bored hole
- IWL visual inspection of containment external surface (affected areas)
- Dome Inspections
 - IR scans in selected areas
 - Core bore samples in repaired and non-repaired areas
 - Physical survey (compared to 1976 results)

Location of the Delamination

Note: Figures include an illustrative scale and map of repair areas.
Containment "Unfolded" - Buttress 2 to 5
Updated Nov 16th. Mosaic IR Overlay scale is approximate

Core Bores
Buttress Spans 2-3-4-5 (as of Nov 14th 2009)

Core Bores
Buttress Spans 5 - 6 - 1 - 2 (as of Nov 14th 2009)

Core Borings

Tendon Pattern
Tendon Pattern at time of cutting SGR Opening
--- Excavated Tendon
--- Excavated Tendon
Root Cause Analysis – P11 Metrics
Un-refuted Failure Modes as of Nov 9th 2009

- External Events
- Operational Events
- Inadequate Containment Cutting
- Inadequate Concrete - tendon anchorage
- Discharge, Creep, and Settlement
- Chemical or Environmentally Induced Failing
- Inadequate Use of Concrete Materials
- Inadequate Concrete Construction
- Inadequate Concrete Design due to High-Level Stress

Field Data Acquisition

- Impulse Response (IR) Scans
- Boroscopic Inspections
 - Core bore holes
 - Inside the delaminated gap
- Visual inspections
 - Delamination cracks at SGR Opening
 - Larger fragments from concrete removal process
 - Containment external surface

Field Data Acquisition (continued)

- Nearby energized tendons lift-off (vertical and horizontal)
- Containment ID measurements
- Strain gauge measurements
- Linear variable displacement transducer (LVDT) gap monitoring
- Building Natural Frequency

Field Data Acquisition (continued)

- Core bores laboratory analysis
 - Petrographic Examination
 - Modulus of Elasticity and Poisson's Ratio
 - Density, Absorption, and Voids
 - Compressive Strength, Splitting Tensile Strength, and Direct Tensile Strength

MPR 3D FE Model
Model Features

- 180 degree Symmetric model
 - Symmetry plane @ 150 degrees midway between Butresses 3 & 4 / 1 & 6
 - '18 Opening, '18 Damage & Hatch Modeled Explicitly
- Concrete Model
 - Brick elements for all components
 - Dome and Base modeled independently
 - Simplified ring beam and buttress geometry
 - Constraint equations used to join dome and ring girder for meshing efficiency
 - Constraint equation used to model sloped surfaces of the hatch
- Liner Model
 - Shell mesh with variable thickness
 - Shared nodes with containment inner surface
- Tendon Modelling
 - Hoop tendons modeled explicitly for release and re-tensioning
 - Vertical Tendons modeled explicitly for release and re-tensioning
 - Dome tendons modeled independently with forces ported to global model
Specific Analysis to be Performed

<table>
<thead>
<tr>
<th>Existing Design Cases for Comparison</th>
<th>Planned Analysis Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>w Gravity (.95 G)</td>
<td>w Dead Load + Tendons</td>
</tr>
<tr>
<td>w Internal Dead Load (200 puff)</td>
<td>w Remove Hoop + Vertical Tendons in SGR Opening</td>
</tr>
<tr>
<td>w Tendons (163 kips / tendon)</td>
<td>w Remove SGR Opening</td>
</tr>
<tr>
<td>w Include cases</td>
<td>w Delamination(G)</td>
</tr>
<tr>
<td>w Internal Pressure (55 psi)</td>
<td>w Remove Additional Hoop & Vertical Tendons</td>
</tr>
<tr>
<td>w Wind Pressure (0.55 psi)</td>
<td>w Replace the SGR Plug</td>
</tr>
<tr>
<td>w Seismic</td>
<td>w Re-tension Tendons</td>
</tr>
<tr>
<td>w Accident Thermal</td>
<td>w SAVE Path Dependent Model for Starting point to Run 5 Controlling Design cases</td>
</tr>
</tbody>
</table>

Repair Alternatives Considered

- **Use-as-Is**
- **Anchorage Only**
- **Cementitious Grout**
- **Epoxy Resin**
- **Delamination Removal and Replacement**

Repair Attributes

- **Incorporates and is compatible with Root Cause Analysis findings**
- **Design Basis Controlling Load Steps**
 - Incorporates Life of Plant Considerations
 - Long Term Surveillance and/or Maintenance Requirements
 - License Renewal
 - Constructability

Repair Alternatives

- **Use as Is** - Rejected
 - Degraded safety related structure
 - Design margins are reduced
- **Anchorage Only** - Rejected
 - Containment and delaminated layer will not structurally perform as monolithic shell
 - Would function as two independent shells pinned together
 - Detensioning is not expected to close the delamination gap (greater than 2" in some places)
 - Would require some competent fill material be added
 - Anchorage plate washers (acting to distribute the load) would have minimal separation creating difficulty in the field
 - Tendons are not always equally spaced
 - Rebar mat interference at targeted anchorage locations
Repair Alternatives

Cementitious Grout

- **Rejected**
 - Will not be able to penetrate all of the fissures observed along the delaminated surface
 - Creates un-repaired weak planes, affecting tensile capacity
 - Multi-fissure segmented cracking and dislodgement could block adjacent areas from being filled
 - Mock-up testing to simulate all of the in-situ conditions is problematic
 - Examples - Cleanliness of surfaces, parallel fissures
 - Would likely require in-situ testing that would be difficult to control in the field

Epoxy Resins

- **Rejected**
 - Not viable in gaps greater than 1/2" due to exothermic reaction
 - Delamination gaps are well beyond this limit, including > 2" in some locations
 - May not be able to penetrate all of the fissures observed along the delaminated surface
 - Creates un-repaired weak planes, affecting tensile capacity
 - Raising the injection pressure to improve penetration in fissures
 - Anchorage becomes more difficult
 - Tendon conduit integrity becomes more difficult
 - Mock-up test needed to validate tendon duct integrity (leak tightness against epoxy injection)
 - Test may indicate leak tightness is not assured

Repair and Replacement

- **Delamination Removal and Replacement - Selected**
 - Delamination Removal Challenges
 - Safe removal of delaminated concrete at elevated heights
 - Avoiding collateral damage to tendon conduits
 - Minimize damage to the remaining substrate to minimize concrete branding and to provide a favorable bonding surface
 - Requires verification planar fissures are removed
 - Requires new radial reinforcement design (anchored to the substrate)
 - Will require treatment of planar fissures (if encountered) at periphery

- **Repair and Replacement - Selected (continued)**
 - Need to secure and verify same constituents to use the existing qualified design concrete mix (for the SGR Opening)
 - Concrete Placement
 - Needs to construct ganged forms for placing the pours
 - Need to determine method to anchor the forms
 - Elevations create work execution challenge
Questions