

DEPARTMENT OF THE ARMY INSTALLATION MANAGEMENT AGENCY HEADQUARTERS, UNITED STATES ARMY GARRISON-ROCK ISLAND ARSENAL 1 ROCK ISLAND ARSENAL ROCK ISLAND, ILLINOIS 61299-5000

REPLY TO ATTENTION OF:

0 4 AUG 2005

Office of the Garrison Manager

Dr. Tom McLaughlin Materials Decommissioning Branch Division of Waste Management and Environmental Protection Office of Nuclear Materials Safety and Safeguards Two White Flint North 11545 Rockville Pike Rockville, Maryland 20852-2738

Dear Dr. McLaughlin:

Reference Nuclear Regulatory commission License No. SUB-1435. Provided as enclosure are 6 hard copies and 1 Compact disc of the Deer Tissue Sampling Results report for your information and review.

Should you have any questions, please contact either Mr. Paul Cloud, Jefferson Proving Ground (JPG).License Radiation Safety Officer, US. Army JPG at (410) 436-2381, E-mail address: <u>paul.d.cloud@us.army.mil</u>, or Mr. John J. Welling, Chief Counsel, U.S. Army Garrison-rock Island Arsenal, at (309) 782-8433, E-mail address: wellingj@ria.army.mil.

Sincerely.

fion Garrison Manager

Enclosures CF: Paul Cloud

U.S. Army Corps of Engineers

DEER TISSUE SAMPLING RESULTS

Depleted Uranium Impact Area Site Characterization Jefferson Proving Ground, Madison, Indiana

Final

Prepared for:

U.S. Department of Army Installation Support Management Activity 5183 Blackhawk Road Aberdeen Proving Ground, Maryland 21010-5424

and

U.S. Army Corps of Engineers Louisville District 600 Dr. Martin Luther King, Jr. Place Louisville, Kentucky 40202-2230

Submitted by:

Science Applications International Corporation 11251 Roger Bacon Drive Reston, Virginia 20190

Contract No. W912QR-04-D-0019 Delivery Order No. DO17

August 2006

DEER TISSUE SAMPLING RESULTS

Depleted Uranium Impact Area Site Characterization Jefferson Proving Ground, Madison, Indiana

Final

Prepared for:

U.S. Department of Army Installation Support Management Activity 5183 Blackhawk Road Aberdeen Proving Ground, Maryland 21010-5424

and

U.S. Army Corps of Engineers Louisville District 600 Dr. Martin Luther King, Jr. Place Louisville, Kentucky 40202-2230

Submitted by:

Science Applications International Corporation 11251 Roger Bacon Drive Reston, Virginia 20190

> Contract No. W912QR-04-D-0019 Delivery Order No. DO17

> > August 2006

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CERTIFICATION 4

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Science Applications International Corporation (SAIC) has prepared this Deer Tissue Sampling Results Report as part of the site characterization at Jefferson Proving Ground's Depleted Uranium Impact Area, located in Madison, Indiana. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project, as defined in the Quality Control Plan (QCP). During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of assumptions; methods, procedures, and material used in analyses; alternatives evaluated; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing Corps policy.

N. Stil

1

1.0

1

L

L

۱.

L

Jose Skibinski **Project Manager** Science Applications International Corporation

E. HOTTIN

Joseph E. Peters Quality Assurance Officer Science Applications International Corporation,

3 Aug 2006

3 Aug 2006 Date

Date

Shia Sorme.

Corinne Shia Independent Technical Review Team Leader Alion Science and Technology Corporation

Significant concerns and explanation of the resolutions are documented within the project file.

As noted above, all concerns resulting from independent technical review of the project have been considered.

Liza D. Jones-Bateman Vice President Science Applications International Corporation

8/3/06

THIS PAGE WAS INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

			Page
1.	INTE	RODUCTION	1-1
	1.1	SITE HISTORY	1-1
	1.2	CHARACTERISTICS OF URANIUM AND DEPLETED URANIUM	1-1
		1.2.1 Uranium	1-1
		1.2.2 Depleted Uranium	1-2
	1.3	1.2.3 Radioactivity EXPOSURE PATHWAYS	
	1.5 1.4	OBJECTIVES	
•	1.5	REPORT ORGANIZATION	
2.		PLE DESIGN AND PROCEDURES	
	2.1	SAMPLE DESIGN	
	2.2	SAMPLE PROCEDURES	
3.	SAM	PLE RESULTS AND ANALYSES	
	3.1	SAMPLE RESULTS	
	3.2	ANALYSES OF SOURCES OF URANIUM	
	3.3	ADEQUACY OF BACKGROUND SAMPLES	3-3
	3.4	STATISTICS	3-3
	3.5	SUMMARY	3-4
4.		IPARISON WITH PREVIOUS RESULTS AT JPG AND OTHER MILITARY ALLATIONS	4-1
	4.1	HISTORICAL AND CURRENT RESULTS AT JPG	4-1
	4.2	HISTORICAL RESULTS AT APG AND CURRENT RESULTS AT JPG	4-2
5.	CON	CLUSIONS AND FUTURE SAMPLE RECOMMENDATIONS	5-1
	5.1	CONCLUSIONS	5-1
	5.2	RECOMMENDATIONS	5-1
		5.2.1 Deer Sampling	5-1
		5.2.2 Other Biota Sampling	
6.	REFE	ERENCES	6-1

APPENDICES

.

Appendix A.	Final Field Sampling Plan Addendum (Main Text and Appendix A)
Appendix B.	Field Logbook
Appendix C.	Photographs
Appendix D.	Data Validation Summary
Appendix E.	Historical JPG Deer Sampling Results

.

.

LIST OF FIGURES

Figure 1-1.	Regional Location of Jefferson Proving Ground	.1-4
Figure 1-2.	Jefferson Proving Ground, Madison, Indiana	.1-5
Figure 1-3.	Working Conceptual Site Model of DU Transport Through the Environment at and in Close Proximity to the JPG DU Impact Area	.1-7
Figure 2-1.	Biological Tissue Sampling Locations	.2-2

LIST OF TABLES

Table 1-1.	Percent U-235 by Mass in Different Types of Uranium	1 - 2
Table 1-2.	Amount of Isotope Present by Activity for Natural Uranium	1-2
Table 1-3.	Amount of Isotope Present by Activity for DU	1-3
Table 3-1.	Summary of Total Uranium in Deer Tissue	3-2
Table 3-2.	Tissue-specific Summary Data from Deer Sampling	3-2
Table 3-3.	Summary of Deer Tissue with Uranium Isotopes Detected	
Table 3-4.	Isotopic Uranium in Background Hunting Zones Deer Tissue	3-5
Table 3-5.	Isotopic Uranium in Depleted Uranium Impact Area Deer Tissue	
Table 3-6.	Isotopic Uranium in Nearby Hunting Zones Deer Tissue	
Table 4-1.	Historical Deer Sampling by Year at JPG	
Table 4-2.	Comparison of Historical APG and Current JPG Deer Tissue Results	

.

Page

Page

L.

1

1

<u>i</u>

LIST OF ACRONYMS AND ABBREVIATIONS

APG	Aberdeen Proving Ground
BHZ	Background Hunting Zones
BRAC	Base Realignment and Closure
CSM	Conceptual Site Model
DI	Deionized
DU	Depleted Uranium
GPS	Global Positioning System
HPT	Health Physics Technician
I.D.	Identification
ICP/MS	Inductively Coupled Plasma/Mass Spectrometry
JPG	Jefferson Proving Ground
LEU	Low Enriched Uranium
MOA	Memorandum of Agreement
NHZ	Nearby Hunting Zones
NRC	Nuclear Regulatory Commission
NWR	National Wildlife Refuge
SAIC	Science Applications International Corporation
U-234	Uranium-234
U-235	Uranium-235
NRC	Nuclear Regulatory Commission
NWR	National Wildlife Refuge
SAIC	Science Applications International Corporation

.

.

.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Γ

[_

1. INTRODUCTION

This section provides a brief overview of the site history, characteristics of uranium and depleted uranium (DU), exposure pathways, and objectives of the report.

1.1 SITE HISTORY

L

1.

Jefferson Proving Ground (JPG) was established in 1941 as a proving ground for the test firing of a wide variety of munitions. The facility is approximately 55,264 acres (224 square kilometers) and is located in Jefferson, Jennings, and Ripley Counties in southeastern Indiana (Figure 1-1). A firing line with 268 gun positions used for testing munitions separates JPG into two areas: a 4,000-acre (16.1-square kilometer) southern portion and a 51,000-acre (206-square kilometer) northern portion (SAIC 1997). The area north of the firing line consists of undeveloped and heavily wooded land and contains a Nuclear Regulatory Commission (NRC)-licensed area (SAIC 1997).

The U.S. Army used JPG as a proving ground from 1941 to 1994. The U.S. Army test fired DU projectiles as part of its munitions testing program. DU is uranium from which some fraction of the U-235 isotope has been removed and is used as a munition that penetrates armor plating. The possession and test firing of DU penetrators were conducted under a license issued by NRC (License SUB-1435). The test firing of DU projectiles occurred between 1983 and 1994 in the DU Impact Area, which is located in the south-central area of the northern portion of JPG, as shown in Figure 1-2. These tests were nondestructive (i.e., no aerosolization occurred), although the rounds may have fragmented upon impact.

Approximately 220,462 pounds (100,000 kilograms) of DU projectiles were fired at soft targets (i.e., non-armored targets that are made of materials such as cloth or wood) in the 2,080-acre (8.4-square kilometer) DU Impact Area. Approximately 66,139 pounds (30,000 kilograms) of DU projectiles and projectile fragments were recovered at or near the ground surface periodically to ensure that the total 100,000-kilogram license limit was not exceeded. Approximately 154,323 pounds (70,000 kilograms) of DU remain in the DU Impact Area (SEG 1995 and 1996).

JPG was closed in September 1995 under the Defense Authorization Amendments and Base Realignment and Closure (BRAC) Act of 1988. The NRC license for the area north of the firing line was amended for possession-only of DU in May 1996. In May 2005, the U.S. Army requested a license amendment proposing an alternate schedule for submission of a decommissioning plan. This request was approved by NRC on April 26, 2006. Site access to the area north of the firing line and to the DU Impact Area at JPG is controlled by the U.S. Army via the U.S. Army/U.S. Air Force (USAF)/U.S. Fish and Wildlife Service (USFWS) Memorandum of Agreement (MOA) of 2000 (U.S. Army 2000). The property north of the firing line, including the DU Impact Area, became Big Oaks National Wildlife Refuge (NWR) in 2000. Public use of the Big Oaks NWR is limited to hunting, fishing, wildlife observation, photography, and guided tours to selected areas north of the firing line not including the DU Impact Area. Public access to the refuge is controlled strictly at one gate and is limited to two areas: limited day use recreation and special controlled hunting zones. Further details concerning site history are presented in SAIC (2005a).

1.2 CHARACTERISTICS OF URANIUM AND DEPLETED URANIUM

1.2.1 Uranium

Uranium is a naturally occurring metal that can be found throughout the environment in rocks, soil, water, plants, and animals. Natural uranium has three primary isotopes (forms): uranium-238 (U-238), uranium-235 (U-235), and uranium-234 (U-234). U-235 and U-238 are the two most abundant. U-234 is formed during the natural radioactive decay of U-238. Naturally occurring uranium consists of approximately 99.27 percent U-238, approximately 0.72 percent U-235, and approximately 0.0055

percent U-234 (Royal Society 2001). Humans and wildlife are exposed to natural uranium on a daily basis primarily in their food and water (Royal Society 2002). As a result, humans ingest approximately 2 micrograms of natural uranium each day in food and fluids. A similar quantity is excreted each day in the feces and urine (DOE 2000). This presents a uranium balance in which uranium is always present in the tissues.

The range of intake and losses has been observed to vary over several orders of magnitude, depending upon the uranium concentration in foods and in the water supply (DOE 2000). This condition also may occur in wildlife. As a result of this potential exposure, it is possible that uranium may be detected in tissue samples from humans or wildlife.

1.2.2 Depleted Uranium

A modified form of uranium metal can be used as fuel in nuclear power plants. For use as a nuclear fuel, it is necessary to have uranium with a higher content of U-235; therefore, uranium undergoes an enrichment process to convert natural uranium into low enriched uranium (LEU). The U-235 content of LEU is approximately 3 percent by mass. DU is created as a byproduct of the uranium enrichment process. However, because of its high density, DU can have other uses, such as radiation shielding. DU also is used by the military for tank armor, armor-piercing projectiles, and counterweights in missiles and aircraft.

DU contains approximately 0.2 percent of U-235 by mass, with the remainder being U-238 and a very small type amount of U-234 by mass. The difference in U-235 content (by mass) can be used to distinguish natural uranium from DU (DOE 2000). The percent by mass of U-235 for each type of uranium is provided in Table 1-1.

Type of Uranium	Percent U-235 by Mass	
Natural Uranium	0.72	
Low Enriched Uranium (LEU)	3	
Depleted Uranium (DU)	Approximately 0.2	

Table 1-1. Percent U-235 by Mass in Different Types of Uranium Jefferson Proving Ground, Madison, Indiana

Source: DOE 2000

The decay of each atom of uranium gives off radiation that, to some degree and efficiency, can be detected by laboratory instruments. Each isotope of uranium (U-238, U-235, and U-234) decays at its own characteristic rate. Since the rate of decay of U-234 is much faster than U-238 or U-235, the amount of radiation that is available to be detected from U-234 is nearly equal to that available from U-238, even though the mass of U-234 present is much smaller. The contributions for each isotope of uranium in a natural uranium mixture is provided in Table 1-2.

Table 1-2. Amount of Isotope Present by Activity for Natural Uranium Jefferson Proving Ground, Madison, Indiana

Percent
47.3
2.3
50.4
1.0

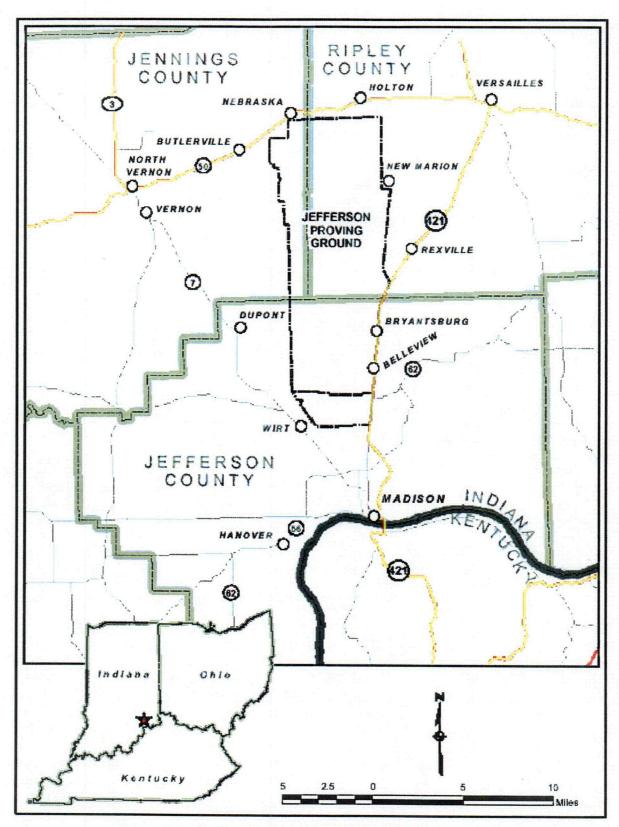
Source: U.S. Army 1995

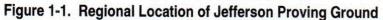
Since the radiation from the radioactive decay of uranium isotopes is relative easy to detect, the levels of activity in a sample are used to determine the relative amounts of the individual isotopes in the sample. In other words, the activity values of the uranium isotopes are used to determine the amounts of the uranium isotopes present, and hence the levels of enrichment.

When uranium is enriched, the level of U-235 is increased in the product. Because the mass of the U-234 atom is very close to the mass of the U-235 atom, the levels of U-234 also are increased in LEU. That also means that the levels of U-234 are decreased in DU. The result is that DU exhibits roughly 60 percent of the alpha radiation as naturally occurring uranium (U.S. Army 1995). The activity ratio for DU is provided in Table 1-3.

Percent		
84.7		
1.1		
14.2		
6.0		
	84.7 1.1 14.2	

Table 1-3. Amount of Isotope Present by Activity for DU Jefferson Proving Ground, Madison, Indiana


Source: WISE 2006


In comparing the activity fractions for U-235 in Tables 1-2 and 1-3, the relative contribution of U-235 to the total activity in a sample is nearly the same (2.3 versus 1.1 percent). This makes the identification of an individual sample as natural uranium or DU through measurement of the U-235 activity very difficult. The ratio of U-238 to that of U-234 is significantly different between Tables 1-2 and 1-3. It is for this reason that the U-238/U-234 ratio is used as a key factor in the classification of samples. A U-238/U-234 ratio of 2 or less is representative of natural uranium, whereas higher ratios are potentially indicative of DU (U.S. Army 2002). For the purposes of this report, samples with U-238/U-234 ratios in excess of 2 will be investigated further to validate if the sample is representative of DU or of natural uranium.

Because natural uranium and DU are identical except for their isotopic composition (percentage of U-238, U-235, and U-234), their chemical characteristics are the same. Thus, their biochemical action is also the same (Royal Society 2001 and 2002).

1.2.3 Radioactivity

DU exhibits approximately 60 percent of the alpha radiation as natural uranium because some of the U-235 and much of the U-234 has been removed. The radioactive decay of DU gives off predominantly alpha-particles along with beta-particles and gamma-rays. Alpha-particles are high energy and massive and, therefore, are more biologically harmful than beta-particles or gamma-rays if they are introduced internally (ingested or inhaled). Their large size, however, prevents alpha-particles from penetrating dead skin. Beta-particles are highly energetic and can penetrate tissues up to approximately 1 centimeter compared to alpha-particles. Gamma-rays are extremely penetrating and can penetrate through several feet of concrete or a few inches of lead (USEPA 1998). The biological damage from either beta-particles or gamma-rays passing through cells is much less than alpha-rays (Royal Society 2001).

August 2006

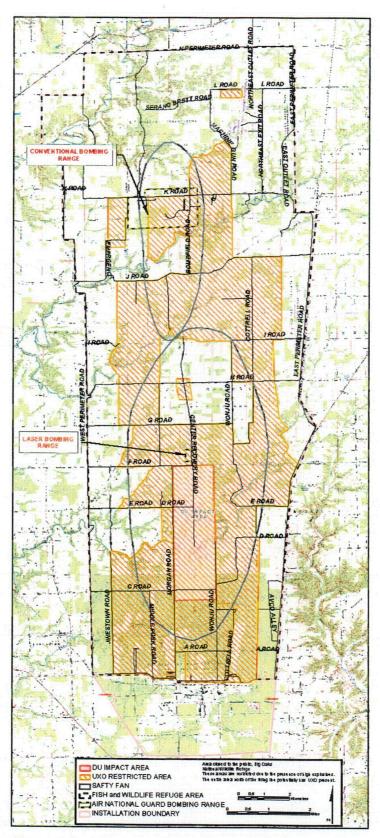
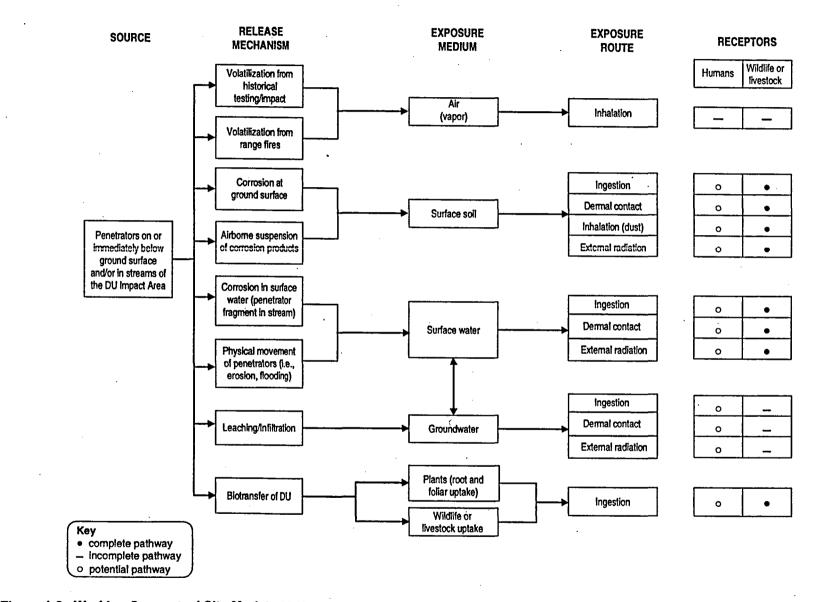


Figure 1-2. Jefferson Proving Ground, Madison, Indiana

August 2006

1.3 EXPOSURE PATHWAYS


Figure 1-3 is a working graphical representation of the conceptual site model (CSM), including DU sources, release mechanisms, exposure mediums, potential exposure pathways, and potential receptors at JPG. This working draft of the CSM will be revised as data are collected throughout the site characterization program. The transport mechanisms and potential exposure pathways are described in further detail below.

The type of release affects the type and amount of DU released into the environment and the potential for exposure of humans and wildlife. In general, during the testing of DU penetrators, DU either can be released as particles in aerosols and residual metallic fragments created upon impacts with targets or nearly intact penetrators that missed their targets. While DU testing had occurred at JPG (between 1983 and 1994), humans and wildlife could have been exposed to DU from inhaling and inadvertently ingesting particles in aerosols released from the DU munitions. However, as testing operations have not been conducted at JPG since 1994, and any aerosols created by the impact of the DU penetrators with the ground surface were limited because the tests were nondestructive testing on soft cloth (non-armored) targets for trajectory purposes, this pathway is less of a concern than the subsequent inhalation of any resuspended particles from contaminated soil or dust.

DU that had been distributed on or immediately below the ground surface and/or within the surface water (streams) of the DU Impact Area as a result of the testing may be transported throughout the environment by several different processes. DU in the soil or surface water can be subject to physical movement by erosion (during floods and high runoff events) and these processes may cause migration and transport of DU penetrators along the ground surface and along the surface water drainageways. Corrosion of the DU in the surface water or soil could enable soluble forms of DU to be absorbed by plants and incorporated within the plant matter for uptake by wildlife. Although vegetation may be burned as part of a management effort or unintended fires (e.g., from lightning), the levels of DU carried in smoke associated with natural vegetation (such as the controlled burns at JPG) is not likely significant (Williams et al. 1998 and U.S. Army 2001). Leached DU from the penetrators and/or fragments in the surface water potentially could be transported to groundwater and surface water, which in turn could migrate to drinking water sources and be ingested by humans, livestock, and wildlife.

Exposure of wildlife to DU can be highly variable depending on animal behavior and recent diet in addition to the nature of the DU contamination. Wildlife that traverses the DU Impact Area may be exposed to DU from direct contact with the penetrators and/or fragments and incidental ingestion of DU or DU-impacted soils or water. In addition, wildlife may be exposed to the effects of the external radiation from the DU due to the proximity of DU (in the soil and/or water and/or sediment). Ingestion of contaminated soil could be an important exposure pathway for animals as animals typically eat more soil than humans (i.e., incidentally when licking fur or pelts or as part of their diet).

Wildlife may be exposed indirectly to DU by ingestion of plants that have taken up DU or where DU has been deposited on the leaves by wind dispersion. Plants are generally poor accumulators of uranium and concentrations of uranium in plants are several orders of magnitude lower than those in the soil in which they grow (Royal Society 2002). However, despite the generally low transfer of uranium from soil to plants, certain plant species (i.e., microbial species such as fungi, yeasts, algae, and other unicellular bacteria [Hu et al. 1996, reported in Royal Society 2002], black spruce and some forest plants [Thomas 2000, reported in Royal Society 2002], sugar beets and sunflowers [Erikkson and Evans 1983 and Dushenkov et al., reported in Royal Society 2002], and Indian mustard [*Brassica juncea*] [Edenspace 2004]) have been shown to exhibit high uptake of uranium. Nonvascular plants (mosses and lichens) generally accumulate higher concentrations than vascular plants (Cramp et al. 1990, reported in Royal Society 2002). Ingestion of microbial and plant species with accumulation of DU presents a route

E

F

E

Figure 1-3. Working Conceptual Site Model of DU Transport Through the Environment at and in Close Proximity to the JPG DU Impact Area Jefferson Proving Ground, Madison, Indiana

Deer Sampling Results - Final JPG , Madison, Indiana

Г

1

E

5

1-7

August 2006

by which higher trophic levels of wildlife can be exposed. Some accumulation of uranium has been observed in animals. Measurements of uranium in tissues of animals grazing in uranium-contaminated areas have been reported to be higher than those in control areas. Few measurements of uranium in wild animals have been made, but those compiled do not report significant accumulation in tissues (e.g., Clulow et al. 1998), although they are measurable and often elevated in whole animal samples at contaminated sites (Royal Society 2001). Ingestion of animal species with accumulation of DU presents a route by which higher trophic levels of wildlife can be exposed.

Humans at JPG also may be exposed to DU from direct contact or incidental ingestion of penetrators and/or fragments from impacted surface water during recreational activities such as hunting. As fishing is not permitted in JPG streams and the nearest fishing is several miles north of the DU Impact Area, humans are not exposed to DU from direct contact while fishing. Possible exposure pathways for humans include ingestion of food (i.e., meat and/or animal products from animals that have ingested DU impacted soil, water, or biota), water, or soil containing DU; inhalation of dust containing DU; or external radiation from the presence of DU.

Insoluble uranium from DU or natural sources that has been inhaled may deposit in the lungs and associated lymph nodes and may remain in the lungs for years. Soluble uranium, once inhaled, may be transported to the gastrointestinal tract. In addition, uranium may be deposited in the intestinal tract of humans or wildlife from ingestion (Royal Society 2001). Once inside the intestinal tract, accumulation may occur in bones, livers, or kidneys. To a lesser degree, the uranium may accumulate in the muscle. Uptake from the stomach gut to the blood is low (0.2 to 5 percent) and most ingested uranium is excreted, where it could be reingested or recycled via the soil into forage. Uptake factors of uranium from the gut to the blood for ruminants (i.e., deer, cattle, or goats) may vary depending upon environmental conditions, but are approximately five times greater than that of humans (Royal Society 2002).

Deer hunts are held annually on the former JPG reservation at Big Oaks NWR, providing a potential mechanism of human exposure to residual DU from earlier munitions tests. Approximately 400 to 800 deer are harvested per year. Although none of the existing JPG environmental reports provides conclusive evidence of elevated levels of DU migrating outside the DU Impact Area (SAIC 2005a) and hunting is not allowed in the DU Impact Area, there are no structures in place that would limit deer from entering and leaving the DU Impact Area. Local residents from surrounding communities who hunt deer at or near JPG are concerned about potential adverse health effects from exposure to DU (NRC 2004). Although NRC has acknowledged that DU concentrations in the most recently collected deer samples in 1996 were low from a human health perspective, NRC also believes there were modest total uranium increases in kidney (0.05 to 0.151 pCi/g) and bone (0.0003 to 0.416 pCi/g) compared to background samples. As a result, NRC has expressed concern that concentrations may continue to increase to levels that could affect human health (NRC 2004) and the U.S. Army agreed to conduct additional deer sampling and analysis as described in the Field Sampling Plan (SAIC 2005a) and applicable addenda.

1.4 OBJECTIVES

In order to account for any potential degradation of DU projectiles and subsequent migration of DU throughout a portion of the JPG environment over the past 10 years, the U.S. Army has prepared a 5-year site characterization study (SAIC 2005a,b,c,d). As part of this study, work plans to collect deer samples of bone, kidney, liver, and muscle tissues were prepared (SAIC 2005e,f). Muscle tissue had not been collected previously at JPG because uranium (either natural or DU) is more likely to accumulate in bone, kidney, or liver. It was included for this project because muscle most often is consumed by people in larger quantities.

The objectives of this report are to present the results of the most recent deer sampling effort and make recommendations concerning the need for additional deer sampling as well as the need for additional biota sampling at JPG.

1.5 REPORT ORGANIZATION

The Deer Tissue Sampling Results Report is organized to provide a description of the site history, overview of characteristics of uranium (natural or DU), description of potential exposure pathways, sampling methods and results, and conclusions. The information provided in each of the six sections of this report is summarized below:

- Section 1. Introduction—This section provides a brief overview of the site history, characteristics of uranium and DU, exposure pathways, and objectives of the report, as well as summarizes the organization and contents.
- Section 2. Sample Design and Procedures—This section provides an overview of the methods used to collect deer tissue samples.
- Section 3. Sample Results and Analyses—This section summarizes the deer tissue results collected in November/December 2005 and February 2006.
- Section 4. Comparison with Previous Results at JPG and Other Military Installations—This section compares the recently collected deer results with historical data at JPG as well as at other military installations where DU has been tested.
- Section 5. Conclusions and Future Sample Recommendations—This section summarizes the conclusions and provides future sample recommendations concerning deer as well as other biota.
- Section 6. References—This section identifies the documents used to support development of this report.
- Appendices—The following appendices are included in this report:
 - Appendix A. Final Field Sampling Plan Addendum (Main Text and Appendix A)
 - Appendix B. Field Logbook
 - Appendix C. Photographs
 - Appendix D. Data Validation Summary
 - Appendix E. Historical JPG Deer Sampling Results.

- ا

THIS PAGE WAS INTENTIONALLY LEFT BLANK

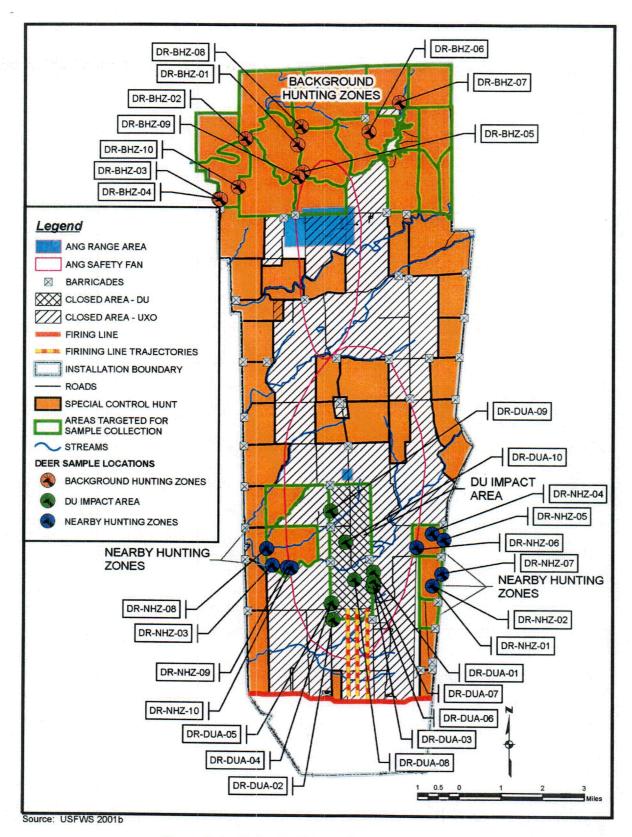
2. SAMPLE DESIGN AND PROCEDURES

This section provides an overview of the sampling design (also see SAIC 2005a) as well as the procedures used to collect the deer tissues.

2.1 SAMPLE DESIGN

Areas to the west, north, and east of the DU Impact Area are hunted for turkey and deer under the control of USFWS. The hunting zones to the west and east of the DU Impact Area are referred to as the nearby hunting zones (NHZ). Portions of the NHZ are less than 0.5 miles (0.8 kilometers) from the western boundary of the DU Impact Area, while portions of the NHZ are approximately 1 mile (1.6 kilometers) from the eastern boundary of the DU Impact Area. Hunting areas to the north of the DU Impact Area (i.e., background hunting zones [BHZ] are more than 5 miles (8.0 kilometers) from the DU Impact Area. These hunting zones are shown in Figure 2-1.

The size of the home range of a deer is approximately 1 square mile (Smith 1991), so there is potential for deer to forage in the DU Impact Area (1 mile [1.6 kilometers] in width by 3.25 miles [5,230 meters] long) and then be harvested by hunters in NHZ. However, due to the size of Big Oaks NWR, the relatively limited home range of deer, and the limited number of hunting zones near the DU Impact Area, the potential is remote for hunters in most of the hunting zones at Big Oaks NWR to harvest deer that have encountered DU in or near the DU Impact Area.


Deer samples also were collected from the DU Impact Area, which is the zone of maximum potential exposure. Based on the size of the DU Impact Area, a number of deer could forage exclusively there. Although hunting is prohibited within the DU Impact Area, the data were used to help determine if verification samples were needed (see Section 5).

In order to account for deer migration in and out of the DU Impact Area, as well as the potential for migration of DU from the DU Impact Area, 10 samples were collected from nearby NHZ (Figure 2-1; west and east of DU Impact Area within 2 miles of the DU Impact Area boundary). These deer could have been exposed to DU in either the DU Impact Area and/or DU that might have migrated beyond the boundaries of the DU Impact Area. Please note that none of the existing JPG environmental reports provides conclusive evidence of elevated levels of DU migrating outside the DU Impact Area (SAIC 2005a).

Given the limited size of the home range of deer, background data were collected from northern hunting zones at Big Oaks NWR (BHZ in Figure 2-1), which are more than 5 miles (8 kilometers) from the DU Impact Area. These deer are not likely to have either visited the DU Impact Area or come in contact with any migrating DU based on available data. Section 3.3 provides additional information on the home range of deer.

2.2 SAMPLE PROCEDURES

The initial phase of deer sampling was conducted between November 28 and December 8, 2005. During that phase, 10 deer were collected from the DU Impact Area and 2 deer were collected from the BHZ. Sampling initially started in the NHZ and BHZ, but was largely unsuccessful as the deer were skittish from the public hunting season that had ended the week before. Sampling was completed in the DU Impact Area, which is off-limits to hunting. Rather than continue sampling in the NHZ and BHZ, the sampling was delayed until February, at which time deer in these zones would be easier to harvest after they had become accustomed to feeding at the bait stations. The second phase of sampling occurred in February 2006. Between February 21 and February 24, 2006, 10 deer were collected from the NHZ and 8 deer were collected from the BHZ. As part of the Field Sampling Plan Addendum (SAIC 2005f), the

sample design included harvesting six deer from the NHZ to the west of the DU Impact Area and harvesting four deer from the NHZ to the east of the DU Impact Area. However, at the time of sampling, deer were more prevalent in the eastern NHZ. As a result, four deer were harvested from the NHZ to the west of the DU Impact Area and six deer were harvested from the NHZ to the east of the DU Impact Area. All of the NHZ deer were harvested within 2 miles of the boundary of the DU Impact Area and the change from the Field Sampling Plan Addendum is not significant to the results. All of these deer potentially could have been exposed to DU and all could have been harvested by hunters.

Specific deer tissues were collected from each deer. Kidney, bone (3 to 4 inches from foreleg), liver, and muscle were collected. Each sample was approximately 100 grams, except for the bone, which was approximately 30 grams. Teeth samples also were collected by Science Applications International Corporation (SAIC) to age the deer in the event that it would be beneficial in interpreting the data (e.g., to determine if there was a correlation between the age of the deer and the presence of DU in the tissue).

USFWS started at dusk (approximately 4:30 p.m.) each night to review the bait stations in the three sampling areas. All deer were collected using a high-powered rifle and scope. Once USFWS collected a deer, they placed cyalume glow sticks and/or flags to mark the exact location of the killed deer. USFWS then called SAIC personnel, who would rendezvous at the sample location and park their vehicles along the road. The senior unexploded ordnance (UXO) supervisor and health physics technician (HPT) cleared a path to the deer and collected radiological and global positioning system (GPS) readings. After the monitoring and readings were completed and the path was determined to be safe, the deer was brought back to the parked SAIC vehicle using a deer cart. The deer was weighed by suspending it within a net from a scale from the truck bed. The sex and weight of each deer, as well as the GPS coordinates of each collection site, were noted in the field logbook (Appendix B). In addition, the hunting areas specified by USFWS for access permits (USFWS 2006) were recorded in the logbook. In instances where obtaining an accurate GPS reading was problematic (DR-NHZ-04) or GPS coordinates were transcribed incompletely (DR-BHZ-02, DR-NHZ-03, and DR-NHZ-06) or likely transposed (DR-BHZ-01), the locations indicated in Figure 2-1 were based on the recorded hunting area.

Once weighed, the deer was placed on a clean piece of plastic sheeting on the bed of the SAIC truck. Each plastic sheeting was replaced between sampling of each individual deer. The sampler(s), wearing clean nitrile gloves (over protective gloves), began the deer dissection. The jaw was cut first, with a bone saw, to collect teeth samples. Then, the foreleg (below the knee) was removed using the bone saw. Fur and any tissue were scraped from the bone to provide a relatively clean bone sample.

The sampler then used a clean knife to begin the gross dissection and expose the abdominal cavity and muscle. The kidney, liver, and muscle samples were harvested with a new, clean scalpel. The samples were placed into clean glass jars and labeled. The HPT monitored the sample jars before they were bubble-wrapped and placed in the cooler. A duplicate sample was collected from one deer within each sampling area. Appendix C contains photographs of various deer sampling field tasks.

Once all of the samples were collected, the deer carcass was disposed of just off the roadside according to USFWS instructions. The HPT monitored personnel (feet and hands) and the deer cart. SAIC personnel decontaminated the bone saw and knives used during the dissection by placing them in a clean plastic tub, cleaned with a scrub brush and Alconox[®], then rinsed off with deionized (DI) water. The scalpels were disposed of in a sharps container. The personnel protective clothing, gloves, plastic sheeting, and booties were scanned by the HPT and were thrown away, since readings did not indicate radiological contamination.

At the end of each night, the samples were taken from the cooler and placed into a freezer in a secured room until they were shipped to the laboratory. No samples were shipped to the laboratory until they had been in the freezer at least 48 hours. In preparation for shipping, the samples were double bagged in Ziploc[®] bags and packed into shipping coolers with frozen gel packs.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

.

.

.

3. SAMPLE RESULTS AND ANALYSES

This section provides an overview of the sample results for total uranium as well as the isotopic analyses to determine the source of the uranium. In addition, the suitability of the BHZ as background is discussed.

3.1 SAMPLE RESULTS

Deer tissue samples were collected from 30 deer (10 within the DU Impact Area, 10 from the NHZ to the DU Impact Area, and 10 from BHZ locations). No unusual external anomalies were noted on any of the captured deer by USFWS (Robb 2006). Samples were collected from the kidney, bone, liver, and muscles of each deer and analyzed for isotopic uranium (U-234, U-235, and U-238). One set of duplicate samples for each tissue type was collected from each deer in each sample area. Of the 132 isotopic uranium analyses conducted on the deer tissues, isotopes of uranium (U-234, U-235, or U-238) were detected in 38 of the analyses conducted. Of these 38 detected isotopes, none of the concentrations of uranium was attributed to DU.

Table 3-1 presents the ranges of total uranium concentrations and average total uranium concentrations per tissue type per sample area. In general, average total uranium concentrations were slightly higher in tissues less likely to be consumed by hunters (bone and kidney tissues) compared to tissues more likely to be consumed by hunters (liver and muscle), as expected for uranium. The highest total uranium concentration (0.074 pCi/g) from any tissue type was detected in a kidney sample from the BHZ, whereas the lowest total uranium concentration (0.014 pCi/g) from any tissue type was detected in a kidney sample from the DU Impact Area. The highest average total uranium concentration (0.019 pCi/g) was detected in kidney from the BHZ. Each sampling area had the highest average total uranium concentrations in the different tissues between the different sample groups. These results suggest that tissue concentrations of total uranium are similar throughout JPG, regardless of how close the deer were collected to the DU Impact Area. A comparison of these results to historical tissue data collected at JPG is presented in Section 4.

Table 3-2 identifies the specific deer samples with the maximum total uranium concentrations per tissue type per area. For each tissue type in each sample area, a different deer had the maximum total uranium concentration. These data again support that tissue concentrations of total uranium are similar throughout JPG as no one deer or no few deer consistently had the maximum total uranium concentrations for each tissue type.

In Table 3-3, the number of deer with at least one of the uranium isotopes (U-234, U-235, and U-238) detected is presented. In some deer, there were no detections of any isotopes. Uranium isotopes were detected less frequently in kidney and liver than in bone and muscle samples, but just barely. Based on the total uranium data presented in Tables 3-1 through 3-3, there is no indication that one group of deer had been exposed to greater levels of uranium.

3.2 ANALYSES OF SOURCES OF URANIUM

To determine whether the measured uranium present was due to DU or natural uranium, the U-238/U-234 ratio was calculated in Tables 3-4 through 3-6 (presented at the end of Section 3) for each sampling area. A U-238/U-234 ratio of 2 or less is representative of natural uranium, whereas higher ratios are potentially indicative of DU (U.S. Army 2002). Based on these calculations, there is no indication of the presence of DU in the deer tissues that were collected in any of the three study areas.

Exposure Unit	Tissue Type	Number of Samples ^a	Range of Total Uranium Concentration ^b (pCi/g)	Average Total Uranium Concentration ^b (pCi/g)
BHZ°	Bone	11	0.007 - 0.033	0.016
DU Impact Area	Bone	11	0.008 - 0.069	0.02
NHZ	Bone	11	0.0004 - 0.032	0.013
BHZ¢	Kidney	11	0.003 - 0.074	0.019
DU Impact Area	Kidney	11	0.004 - 0.014	0.009
NHZ	Kidney	11	0.007 - 0.022	0.012 .
BHZ℃	Liver	11	0.007 - 0.020	0.012
DU Impact Area	Liver	11	0.004 - 0.016	0.01
NHZ	Liver	11	0.005 - 0.022	0.012
BHZC	Muscle	11	0.005 - 0.020	0.012
DU Impact Area	Muscle	11	0.001 - 0.019	0.008
NHZ	Muscle	11	0.008 - 0.021	0.013

Table 3-1. Summary of Total Uranium in Deer TissueJefferson Proving Ground, Madison, Indiana

^a Eleven samples where collected from 10 deer. One duplicate sample was collected from each tissue type in each exposure unit.

^b In instances were an isotope of uranium was not detected, the isotope was assumed to be present at the reporting limit.

• These hunting zones are more than 5 miles north of the DU Impact Area within the Big Oak NWR.

Table 3-2. Tissue-specific Summary Data from Deer Sampling Jefferson Proving Ground, Madison, Indiana

Tissue	Tissue Sample with Maximum Total Uranium Concentration*	Maximum Total Uranium Concentration (pC/g)	
Bone			
DU Impact Area	DR-DUIA-01	0.0689	
NHZ	DR-NHZ-02D	0.0323	
BHZ	DR-BHZ-10	0.0334	
Kidney	······································		
DU Impact Area	DR-DUIA-09	0.0142	
NHZ	DR-NHZ-01	0.0222	
BHZ	DR-BHZ-07	0.0743	
Liver			
DU Impact Area	DR-DUIA-04D	0.0163	
NHZ	DR-NHZ-07	0.0221	
BHZ	DR-BHZ-06	0.0196	
Muscle		<u></u>	
DU Impact Area	DR-DUIA-07	0.0187	
NHZ	DR-NHZ-01	0.0205	
BHZ	DR-BHZ-09	0.0202	

In instances where an isotope of uranium was not detected, the isotope was assumed to be present at the reporting limit and included in the total uranium concentration.

Exposure Area	Tissue Type	Number of Deer with U-234, U-235, or U-238 Detected	Any Indication of DU?*
BHZ	Bone	7 of 10	No
DU Impact Area	Bone	7 of 10	No
NHZ	Bone	7 of 10	No
BHZ	Kidney	6 of 10	No
DU Impact Area	Kidney	4 of 10	No
NHZ	Kidney	4 of 10	No
BHZ	Liver	6 of 10	No
DU Impact Area	Liver	5 of 10	No
NHZ	Liver	5 of 10	No
BHZ	Muscle	9 of 10	No
DU Impact Area	Muscle	4 of 10	No
NHZ	Muscle	8 of 10	No

 Table 3-3. Summary of Deer Tissue with Uranium Isotopes Detected

 Jefferson Proving Ground, Madison, Indiana

* Samples exhibiting U-238/U-234 ratios less than 2 are likely of natural origin (see Tables 3-4 through 3-6 for ratios).

As discussed in Section 2, teeth samples also were collected to estimate the age of the deer in order to investigate trends (e.g., to determine whether a correlation exists between the age of the deer and the presence of DU in the tissue). These data are not presented, since DU was not detected in any tissue samples.

3.3 ADEQUACY OF BACKGROUND SAMPLES

The size of the home range of a deer is approximately 1 square mile (Smith 1991). Given the limited size of the home range of deer, background data were collected from the BHZ at Big Oaks NWR, which is more than 5 miles (8.0 kilometers) from the DU Impact Area. There are two assumptions inherent to the selection of the BHZ as a suitable background area. First, given the distance from the DU Impact Area, there is no reason to believe that the BHZ is contaminated with DU. Second, deer collected in the BHZ would not have traveled at some point to the DU Impact Area, been exposed to DU, and then returned to the BHZ. There are a number of factors that could affect deer home range size, including food, cover, and hunting pressure. Without a tagging study, it is not possible to state with 100 percent certainty that the deer collected in the BHZ did not visit the DU Impact Area at some point previously. However, given the size of Big Oaks NWR and the limited home range of deer, it seems unlikely that many, if any, would have visited the DU Impact Area.

Finally, the safeguard against incorporating improper background data from JPG is the use of isotopic ratios that indicate the presence/absence of DU. The analysis of these ratios allows the opportunity to collect background samples onsite. Had the ratio(s) from the BHZ been greater than 2 and indicated DU, those samples would have been considered for removal from the dataset. Based on the absence of DU in any of the BHZ samples, the BHZ samples are considered to be suitable background samples.

3.4 STATISTICS

No formal statistical comparisons were conducted to determine whether deer from the NHZ, DU Impact Area, and BHZ were from the same population because no DU was detected in any samples. Based on qualitative comparisons of the data presented in Tables 3-1 through 3-3, all three groups would

appear to be from the same statistical population. No single group had either the highest or lowest total uranium concentrations for each tissue type. Regardless, the absence of DU in any of the tissue types is the most important result. Without DU in the tissues, there is no exposure pathway from deer to hunters.

3.5 SUMMARY

Each sampling area (NHZ, DU Impact Area, and BHZ) had the highest average total uranium concentrations for at least one tissue type. There is overlap between total average uranium concentrations in the different tissues between the different sample groups. The total uranium concentration data showed similar levels in tissue throughout JPG regardless of how close the deer were collected to the DU Impact Area. Thus, despite the potential for greater exposure to DU in the NHZ and DU Impact Area deer than the BHZ deer, tissue concentrations were essentially the same.

The U-238/U-234 ratios indicated the presence of natural uranium. Thus, from the perspective of DU contamination, the deer appear to be healthy. Based on these results, hunters would not be exposed to DU via ingestion of deer tissues at JPG. The absence of DU in the BHZ deer tissues supports their selection as suitable background samples. In a manner similar to the total uranium concentration data, proximity to the DU Impact Area did not necessarily result in the highest U-238/U-234 ratios. In fact, the highest individual ratios were observed for two (bone and muscle) of the four tissue types from deer collected in the BHZ. The NHZ had the highest kidney and liver U-238/U-234 ratios.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
Bone Tissue	-••		
DR-BHZ-01	SAICB	U-234	0.0047 U
DR-BHZ-01	SAICB	U-235	-0.0004 U**
DR-BHZ-01	SAICB	U-238	0.0027 U
······································		Total Uranium	0.007
		U-238/U-234 Ratio*	ND
DR-BHZ-02	SAICB	U-234	0.0104 J
DR-BHZ-02	SAICB	U-235	0.0015 U
DR-BHZ-02	SAICB	U-238	0.0086 J
· · · · · · · · · · · · · · · · · · ·		Total Uranium	0.0205
		U-238/U-234 Ratio*	0.83
DR-BHZ-02	SAICBD	U-234	0.0108 J
DR-BHZ-02	SAICBD	U-235	0.0036 U
DR-BHZ-02	SAICBD	U-238	0.0016 U
		Total Uranium	0.016
		U-238/U-234 Ratio*	ND
DR-BHZ-03	SAICB	U-234	0.0015 U
DR-BHZ-03	SAICB	U-235	0.001 U
DR-BHZ-03	SAICB	U-238	0.0057 J
		Total Uranium	0.0082
		U-238/U-234 Ratio*	ND
DR-BHZ-04	SAICB	U-234	0.0049 U
DR-BHZ-04	SAICB	U-235	0.0008 U
DR-BHZ-04	SAICB	U-238	0.0031 J
		Total Uranium	0.0088
		U-238/U-234 Ratio*	ND
DR-BHZ-05	SAICB	U-234	0.0079 J
DR-BHZ-05	SAICB	U-235	-0.0004 U .
DR-BHZ-05	SAICB	U-238	0.0119 J
		Total Uranium	0.0194
		U-238/U-234 Ratio*	1.5
DR-BHZ-06	SAICB	U-234	0.0056 U
DR-BHZ-06	SAICB	U-235	0.0071 J
DR-BHZ-06	SAICB	U-238	0.0016 U
		Total Uranium	0.0143
		U-238/U-234 Ratio*	ND
DR-BHZ-07	SAICB	U-234	0.006 U
DR-BHZ-07	SAICB	U-235	0.0012 U
DR-BHZ-07	SAICB	U-238	0.0023 U
	······	Total Uranium	0.0095
<u> </u>		U-238/U-234 Ratio*	ND

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana

1.4

.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-BHZ-08	SAICB	U-234	0.0116 J
DR-BHZ-08	SAICB	U-235	0.004 U
DR-BHZ-08	SAICB	U-238	0.002 U
		Total Uranium	0.0176
		U-238/U-234 Ratio*	ND
DR-BHZ-09	SAICB	U-234	0.0025 U
DR-BHZ-09	SAICB	U-235	0.0015 U
DR-BHZ-09	SAICB	U-238	0.0025 U
-		Total Uranium	0.0065
		U-238/U-234 Ratio*	ND
DR-BHZ-10	SAICB	U-234	0.019 J
DR-BHZ-10	SAICB	U-235	0.005 U
DR-BHZ-10	SAICB	U-238	0.0094 J
· ·		Total Uranium	0.0334
		U-238/U-234 Ratio*	0.49
Kidney Tissue			
DR-BHZ-01	SAICK	U-234	0.0054 U
DR-BHZ-01	SAICK	U-235	0.0012 U
DR-BHZ-01	SAICK	U-238	0.001 U
		Total Uranium	0.0076
•		U-238/U-234 Ratio*	ND
DR-BHZ-02	SAICK	U-234	0.0052 U
DR-BHZ-02	SAICK	U-235	0.0023 U
DR-BHZ-02	SAICK	U-238	0.0016 U
	÷	Total Uranium	0.0091
		U-238/U-234 Ratio*	ND
DR-BHZ-03	SAICK	U-234	0.0007 U
DR-BHZ-03	SAICK	U-235	-0.0002 U
DR-BHZ-03	SAICK	U-238	0.0021 U
	•	Total Uranium	0.0026
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-BHZ-04	SAICK	U-234	0.0043 J
DR-BHZ-04	SAICK	U-235	0.0031 J
DR-BHZ-04	SAICK	U-238	0.0038 U
·	·	Total Uranium	0.0112
		U-238/U-234 Ratio*	ND
DR-BHZ-04	SAICKD	U-234	0.0023 U
DR-BHZ-04	SAICKD	U-235	0.0026 U
DR-BHZ-04	SAICKD	U-238	0.0015 U
	1	Total Uranium	0.0064

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

August 2006

:

,

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-BHZ-05	SAICK	U-234	0.0139 J
DR-BHZ-05	SAICK	U-235	0.0058 J
DR-BHZ-05	SAICK	U-238	0.0052 U
		Total Uranium	0.0249
		U-238/U-234 Ratio*	ND
DR-BHZ-06	SAICK	U-234	0.0081 J
DR-BHZ-06	SAICK	U-235	0.0069 J
DR-BHZ-06	SAICK	U-238	0.0031 U
		Total Uranium	0.0181
· · ·	****	U-238/U-234 Ratio*	ND
DR-BHZ-07	SAICK	U-234	0.071
DR-BHZ-07	SAICK	U-235	0.0015 U
DR-BHZ-07	SAICK	U-238	0.0018 U
	- *	Total Uranium	0.0743
····		U-238/U-234 Ratio*	ND
DR-BHZ-08	SAICK	U-234	0.0106 J
DR-BHZ-08	SAICK	U-235	0.0021 U
DR-BHZ-08	SAICK	U-238	0.0011 U
······································	-l	Total Uranium	0.0138
<u> </u>	<u> </u>	U-238/U-234 Ratio*	ND
DR-BHZ-09	SAICK	U-234	0.0079 U
DR-BHZ-09	SAICK	U-235	0.0009 U
DR-BHZ-09	SAICK	U-238	0.0053 U
		Total Uranium	0.0141
	· · · · · · · · · · · · · · · · · · ·	U-238/U-234 Ratio*	ND
DR-BHZ-10	SAICK	U-234	0.021 J
DR-BHZ-10	SAICK	U-235	-0.0001 U
DR-BHZ-10	SAICK	U-238	0.0059 U
,		Total Uranium	0.0268
	· · · · · · · · · · · · · · · · · · ·	U-238/U-234 Ratio*	ND
Liver Tissue			
DR-BHZ-01	SAICL	U-234	0.0024 U
DR-BHZ-01	SAICL	U-235	0.0016 U
DR-BHZ-01	SAICL	U-238	0.0033 U
	d <u></u>	Total Uranium	0.0073
•	<u></u>	U-238/U-234 Ratio*	ND
DR-BHZ-02	SAICL	U-234	0.0127 J
DR-BHZ-02	SAICL	U-235	0.0024 J
DR-BHZ-02	SAICL	U-238	0.0014 U
	1	Total Uranium	0.0165
- <u> </u>		U-238/U-234 Ratio*	ND

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-BHZ-02	SAICLD	U-234	0.0033 U
DR-BHZ-02	SAICLD	U-235	0.0005 U
DR-BHZ-02	SAICLD	U-238	0.0032 U
	·	Total Uranium	0.007
		U-238/U-234 Ratio*	ND
DR-BHZ-03	SAICL	U-234	0.0068 J
DR-BHZ-03	SAICL	U-235	0.0011 U
DR-BHZ-03	SAICL	U-238	0.0026 U
		Total Uranium	0.0105
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-BHZ-04	SAICL	. U-234	0.0063 U
DR-BHZ-04	SAICL ·	U-235	0.0013 U
DR-BHZ-04	SAICL	U-238	0.001 U
. ·		Total Uranium	0.0086
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-BHZ-05	SAICL	U-234	0.0071 J
DR-BHZ-05	SAICL	U-235	0.0031 U
DR-BHZ-05	SAICL	U-238	0.0069 U
	- -	Total Uranium	0.0171
		U-238/U-234 Ratio*	ND
DR-BHZ-06	SAICL	U-234	0.009 U
DR-BHZ-06	SAICL	U-235	0.0041 U
DR-BHZ-06	SAICL	U-238	0.0065 U
····	.	Total Uranium	0.0196
		U-238/U-234 Ratio*	ND
DR-BHZ-07	SAICL	U-234	0.0062 J
DR-BHZ-07	SAICL	U-235	0.0009 U
DR-BHZ-07	SAICL	U-238	-0.0001 U
	1	Total Uranium	0.007
		U-238/U-234 Ratio*	ND
DR-BHZ-08	SAICL	U-234	0.0085 J
DR-BHZ-08	SAICL	U-235	-0.001 U
DR-BHZ-08	SAICL	U-238	0.0092 J
		Total Uranium	0.0167
		U-238/U-234 Ratio*	1.08
DR-BHZ-09	SAICL	U-234	0.0033 U
DR-BHZ-09	SAICL	U-235	0.003 U
DR-BHZ-09	SAICL	U-238	0.0026 U
· · · · · · · · · · · · · · · · · · ·	<u> </u>	Total Uranium	0.0089
		U-238/U-234 Ratio*	ND
DR-BHZ-10	SAICL	U-234	0.0089 J
DR-BHZ-10	SAICL	U-235	-0.0005 U
DR-BHZ-10	SAICL	U-238	0.0029 U
	.1	Total Uranium	0.0113

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

August 2006

.

_

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
Muscle Tissue			•
DR-BHZ-01	SAICM	U-234	0.0066 U
DR-BHZ-01	SAICM	U-235	0.0016 U
DR-BHZ-01	SAICM	U-238	0.0006 U
		Total Uranium	0.0088
		U-238/U-234 Ratio*	ND
DR-BHZ-02	SAICM	U-234	0.0036 U
DR-BHZ-02	SAICM	U-235	0.0005 U
DR-BHZ-02	SAICM	U-238	0.0006 U
		Total Uranium	0.0047
		U-238/U-234 Ratio*	ND
DR-BHZ-02	SAICMD	U-234	0.0072.J
DR-BHZ-02	SAICMD	U-235	0.0009 U
DR-BHZ-02	SAICMD	U-238	0.0056 J
		Total Uranium	0.0137
		U-238/U-234 Ratio*	0.78
DR-BHZ-03	SAICM	U-234	0.0052 U
DR-BHZ-03	SAICM	U-235	0.0017 U
DR-BHZ-03	SAICM	U-238	0.0077 J
		Total Uranium	0.0146
		U-238/U-234 Ratio*	ND
DR-BHZ-04	SAICM	U-234	0.0073 J
DR-BHZ-04	SAICM	U-235	0.0014 U
DR-BHZ-04	SAICM	U-238	0.0023 U
	1	Total Uranium	0.011
		U-238/U-234 Ratio*	ND
DR-BHZ-05	SAICM	U-234	0.0115 J
DR-BHZ-05	SAICM	U-235	0.0037 U
DR-BHZ-05	SAICM	U-238	0.0032 U
	1	Total Uranium	0.0184
	· · · · · · · · · · · · · · · · · · ·	U-238/U-234 Ratio*	ND
DR-BHZ-06	SAICM	U-234	0.0061 J
DR-BHZ-06	SAICM	U-235	-0.0004 U
DR-BHZ-06	SAICM	U-238	0.0016 U
	· · · · · · · · · · · · · · · · · · ·	Total Uranium	0.0073
		U-238/U-234 Ratio*	ND
DR-BHZ-07	SAICM	U-234	0.0046 J
DR-BHZ-07	SAICM	U-235	0.0009 U
DR-BHZ-07	SAICM ·	U-238	0.0006 U
		Total Uranium	0.0061
		U-238/U-234 Ratio*	ND
DR-BHZ-08	SAICM	U-234	0.0107 J
DR-BHZ-08	SAICM	U-235	0.0008 U
DR-BHZ-08	SAICM	U-238	0.0021 U
		Total Uranium	0.0136
		U-238/U-234 Ratio*	ND

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

Deer Sampling Results - Final JPG, Madison, Indiana

١.,

1

August 2006

Table 3-4. Isotopic Uranium in Background Hunting Zones Deer Tissue	
Jefferson Proving Ground, Madison, Indiana (Continued)	

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-BHZ-09	SAICM	U-234	0.0121 J
DR-BHZ-09	SAICM	U-235	0.0051 U
DR-BHZ-09	SAICM	U-238	0.003 U
		Total Uranium	0.0202
•		U-238/U-234 Ratio*	ND
DR-BHZ-10	SAICM	U-234	0.0081 J
DR-BHZ-10	SAICM	U-235	0.0024 U
DR-BHZ-10	SAICM	U-238	0.0034 U
		Total Uranium	0.0139
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND

Unitless.

** The negative values in the results column (pCi/g) indicate that the background count of the analysis was greater than the sample count. When a sample measurement is zero or very small (i.e., near the detection limit of the equipment), subtracting out equipment background can result in a negative number.

J – Indicates that the radionuclide was positively identified; the associated numerical value is the approximate concentration of the radionuclide in the sample.

ND - Indicates that one or more isotopes were not detected; therefore, the calculation was not conducted.

U – Indicates that the data met all QA/QC requirements, and that the radionuclide was analyzed for but was not detected above the reported sample quantitation limit.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
Bone Tissue			·
DR-DUA-01	SAICB	U-234	0.066 J
DR-DUA-01	SAICB	U-235	0.0013 U
DR-DUA-01	SAICB	U-238	0.0016 U
		Total Uranium	0.0689
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-DUA-02	SAICB	U-234	0.0067 U
DR-DUA-02	SAICB	U-235	0.0008 U
DR-DUA-02	SAICB	U-238	0.0003 U
		Total Uranium	0.0078
		U-238/U-234 Ratio*	ND
DR-DUA-03	SAICB	U-234	0.0058 J
DR-DUA-03	SAICB	U-235	0.0012 U
DR-DUA-03	SAICB	U-238	0.0036 U
······································	······	Total Uranium	0.0106
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICB	U-234	0.016 J
DR-DUA-04	SAICB	U-235	0.0
DR-DUA-04	SAICB	U-238	-0.0011 U**
		Total Uranium	0.0149
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICBD	U-234	0.0041 U
DR-DUA-04	SAICBD	U-235	0.0046 U
DR-DUA-04	SAICBD	U-238	0.0014 U
		Total Uranium	0.0101
		U-238/U-234 Ratio*	ND
DR-DUA-05	SAICB	U-234	0.0116 J
DR-DUA-05	SAICB	U-235	0.0026 U
DR-DUA-05	SAICB	U-238	0.0029 U
·.		Total Uranium	0.0171
		U-238/U-234 Ratio*	ND
DR-DUA-06	SAICB	U-234	0.0086 J
DR-DUA-06	SAICB	U-235	0.0022 U
DR-DUA-06	SAICB	U-238	· 0.0043 U
		Total Uranium	0.0151
		U-238/U-234 Ratio*	ND
DR-DUA-07	SAICB	U-234	0.02 J
DR-DUA-07	SAICB	U-235	-0.001 UJ
DR-DUA-07	SAICB	U-238	0.0094 UJ
		Total Uranium	0.0284
		U-238/U-234 Ratio*	ND

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer Tissue Jefferson Proving Ground, Madison, Indiana

.

Ĺ

1.4

6

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-DUA-08	SAICB	U-234	0.0037 U
DR-DUA-08	SAICB	U-235	0.0043 U
DR-DUA-08	SAICB	U-238	0.0026 U
		Total Uranium	0.0106
		U-238/U-234 Ratio*	ND
DR-DUA-09	SAICB	U-234	0.015 U
DR-DUA-09	SAICB	U-235	0.0034 U
DR-DUA-09	SAICB	U-238	0.0064 U
		Total Uranium	0.0248
		U-238/U-234 Ratio*	ND
DR-DUA-10	SAICB	U-234	0.0112 UJ
DR-DUA-10	SAICB	U-235	-0.0036 UJ
DR-DUA-10	SAICB	U-238	0.0061 UJ
		Total Uranium	0.0137
		U-238/U-234 Ratio*	ND
(idney Tissue	·····	· · · · · · · · · · · · · · · · · · ·	
DR-DUA-01	SAICK	U-234	0.0049 U
DR-DUA-01	SAICK	U-235	0.0012 U
DR-DUA-01	SAICK	U-238	0.002 U
·······		Total Uranium	0.0081
	:	U-238/U-234 Ratio*	ND
DR-DUA-02	SAICK	U-234	0.0041 U
DR-DUA-02	SAICK	U-235	0.0005 U
DR-DUA-02	SAICK	U-238	-0.0001 U
		Total Uranium	0.0045
· ·		U-238/U-234 Ratio*	ND
DR-DUA-03	SAICK	U-234	0.0024 U
DR-DUA-03	SAICK	U-235	0.0007 U
DR-DUA-03	SAICK	U-238	0.0016 U
	· · · · · · · · · · · · · · · · · · ·	Total Uranium	0.0047
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICK	U-234	0.0022 U
DR-DUA-04	SAICK	U-235	0 U
DR-DUA-04	SAICK	U-238	0.0014 U
		Total Uranium	0.0036
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICKD	U-234	0.0034 U
DR-DUA-04	SAICKD	U-235	0.0015 U
DR-DUA-04	SAICKD	U-238	0.0018 U
		Total Uranium	0.0067
		U-238/U-234 Ratio*	ND

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

1.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-DUA-05	SAICK	U-234	0.0075 J
DR-DUA-05	SAICK	U-235	0 U
DR-DUA-05	SAICK	U-238	0.0033 J
		Total Uranium	0.0108
		U-238/U-234 Ratio*	0.44
DR-DUA-06	SAICK	U-234	0.0062 J
DR-DUA-06	SAICK	U-235	0.0008 U
DR-DUA-06	SAICK	U-238	0.0057 U
		Total Uranium	0.0127
		U-238/U-234 Ratio*	ND
DR-DUA-07	SAICK	U-234	0.0074 U
DR-DUA-07	SAICK	U-235	0.0025 U
DR-DUA-07	SAICK	U-238	0.002 U
		Total Uranium	0.0119
		U-238/U-234 Ratio*	ND
DR-DUA-08	SAICK	U-234	0.0069 J
DR-DUA-08	SAICK	U-235	-0.0002 U
DR-DUA-08	SAICK	U-238	0.004 J
		Total Uranium	0.0107
	 ,	U-238/U-234 Ratio*	0.58
DR-DUA-09	SAICK	U-234	0.0114 J
DR-DUA-09	SAICK	U-235	0.0006 U
DR-DUA-09	SAICK	U-238	0.0022 U
· · · · · · ·	······································	Total Uranium	0.0142
		U-238/U-234 Ratio*	ND
DR-DUA-10	SAICK	U-234	0.0055 U
DR-DUA-10	SAICK	U-235	-0.0002 U
DR-DUA-10	SAICK	U-238	0.0018 U
,,,,,,,	<u> </u>	Total Uranium	0.0071
		U-238/U-234 Ratio*	ND
Liver Tissue			
DR-DUA-01	SAICL	U-234	0.0039 U
DR-DUA-01	SAICL	U-235	0.0011 U
DR-DUA-01	SAICL	U-238	0.0019 U
·····	•	Total Uranium	0.0069
· · · · · · · · · · · · · · · · · · ·		U-238/U-234 Ratio*	ND
DR-DUA-02	SAICL	U-234	0.0105 J
DR-DUA-02	SAICL	U-235	0.0008 U
DR-DUA-02	SAICL	U-238	0.0019 J
		Total Uranium	0.0132
		U-238/U-234 Ratio*	0.18

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

۱.

.

1

L

ample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-DUA-03	SAICL	U-234	0.0042 U
DR-DUA-03	SAICL	U-235	0 U
DR-DUA-03	SAICL	U-238	0.0022 U
		Total Uranium	0.0064
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICL	U-234	0.0106 J
DR-DUA-04	SAICL	U-235	0.0007 U
DR-DUA-04	SAICL	U-238	0.0028 U
		Total Uranium	0.0141
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICLD	U-234	0.0117 J
DR-DUA-04	SAICLD	U-235	0.0038 U
DR-DUA-04	SAICLD	U-238	0.0008 U
		Total Uranium	0.0163
		U-238/U-234 Ratio*	ND
DR-DUA-05	SAICL	U-234	0.0006 U
DR-DUA-05	SAICL	U-235	0 U
DR-DUA-05	SAICL	U-238	0.0035 U
· · · · · · · · · · · · · · · · · · ·		Total Uranium	0.0041
		U-238/U-234 Ratio*	ND
DR-DUA-06	SAICL	U-234	0.0084 J
DR-DUA-06	SAICL	U-235	0 U
DR-DUA-06	SAICL	U-238	0.001 U
		Total Uranium	0.0094
		U-238/U-234 Ratio*	ND
DR-DUA-07	SAICL	U-234	0.0044 U
DR-DUA-07	SAICL	U-235	0.0022 U
DR-DUA-07	SAICL	U-238	-0.0005 U
•		Total Uranium	0.0061
		U-238/U-234 Ratio*	ND
DR-DUA-08	SAICL	U-234	0.0098 J
DR-DUA-08	SAICL	U-235	0.0013 U
DR-DUA-08	SAICL	U-238	0.0007 U
		Total Uranium	0.0118
	· ·	U-238/U-234 Ratio*	ND
DR-DUA-09	SAICL	U-234	0.0072 J
DR-DUA-09	SAICL	U-235	0.0023 U
DR-DUA-09	SAICL	U-238	-0.0006 U
		Total Uranium	0.0089
		U-238/U-234 Ratio*	ND
DR-DUA-10	SAICL	U-234	0.003 U
DR-DUA-10	SAICL	U-235	0.0022 U
DR-DUA-10	SAICL	U-238	0.0027 U
"L		Total Uranium	0.0079
		U-238/U-234 Ratio*	ND

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

August 2006

Sample Designation	Sample Designation Sample I.D. Analyte		Result (pCi/g)
Muscle Tissue	· · · · · · · · · · · · · · · · · · ·		
DR-DUA-01	SAICM	U-234	0.0061 J
DR-DUA-01	SAICM	U-235	-0.0006 U
DR-DUA-01	SAICM	U-238	0.0006 U
		Total Uranium	0.0061
		U-238/U-234 Ratio*	ND
DR-DUA-02	SAICM	U-234	0.0024 U
DR-DUA-02	SAICM	U-235	-0.0011 U
DR-DUA-02	SAICM	U-238	-0.0001 U
		Total Uranium	0.0012
		U-238/U-234 Ratio*	ND
DR-DUA-03	SAICM	U-234	0.0038 U
DR-DUA-03	SAICM	U-235	-0.0016 U
DR-DUA-03	SAICM	U-238	-0.0009 U
		Total Uranium	0.0013
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICM	U-234	0.0095 J
DR-DUA-04	SAICM	U-235	0.0045 U
DR-DUA-04	SAICM	U-238	0.0003 U
		Total Uranium	0.0143
		U-238/U-234 Ratio*	ND
DR-DUA-04	SAICMD	U-234	0.0073 J
DR-DUA-04	SAICMD	U-235	0.001 U
DR-DUA-04	SAICMD	U-238	0.0001 U
	· · · · · · · · · · · · · · · · · · ·	Total Uranium	0.0084
		U-238/U-234 Ratio*	ND
DR-DUA-05	SAICM	U-234	0.0021 U
DR-DUA-05	SAICM	U-235	0 U
DR-DUA-05	SAICM	U-238	0.002 U
		Total Uranium	0.0041
		U-238/U-234 Ratio*	ND
DR-DUA-06	SAICM	U-234	0.0067 J
DR-DUA-06	SAICM	U-235	0.0026 U
DR-DUA-06	SAICM	U-238	0.0029 U
		Total Uranium	0.0122
		U-238/U-234 Ratio*	ND
DR-DUA-07	SAICM	U-234	0.0139 J
DR-DUA-07	SAICM	U-235	0.001 U
DR-DUA-07	SAICM	U-238	0.0038 U
	•	Total Uranium	0.0187
		U-238/U-234 Ratio*	ND

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

1

-

.

....

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-DUA-08	SAICM	U-234	0.0052 U
DR-DUA-08	SAICM	U-235	0.0001 U
DR-DUA-08	SAICM	U-238	0.0021 U
		Total Uranium	0.0074
		U-238/U-234 Ratio*	ND
DR-DUA-09	SAICM	U-234	0.0027 U
DR-DUA-09	SAICM	U-235	-0.0002 U
DR-DUA-09	SAICM	U-238	0.0037 U
		Total Uranium	0.0062
		U-238/U-234 Ratio*	ND
DR-DUA-10	SAICM	U-234	0.007 U
DR-DUA-10	SAICM	U-235	0.0027 U
DR-DUA-10	SAICM	U-238	0.0013 U
		Total Uranium	0.011
		U-238/U-234 Ratio*	• ND

Table 3-5. Isotopic Uranium in Depleted Uranium Impact Area Deer Tissue Jefferson Proving Ground, Madison, Indiana (Continued)

* Unitless.

** The negative values in the results column (pCi/g) indicate that the background count of the analysis was greater than the sample count. When a sample measurement is zero or very small (i.e., near the detection limit of the equipment), subtracting out equipment background can result in a negative number.

J – Indicates that the radionuclide was positively identified; the associated numerical value is the approximate concentration of the radionuclide in the sample.

ND - Indicates that one or more isotopes were not detected; therefore, the calculation was not conducted.

U – Indicates that the data met all QA/QC requirements, and that the radionuclide was analyzed for but was not detected above the reported sample quantitation limit.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
Rone Tissue	· · · · · · · · · · · · · · · · · · ·	······································	
DR-NHZ-01	SAICB	U-234	0.0054 J
DR-NHZ-01	DR-NHZ-01 SAICB		0.0009 U
DR-NHZ-01	SAICB	U-238	0.0054 U
		Total Uranium	0.0117
	Ū-	238/U-234 Ratio*	ND
DR-NHZ-02	SAICB	U-234	0.0112 J
DR-NHZ-02	SAICB	U-235	0.0052 U
DR-NHZ-02	SAICB	U-238	0.0021 U
	· · ·	Total Uranium	0.0185
	U-:	238/U-234 Ratio*	ND
DR-NHZ-02	SAICBD	U-234	0.021 J
DR-NHZ-02	SAICBD	U-235	0.0064 U
DR-NHZ-02	SAICBD	U-238	0.0049 U
		Total Uranium	0.0323
	U-:	238/U-234 Ratio*	ND
DR-NHZ-03	SAICB	U-234	0.0041 J
DR-NHZ-03	SAICB	U-235	0.0048 J
DR-NHZ-03	SAICB	U-238	0.0041 J
		Total Uranium	0.013
	Ū-;	238/U-234 Ratio*	1
DR-NHZ-04	SAICB	U-234	0.0081 J
DR-NHZ-04	SAICB	U-235	0.0037 U
DR-NHZ-04	SAICB	U-238	0.0069 J
· · · · ·		Total Uranium	0.0187
	Ū-2	238/U-234 Ratio*	0.85
DR-NHZ-05	SAICB	U-234	0.0019 U
DR-NHZ-05	SAICB	U-235	-0.0002 U**
DR-NHZ-05	SAICB	U-238	0.0033 U
<u></u>		Total Uranium	0.005
	Ū-2	238/U-234 Ratio*	ND
DR-NHZ-06	SAICB	U-234	0.0055 U
DR-NHZ-06	SAICB	U-235	-0.0008 U
DR-NHZ-06	SAICB	U-238	0.0013 U
		Total Uranium	0.006
	Ū-2	38/U-234 Ratio*	ND
DR-NHZ-07	SAICB	U-234	0.0077 J
DR-NHZ-07	SAICB	U-235	0.0013 U
DR-NHZ-07	SAICB	U-238	0.0021 U
		Total Uranium	0.0111
	U-2	38/U-234 Ratio*	ND

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-NHZ-08	SAICB	U-234	0.0013 U
DR-NHZ-08	SAICB	U-235	-0.002 U
DR-NHZ-08	SAICB	U-238	0.0011 U
		Total Uranium	0.0004
	U-:	238/U-234 Ratio*	ND
DR-NHZ-09	SAICB	U-234	0.0062 J
DR-NHZ-09	SAICB	U-235	0.0008 U
DR-NHZ-09	SAICB	U-238	0.0032 U
		Total Uranium	0.0102
	U-:	238/U-234 Ratio*	ND
DR-NHZ-10	SAICB	U-234	0.0116 J
DR-NHZ-10	SAICB	U-235	0.001 U
DR-NHZ-10	SAICB	U-238	0.001 U
		Total Uranium	0.0136
-	U-:	238/U-234 Ratio*	ND
Kidney Tissue	i.	_	·····
DR-NHZ-01	SAICK	U-234	0.01 J
DR-NHZ-01	SAICK	U-235	0.0056 J
DR-NHZ-01	SAICK	U-238	0.0066 J
		Total Uranium	0.0222
	U-2	238/U-234 Ratio*	0.66
DR-NHZ-02	SAICK	U-234	0.0017 U
DR-NHZ-02	SAICK	U-235	0.0035 U
DR-NHZ-02	SAICK	U-238	0.0053 U
	<u></u>	Total Uranium	0.0105
	Ū-2	238/U-234 Ratio*	ND
DR-NHZ-02	SAICKD	U-234	0.0054 U
DR-NHZ-02	SAICKD	U-235	0.0036 U
DR-NHZ-02	SAICKD	U-238	0.0045 U
	· · · · · ·	Total Uranium	0.0135
·····	U-2	238/U-234 Ratio*	ND
DR-NHZ-03	SAICK	U-234	0.0122 J
DR-NHZ-03	SAICK	U-235	0.005 U
DR-NHZ-03	SAICK	U-238	0.0042 U
		Total Uranium	0.0214
	U-2	38/U-234 Ratio*	ND
DR-NHZ-04	SAICK	U-234	0.004 U
DR-NHZ-04	SAICK	U-235	-0.0002 U
DR-NHZ-04	SAICK	U-238	0.003 U
~ <u>~~</u>		Total Uranium	0.0068
	11.2	38/U-234 Ratio*	ND

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

Ţ

...i

1

i

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-NHZ-05	SAICK	U-234	0.0074 J
DR-NHZ-05	SAICK	U-235	00
DR-NHZ-05	SAICK	U-238	0.0065 J
		Total Uranium	0.0139
	U-2	238/U-234 Ratio*	0.88
DR-NHZ-06	SAICK	U-234	0.0066 J
DR-NHZ-06	SAICK	U-235	0.0016 U
DR-NHZ-06	SAICK	U-238	0.0003 U
<u></u>		Total Uranium	0.0085
	U-2	238/U-234 Ratio*	ND
DR-NHZ-07	SAICK	U-234	0.007 U
DR-NHZ-07	SAICK	U-235	0.0003 U
DR-NHZ-07	SAICK	U-238	0.0034 U
	<u> </u>	Total Uranium	0.0107
	U-2	38/U-234 Ratio*	ND
DR-NHZ-08	SAICK	U-234	0.0038 U
DR-NHZ-08	SAICK	U-235	0.001 U
DR-NHZ-08	SAICK	U-238	0.0049 U
		Total Uranium	0.0097
	U-2	38/U-234 Ratio*	ND
DR-NHZ-09	SAICK	U-234	0.0064 U
DR-NHZ-09	SAICK	U-235	-0.0008 U
DR-NHZ-09	SAICK	U-238	0.0057 U
<u></u> .		Total Uranium	0.0113
· · · · · · · · · · · · · · · · · · ·	U-2	38/U-234 Ratio*	ND
DR-NHZ-10	SAICK	U-234	0.0039 U
DR-NHZ-10	SAICK	U-235	0.001 U
DR-NHZ-10	SAICK	U-238	0.0036 U
		Total Uranium	0.0085
	U-2	38/U-234 Ratio*	ND
Liver Tissue	· · ·	<u>+</u>	
DR-NHZ-01	SAICL	U-234	0.0057 J
DR-NHZ-01	SAICL	U-235	0.0022 J
DR-NHZ-01	SAICL	U-238	0.003 U
		Total Uranium	0.0109
	U-2	38/U-234 Ratio*	ND
DR-NHZ-02	SAICL	U-234	0.0086 U
DR-NHZ-02	SAICL	U-235	0.0014 U
DR-NHZ-02	SAICL	U-238	0.0016 U
	<u> </u>	Total Uranium	0.0116
	U-2	38/U-234 Ratio*	ND

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

أسا

1.

.

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-NHZ-02	SAICLD	U-234	0.0116 J
DR-NHZ-02	SAICLD	U-235	0.0041 J
DR-NHZ-02	SAICLD	U-238	0.0058 J
		Total Uranium	0.0215
	U-2	38/U-234 Ratio*	0.5
DR-NHZ-03	SAICL	U-234	0.0082 J
DR-NHZ-03	SAICL	U-235	-0.0007 U
DR-NHZ-03	SAICL	U-238	0.0036 U
		Total Uranium	0.0111
	U-2	38/U-234 Ratio*	ND
DR-NHZ-04	SAICL	U-234	0.0067 U
DR-NHZ-04	SAICL	U-235	0.0029 U
DR-NHZ-04	SAICL	U-238	0.0015 U
		Total Uranium	0.0111
	U-2	38/U-234 Ratio*	ND
DR-NHZ-05	SAICL	U-234	0.0073 U
DR-NHZ-05	SAICL	U-235	0.0003 U
DR-NHZ-05	SAICL	U-238	0.0011 U
		Total Uranium	0.0087
	U-2	38/U-234 Ratio*	ND
DR-NHZ-06	SAICL	U-234	0.0102 J
DR-NHZ-06	SAICL	U-235	0.0019 U
DR-NHZ-06	SAICL	U-238	-0.0004 U
	0.002	Total Uranium	0.0117
	U-2	38/U-234 Ratio*	ND
DR-NHZ-07	SAICL	U-234	0.0074 J
DR-NHZ-07	SAICL	U-235	0.002 U
DR-NHZ-07	SAICL	U-238	0.0127 U
		Total Uranium	0.0221
	U-2	38/U-234 Ratio*	ND
DR-NHZ-08	SAICL	U-234	0.002 U
DR-NHZ-08	SAICL	U-235	0.0026 U
DR-NHZ-08	SAICL	U-238	0.0007 U
DITITIZ	0/1102	Total Uranium	0.0053
	1-2	38/U-234 Ratio*	ND
DR-NHZ-09	SAICL	U-234	0.0067 U
DR-NHZ-09	SAICL	U-235	0.0006 U
DR-NHZ-09	SAICL	U-238	0.0031 U
D11-14112-03		Total Uranium	0.0104
	11-2	38/U-234 Ratio*	ND
DR-NHZ-10	SAICL	U-234	0.0035 U
DR-NHZ-10	SAICL	U-235	0.0014 U
DR-NHZ-10	SAICL	U-238	0.0032 U
D11-1112-10	UNIUL	Total Uranium	0.0081
	11.2	38/U-234 Ratio*	ND
	0-2	0010-204 natio	

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

August 2006

L

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
Muscle Tissue			
DR-NHZ-01	SAICM	U-234	0.0139
DR-NHZ-01	SAICM	U-235	0.003 U
DR-NHZ-01	SAICM	U-238	0.0036 U
	•••••••••••••••••••••••••••••••••••••••	Total Uranium	0.0205
	U-:	238/U-234 Ratio*	ND
DR-NHZ-02	SAICM	U-234	0.0122 J
DR-NHZ-02	SAICM	U-235	0.0016 U
DR-NHZ-02	SAICM	U-238	0.0029 U
	· · · · · · · · · · · · · · · · · · ·	Total Uranium	0.0167
	U·	238/U-234 Ratio*	ND
DR-NHZ-02	SAICMD	U-234	0.0135 J
DR-NHZ-02	SAICMD	U-235	0.0026 U
DR-NHZ-02	SAICMD	U-238	0.003 U
		Total Uranium	0.0191
· · · · ·	U-:	238/U-234 Ratio*	ND
DR-NHZ-03	SAICM	U-234	0.0072 J
DR-NHZ-03	SAICM	U-235	0.0006 U
DR-NHZ-03	SAICM	U-238	-0.0002 U
	La <u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>	Total Uranium	0.0076
	U-2	238/U-234 Ratio*	ND
DR-NHZ-04	SAICM	U-234	0.0076 J
DR-NHZ-04	SAICM	U-235	0.0028 U
DR-NHZ-04	SAICM	U-238	0.0032 U
		Total Uranium	0.0136
	U-2	38/U-234 Ratio*	ND
DR-NHZ-05	SAICM	U-234	0.0043 U
DR-NHZ-05	SAICM	U-235	0.002 U
DR-NHZ-05	SAICM	U-238	0.0033 U
		Total Uranium	0.0096
······································	U-2	38/U-234 Ratio*	ND
DR-NHZ-06	SAICM	U-234	0.0061 J
DR-NHZ-06	SAICM	U-235	0.0015 U
DR-NHZ-06	SAICM	U-238	0.0023 U
	<u></u>	Total Uranium	0.0099
	U-2	38/U-234 Ratio*	ND
DR-NHZ-07	SAICM	U-234	0.0047 J
DR-NHZ-07	SAICM	U-235	0.0026 J
DR-NHZ-07	SAICM	U-238	0.0026 U
		Total Uranium	0.0099
	11-2	38/U-234 Ratio*	ND

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer TissueJefferson Proving Ground, Madison, Indiana (Continued)

1

۱.

<u>اما</u>

Sample Designation	Sample I.D.	Analyte	Result (pCi/g)
DR-NHZ-08	SAICM	U-234	0.0066 J
DR-NHZ-08	SAICM	U-235	0.0007 U
DR-NHZ-08	SAICM	U-238	0.004 U
	<u></u>	Total Uranium	0.0113
	U	-238/U-234 Ratio*	ND
DR-NHZ-09	SAICM	U-234	0.0045 U
DR-NHZ-09	SAICM	U-235	0.0005 U
DR-NHZ-09	SAICM	U-238	0.0065 J
		Total Uranium	0.0115
	υ	-238/U-234 Ratio*	ND
DR-NHZ-10	SAICM	U-234	0.0073 U
DR-NHZ-10	SAICM	U-235	0.0043 U
DR-NHZ-10	SAICM	U-238	0.0039 U
		Total Uranium	0.0155
	U	-238/U-234 Ratio*	ND

Table 3-6. Isotopic Uranium in Nearby Hunting Zones Deer Tissue Jefferson Proving Ground, Madison, Indiana (Continued)

* Unitless.

** The negative values in the results column (pCi/g) indicate that the background count of the analysis was greater than the sample count. When a sample measurement is zero or very small (i.e., near the detection limit of the equipment), subtracting out equipment background can result in a negative number.

J – Indicates that the radionuclide was positively identified; the associated numerical value is the approximate concentration of the radionuclide in the sample.

ND – Indicates that one or more isotopes were not detected; therefore, the calculation was not conducted.

U – Indicates that the data met all QA/QC requirements, and that the radionuclide was analyzed for but was not detected above the reported sample quantitation limit.

4. COMPARISON WITH PREVIOUS RESULTS AT JPG AND OTHER MILITARY INSTALLATIONS

This section compares the results of the deer sampling conducted in December 2005 and February 2006 to historical deer sampling conducted at JPG (Ebinger and Hansen 1996; SEG 1996). In addition, this section includes a comparison of the results of the deer sampling at JPG to deer sampling at other installations that fired DU projectiles as part of a munitions testing program (i.e., Aberdeen Proving Ground [APG]).

4.1 HISTORICAL AND CURRENT RESULTS AT JPG

A total of 50 deer liver, kidney, or bone samples were collected and analyzed for U-234 and U-238 isotopes in 1984, 1987, 1992, and 1993 (Table 4-1) (Ebinger and Hansen 1996). The deer were collected from within the DU Impact Area. No deer were collected from a background or uncontaminated location as part of this investigation. Although measurements of total uranium did not include the U-235 isotope, U-235 is a very small portion of the total uranium concentration (see Section 1). Concentrations of total uranium isotopes analyzed in the samples were low (less than 0.4 pCi/g) and did not indicate an impact from DU (U.S. Army 2002). As discussed in Section 4, U-238/U-234 ratios of 2 or less are representative of natural uranium, whereas higher ratios are indicative of DU. The U-238/U-234 activity ratios ranged from 0.3 to 1.5. The analytical results of these sampling events have been reproduced and are presented in Appendix E (Table E-1).

Three deer tissue samples (one liver, one kidney, and one bone sample) were collected during the site characterization survey (Table 4-1) (SEG 1996). These tissue samples were collected from a 4- to 5-year-old female deer within the DU Impact Area. No deer were collected from a background or uncontaminated area as part of this investigation. Concentrations of total uranium in the samples were 0.09, 0.15, and 0.42 pCi/g for liver, kidney, and bone tissue samples, respectively. The U-238 to U-234 activity ratios of 0.63, 0.43, and 0.64 for the liver, kidney, and bone tissues, respectively, did not indicate the presence of DU contamination in the deer tissue. The analytical results of this sampling event have been reproduced and are presented in Appendix E (Table E-2).

Year	Number of Deer	Number of Samples	Tissue Types	Associated Report
1984	9	19	Liver, kidney, and bone	Ebinger and Hanson (1996)
1984	.4	4	Unspecified location or body part	Ebinger and Hanson (1996)
1987	16	16	Bone, kidney, or liver	Ebinger and Hanson (1996)
1992	3	6	Kidney, liver	Ebinger and Hanson (1996)
1993	5	5	Kidney*	Ebinger and Hanson (1996)
1996	1	3	Liver, kidney, and bone	SEG (1996)
Total	38	53		

Table 4-1. Historical Deer Sampling by Year at JPGJefferson Proving Ground, Madison, Indiana

* Organ is assumed to be kidney in Ebinger and Hansen 1996.

A more robust sampling was conducted as part of the JPG 2005/06 deer sampling described in this report. Samples were analyzed for isotopes of U-234, U-235, and U-238 from a total of 30 deer from 3 areas. A total of 120 tissue samples and the associated duplicates from the bone, liver, kidney, or muscle of the deer were analyzed. The results of this sampling event are presented in Tables 3-4 through 3-6. Similar to the previous deer sampling results from 1984 to 1993 discussed in Ebinger and Hanson (1996), concentrations of total uranium in the deer tissue samples were low and uranium isotopes often were

below method detection limits (0.0017 to 0.107 pCi/g). Concentrations of total uranium in the 2005/06 sampled deer tissue ranged from 0.0004 to 0.074 pCi/g. The maximum concentrations of total uranium in the 2005/06 deer were less than the maximum concentrations associated with the deer sampling results presented in both the Ebinger and Hansen report (Ebinger and Hansen 1996) and the site characterization survey (SEG 1996).

As noted previously (in Section 1), NRC was concerned that modest increases of total uranium concentrations in kidney (from 0.05 to 0.151 pCi/g) and bone (0.0003 to 0.416 pCi/g) compared to background were indicative of a potential trend of increasing concentrations of uranium in deer tissue that could affect human health (NRC 2004). However, based on the data collected from 1984 to 2006, total uranium concentrations in deer tissue are not increasing over time. For all of the samples where isotopes of both U-238 and U-234 were detected and a ratio could be calculated, the U-238/U-234 ratio was less than 2 in all of the sampling events, indicating the absence of DU in all deer tissues collected to date.

4.2 HISTORICAL RESULTS AT APG AND CURRENT RESULTS AT JPG

Since the 1970s, DU has been used as a penetrator in munitions and testing programs at APG. Activities that have resulted in deposition of DU in the environment have occurred at multiple locations at APG. The testing program has included testing of munitions on hard targets in an enclosed environment (i.e., Ranges 9, 14, 110, and Bomb Throwing Device Area), hard targets in an open outdoor environment (e.g., Transonic Range and Superbox Area), and soft targets in an open outdoor environment (i.e., DU Soft Target Range) (Williams et al. 1998). By 1995, approximately 70,000 kg of DU had been fired into outdoor APG impact areas for testing at both hard and soft targets, with approximately 20 percent of the penetrators fired recovered (Kennedy et al. 1995). As a result of the testing program at APG, 70,000 kg of DU has been deposited on more than 1,500 acres (Fan et al. 2005). Most penetrator impacts occurred within approximately 500 meters of the firing axis after the DU munitions passed through soft targets used to check accuracy and performance. During July and October 1992, a total of 30 deer (25 in the impact area of APG and 5 from a control group from the Eastern Shore of Maryland, approximately 10 miles east of APG) were collected for tissue residue analysis. Kidney, liver, muscle, and bone tissues were collected from the deer, dried, ashed, and analyzed by ICP-MS for uranium (Ebinger et al. 1996).

At APG, concentrations in kidney and bone samples were significantly higher in impact area deer than offsite deer, whereas liver and muscle tissue samples were not significantly different in the two groups. Although the APG deer sampling data suggest that impact area deer tissue showed higher uranium concentrations than offsite deer tissue because of probable exposures to DU from penetrator testing, the uranium concentrations in the samples from the impact area were too low to determine the isotopic ratio and, thus, the source (i.e., natural uranium or DU) (Ebinger et al. 1996). Although formal statistics were not conducted on the JPG deer because no DU was detected, the average and median total uranium activity was greater in three of the four tissue types collected from the background (BHZ) deer than from the DU Impact Area deer. The average and median total uranium activity between APG deer from impact area and offsite locations and JPG deer from impact area and background locations is presented in Table 4-2.

There were differences in the methodology (i.e., inductively coupled plasma used in conjunction with mass spectroscopy [ICP/MS] for APG deer versus alpha-spectrometry for JPG deer) that limit the direct comparability of the data from APG and JPG. In addition, the extremely low isotopic uranium levels limit the direct comparability of the data between the background (BHZ) and DU Impact Area deer tissue. Many of the isotopic activity results were estimated as the difference between the result and the associated uncertainty was less than the sample-specific minimal database concentration. Despite these limitations, it can be stated, in general, concentrations of total uranium in deer tissue from APG and JPG impact areas and control areas are low, with the highest total uranium concentration from all of the data sets being 0.42 pCi/g from a bone tissue sample collected from the JPG DU Impact Area (SEG 1996).

Tissue	Average Activity (pCi/g)*	Median Activity (pCi/g)*	Number of Samples	Average Activity (pCi/g)*	Median Activity (pCi/g)*	Number of Samples		
		ct Area (Main F Deer Sample I		JPG DU Imp	Impact Area Deer Sample Res			
Kidney	4.3E-04	2.6E-04	24	8.6E-03	8.1E-03	11		
Liver	2.1E-04	1.3E-04	25	9.6E-03	8.9E-03	11		
Muscle	2.6E-04	2.0E-04	19	8.3E-03	7.4E-03	11		
Bone	2.7E-03	2.0E-03	18	2.0E-02	1.5E-02	. 11		
Tissue	Average Activity (pCi/g)*	Median Activity (pCi/g)*	Number of Samples	Average Activity (pCi/g)*	Median Activity (pCi/g)*	Number of Samples		
		APG Control Area (Deer Sampled from Cecil County on the Eastern Shore)			JPG Control Area (Deer Sampled from BHZ I Big Oaks NWR)			
Kidney	1.3E-04	1.8E-04	3	1.9E-02	1.4E-02	11		
Liver	4.0E-04	4.0E-04	2	1.2E-02	1.1E-02	11		
Muscle	1.0E-04	NC	1	1.2E-02	1.4E-02	11		
Bone	3.4E-04	3.4E-04	2	1.5E-02	1.4E-02	11		

Table 4-2. Comparison of Historical APG and Current JPG Deer Tissue ResultsJefferson Proving Ground, Madison, Indiana

* The total uranium concentrations at APG deer samples include isotopes of U-234 and U-238. Total uranium concentrations of JPG deer samples include isotopes of U-234, U-235, and U-238.

NC = Not Calculated. A median value was not calculated as only one sample was analyzed. pCi/g = picocuries per gram.

5. CONCLUSIONS AND FUTURE SAMPLE RECOMMENDATIONS

This section presents the conclusions associated with the deer sampling event as well as recommendations for future deer and other biota sampling.

5.1 CONCLUSIONS

Based on the data presented in Section 3, consumption of deer tissue does not appear to be a potentially significant exposure pathway for DU at JPG. Of the 132 samples analyzed, DU was not detected in any tissue samples. Based on qualitative observation of the data, deer collected within the DU Impact Area did not have total uranium levels or uranium isotopic ratios that differed from either the NHZ or BHZ. If DU uptake were occurring in deer, higher total uranium levels and isotopic ratios greater than 2 would be expected in the deer from the DU Impact Area, where the greatest potential for exposures occur, but the total uranium levels were not elevated and all ratios were lower than 2.

The concentrations of uranium in deer are below those detected historically at JPG. There does not appear to be any increasing trends in the 2005/06 deer samples compared to the 1996 deer sample. At APG, where DU also has been tested as discussed in Section 4, the presence or absence of DU in deer tissue could not be confirmed. However, as DU testing commenced in the 1970s at APG, there has been another decade for degradation and subsequent uptake into deer compared to JPG. The use of hard targets at APG also would have created more finely dispersed uranium available for uptake. Although the ecosystems at APG and JPG are not exactly the same, it is reasonable to conclude that factors at APG are more conducive for bioaccumulation of DU. One attribute of increased uptake would be higher total uranium concentrations. As this does not appear to be the case (APG deer had lower total uranium concentrations than JPG deer), the APG data, while not conclusive, support that uptake of DU by deer is not a potentially significant exposure pathway to humans.

5.2 **RECOMMENDATIONS**

The 5-year site characterization study includes tentative plans for a verification round of the deer sampling, as well as initial and verification rounds for other biota. Sections 5.2.1 and 5.2.2 make recommendations concerning the need for such sampling.

5.2.1 Deer Sampling

As specified in the Field Sampling Plan (SAIC 2005a), if no DU was detected in the deer tissue from the NHZ and the DU Impact Area above background levels, verification sampling of deer in 2007 would not occur. The uranium isotope detections in the 2005/06 deer samples all were indicative of natural uranium. In particular, no DU was detected in the deer most likely to contain DU, those collected from the DU Impact Area. Based on the recently collected deer data, validation sampling of deer for DU is not warranted.

5.2.2 Other Biota Sampling

As specified in the Field Sampling Plan (SAIC 2005a) and Addendum (SAIC 2005f), the trigger to collect tissue data from other biota is based on a weight-of-evidence approach using the results of the abiotic sampling as well as the tissue sampling. Using the abiotic data, none of the existing JPG environmental reports provides conclusive evidence of elevated levels of DU migrating outside the DU Impact Area. No increasing or decreasing trends have been identified in the Environmental Radiation Program (SAIC 2005a). NRC expressed concern that total uranium concentrations (based on one deer sample) may continue to increase to levels that could affect human health (NRC 2004), and the Army agreed to conduct additional deer sampling and analysis as described in the Field Sampling Plan (SAIC 2005a) and applicable addenda. DU was not detected in any deer samples collected during the

most recent sampling, including those from the DU Impact Area, the area most likely for exposure and subsequent uptake. In fact, the concentrations of total uranium in deer are below those detected historically at JPG. As a result, there are no current triggers to support further testing of biota, and no additional biota testing, in accordance with the site characterization plan, is scheduled or anticipated.

6. **REFERENCES**

- Clulow F.V, N. K. Dave, T. P. Lim, and R. Avadhanula. 1998. Radionuclides (lead-210, polonium-210, thorium-230, and thorium-232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution 99(2), 199-213.
- Cramp, T.J., Y.S. Cuff, A. Davis, and J.E. Morgan. 1990. Review of Data for Uranium, Nickel, and Cobalt. Report 2150-R1. Associated Nuclear Services, Epson.
- DOE (U.S. Department of Energy). 2000. Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities, DOE-STD-1136-2000, U.S. Department of Energy. August.
- Dushenkov, S., Vasudev D., Kapulnik, Y., Gleba D., Fleisher, D., Ting K. C., and Ensley, B. 1997. (reported in Royal Society 2002). Removal of Uranium from water using terrestrial plants. Environmental Science & Technology 31(12), 3468-3474.
- Ebinger, M. and W. Hansen. 1996. JPG Data Summary and Risk Assessment. Submitted to the U.S. Army Test and Evaluation Command by Los Alamos National Laboratory, New Mexico.
- Ebinger, M., P. Kennedy, O. Myers, W. Clements, H. Bestgen, and R. Beckman. 1996. Long-Term Fate of Depleted Uranium at Aberdeen and Yuma Proving Grounds, Phase II: Human Health and Ecological Risk Assessments. Submitted to the U.S. Army Test and Evaluation Command by Los Alamos National Laboratory, New Mexico.
- Edenspace (Edenspace Systems Corporation). 2004. Phytoremediation of Depleted Uranium in an Arid Environment.
- Erikkson, A. and S. Evans. 1983. (reported in Royal Society 2002). Uranium, thorium and radium in soils and crop s-calculations of transfer factors. Swedish Nuclear Fuel and Waste Management Co (SKB): Stockholm, Sweden.
- Fan, M., T. Thongstri, L. Axe, and T. Tyson. 2005. Using a Probabilistic Approach in an Ecological Risk Assessment Tool: Test Case for Depleted Uranium. Chemosphere 60. pp 111-125.
- Hu MZ-C, J.M. Norman, and B.D. Faison. 1996. Biosorption of uranium by pseudomonas aeruginosa strain CSU: characterization and comparison studies. Biotechnol Bioeng 51, 137-167.
- Kennedy, P.L., W.H. Clements, O.B. Myers, H.T. Bestgen, and D.G. Jenkins. 1995. Evaluation of Depleted Uranium in the Environment at Aberdeen Proving Grounds, Maryland and Yuma Proving Grounds, Arizona. Final.
- NRC (Nuclear Regulatory Commission). 2004. Request for Additional information to Support NRC's Evaluation of the Proposed Changes to the Environmental Radiation Monitoring Program Plan for Jefferson Proving Ground (License SUB-1435). Letter from Tom McLaughlin, Project Manager, Materials Decommissioning Branch, NRC to Colonel Mike Mullins, Rock Island Arsenal, U.S. Army. May 20.
- Robb. J. 2006. E-mail communication from Joe Robb (USFWS) to Michael Barta (SAIC) regarding the deer sampling. June 8.
- Royal Society. 2001. The Health Hazards of Depleted Uranium Munitions Part 1. May.
- Royal Society. 2002. The Health Hazards of DU Munitions Part II. March.
- SAIC (Science Applications International Corporation). 1997. Base Realignment and Closure Cleanup Plan. Version 3. Prepared for the U.S. Army Environmental Corps (USAEC) under Contract DACA31-94-D-0066, DO 0001. June.

- SAIC. 2005a. Field Sampling Plan, Site Characterization of the Depleted Uranium Impact Area. Final. May.
- SAIC. 2005b. Health and Safety Plan, Site Characterization of the Depleted Uranium Impact Area. Final. May.
- SAIC. 2005c. Quality Control Plan, Site Characterization of the Depleted Uranium Impact Area. Final. May.
- SAIC. 2005d. Memorandum, Airborne Transport of DU and Site Characterization Needs. From Corinne Shia, SAIC to Paul Cloud, BRAC Environmental Coordinator and Joyce Kuykendall, Radiation Safety Officer, U.S. Army. January 13.
- SAIC. 2005e. Health and Safety Plan Addendum, Site Characterization, Deer Sampling of the Depleted Uranium Impact Area. Draft. November.
- SAIC. 2005f. Field Sampling Plan Addendum, Site Characterization of the Depleted Uranium Impact Area. Final. November.
- SEG (Scientific Ecology Group). 1995. JPG Depleted Uranium Impact Area, Scoping Survey Report. Volumes 1 - 3. March.
- SEG. 1996. Jefferson Proving Ground Depleted Uranium Impact Area Characterization Survey Report. Volume 1. Oak Ridge, Tennessee. February.
- Smith, W.P. 1991. Odocoileus virginianus. Mammalian species. 388:1-13.
- Thomas, P.A. 2000. (reported in Royal Society 2002). Radionuclides in the terrestrial ecosystems near a Canadian uranium mill –Part 1: Distribution and doses. Health Physics 78(6), 614-624.
- U.S. Army. 1995. Health and Environmental Consequences of Depleted Uranium Use in the U.S. Army: Technical Report. June.
- U.S. Army. 2000. Memorandum of Agreement Between the U.S. Army, U.S. Air Force, and U.S. Fish and Wildlife Service.
- U.S. Army. 2001. Controlled Burn Air Sampling Technical Report. Aberdeen Proving Ground. August.
- U.S. Army. 2002. Decommissioning Plan for License SUB-1435. Jefferson Proving Ground, Madison, Indiana. Prepared for the U.S. Army SBCCOM by SAIC. June.
- USEPA (U.S. Environmental Protection Agency). 1998. Ionizing Radiation Fact Sheet Series Number 1, http://www.epa.gov/radiation/docs/ionize/402-f-98-009.htm).
- USFWS (U.S. Fish and Wildlife Service). 2006. Big Oaks National Wildlife Refuge Overall Public Use Map, http://www.fws.gov/Midwest/bigoaks/maps.htm.
- Williams, G.P., A.M. Hermes, A.J. Policastro, H.M. Hartmann, and D. Tomasko. 1998. Potential Health Impacts from Range Fires at Aberdeen Proving Ground, Maryland. Argonne National Laboratory, Argonne, IL. 84 pp.
- WISE (World Information Service On Energy Uranium Project). 2006. World Information Service On Energy Uranium Project, http://www.wise-uranium.org/index.html

APPENDIX A

Ĺ

4

L

Ĺ

FINAL FIELD SAMPLING PLAN ADDENDUM (Main Text and Appendix A)

FIELD SAMPLING PLAN ADDENDUM

Depleted Uranium Impact Area Site Characterization: Deer Sampling (WBS 2.1.1) Jefferson Proving Ground, Madison, Indiana

Final

Prepared for:

U.S. Department of Army Installation Support Management Activity 5183 Blackhawk Road Aberdeen Proving Ground, Maryland 21010-5424

and

U.S. Army Corps of Engineers Louisville District 600 Dr. Martin Luther King, Jr. Place Louisville, Kentucky 40202-2230

Submitted by:

Science Applications International Corporation 11251 Roger Bacon Drive Reston, Virginia 20190

> Contract No: W912QR-04-D-0019 Delivery Order: 0012

> > November 2005

· ·

FIELD SAMPLING PLAN ADDENDUM Depleted Uranium Impact Area Site Characterization: Deer Sampling (WBS 2.1.1) Jefferson Proving Ground, Madison, Indiana

Contract No: W912QR-04-D-0019 Delivery Order: 0012

Nuclear Regulatory Commission License SUB-1435

November 2005

Final

COMMITMENT TO IMPLEMENT THE ABOVE HEALTH AND SAFETY PLAN

(703) 318-6993

(703) 318-4763

Phone

Phone

Corinne M. Shia Project Manager

for Joseph E. Peters Quality Assurance Officer

Randy C. Hansen Health and Safety Officer

11-111ta

Michael W. Lambert Radiation Protection Manager

Seth T. Stephenson Field Manager

le l

 (314) 770-3027
 11/15/05

 Phone
 Date

 (314) 770-3000
 11/15/05

 Phone
 Date

11/15/05

11/15/05

Date

Date

(765) 278-3520 11/15/05 Phone Date

The approved Field Sampling Plan (FSP) Addendum will be provided to subcontractors (i.e., drillers, surveyors, and laboratories) at the time of subcontract execution.

CERTIFICATION 4

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Science Applications International Corporation (SAIC) has prepared this Field Sampling Plan (FSP) Addendum for performing site characterization at Jefferson Proving Ground's Depleted Uranium Impact Area, located in Madison, Indiana. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project, as defined in the Quality Control Plan (QCP). During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions was verified. This included review of assumptions; methods, procedures, and material used in analyses; alternatives evaluated; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing Corps policy.

spine Shia

Corinne M. Shia Project Manager Science Applications International Corporation

for Joseph E. Peters Quality Assurance Officer Science Applications International Corporation

Coriore Shia

Corinne M. Shia Independent Technical Review Team Leader Science Applications International Corporation

Significant concerns and explanation of the resolutions are documented within the project file.

As noted above, all concerns resulting from independent technical review of the project have been considered.

Ilisa D. Jones-Bateman Vice President Science Applications International Corporation

11/04/05

Date

11/15/05

11/15/05

Date

Date

11/15/05

Date

1

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1-1
2.	DEER SAMPLING PLAN	2-1
3. [.]	SAMPLE PACKAGING AND SHIPPING REQUIREMENTS	3-1
	3.1 SAMPLE VOLUMES, TYPES, AND PRESERVATIVE REQUIREMENTS	3-1
	3.2 SAMPLE CONTAINER SHIPMENTS FROM PARAGON ANALYTICS	3-1
4.	INVESTIGATION-DERIVED WASTES	4-1
5.	DATA USE	5-1
6.	REFERENCES	6-1

APPENDICES

L

.

Le

1.

-

Appendix A.	Deer Sampling SOPs
Appendix B.	Laboratory Analytical SOPs

LIST OF TABLES

Page

LIST OF ACRONYMS AND ABBREVIATIONS

CFR CHP CSP DO DOD DOE DU EOD FSP HASP IDW JPG NGB	Code of Federal Regulations Certified Health Physicist Certified Safety Professional Delivery Order U.S. Department of Defense U.S. Department of Energy Depleted Uranium Explosive Ordnance Disposal Field Sampling Plan Health and Safety Plan Investigation-derived Waste Jefferson Proving Ground
HASP	•
IDW	Investigation-derived Waste
JPG	Jefferson Proving Ground
NGB	National Guard Bureau
NWR	National Wildlife Refuge
QC	Quality Control
SAIC	Science Applications International Corporation
SOP	Standard Operating Procedure
SOW	Statement of Work
USACE	U.S. Army Corps of Engineers
USFWS	U.S. Fish and Wildlife Service
UXO	Unexploded Ordnance

1. INTRODUCTION

This document is the first Addendum to the previous Field Sampling Plan (FSP) (SAIC 2005a) prepared for the Depleted Uranium (DU) Impact Area Site Characterization Project for Jefferson Proving Ground (JPG), Madison, Indiana in May 2005. Science Applications International Corporation (SAIC) has prepared this Addendum in accordance with the statement of work (SOW) requirements under the U.S. Army Corps of Engineers (USACE) Contract No. W912QR-04-D-0019, Delivery Order (DO) No. 0012.

This FSP Addendum documents and describes specific activities and details of the JPG DU Impact Area deer sampling task that were not addressed in the FSP or have been modified from the information presented in the FSP. With this understanding, this Addendum follows the same format and relevant sections of the FSP are referenced. This document is to be used in conjunction with the existing FSP, not as a replacement. The information provided in this plan was developed for use by SAIC in support of JPG's site characterization program to assist with the collection of deer tissue. SAIC assumes no liability for the use of this information for any other purpose than as stated in this Addendum or the FSP.

Kidney, liver, bone, and muscle samples will be collected from approximately 30 deer from the DU Impact Area, nearby adjacent hunting zones, and background hunting zones. These samples will be analyzed for total uranium, U-234, U-235, and U-238. Further details concerning the scope and objectives of the deer sampling were presented in Section 6 of the FSP (SAIC 2005a).

The following sections provide additional information on the project schedule (Section 2), sample packaging and shipping requirements (Section 3), investigation-derived waste (IDW) (Section 4), data use (Section 5) and references (Section 6). The following appendices provide supporting documentation:

- Appendix A. Deer Sampling Standard Operating Procedure (SOP)—This appendix describes field procedures for collecting deer samples (liver, kidney, bone, and muscle) from the JPG DU Impact Area and surrounding hunting zones.
- Appendix B. Laboratory Analytical SOPs—This appendix presents the laboratory analytical SOPs for the constituents of interest in the deer tissue.

2. DEER SAMPLING PLAN

This section summarizes the deer sampling activities to be conducted at JPG in November and December 2005. The objective of this task is to collect samples of deer tissue and analyze them for uranium radioactivity. SAIC, in collaboration with the U.S Fish and Wildlife Service (USFWS), will slay and dissect 30 deer harvesting tissue samples from the livers, kidneys, bones, and muscles from 10 deer slain within the DU Impact Area, 10 deer slain in the area surrounding the DU Impact Area, and 10 deer slain in background locations.

For work in areas where unexploded ordnance (UXO) reasonably may be exposed at the surface, anomaly avoidance procedures will be followed. This includes the clearance of work areas by visual and instrument surveys conducted by one of SAIC's qualified UXO specialists (i.e., graduate of U.S. Department of Defense [DOD] Explosive Ordnance [EO] Disposal School in Indian Head, Maryland). The surveyed areas will be marked. Non-UXO personnel will operate only within the designated cleared areas. All field work in areas where UXO reasonably may be exposed at the surface will be subject to continuous surveillance by qualified UXO personnel. Additional procedures for work in UXO areas are included in Appendix D of the Health and Safety Plan (HASP) Addendum (SAIC 2005e).

Two USFWS personnel from the Big Oaks National Wildlife Refuge (NWR) will use a Remington[®] .22–250 rifle with a $3.5-10 \times 50$ scope to slay the deer. They will lure the deer to a location using bait, shoot the deer, and use a game cart to move each deer carcass from the field for dissection by SAIC personnel. Once samples have been collected from each deer, SAIC personnel will be responsible for sample preparation, custody, and shipment to the laboratory. USFWS personnel will be responsible for scavenging the deer (i.e., moving the carcasses and entrails) to a location selected by USFWS where the deer remains will decompose naturally. Paragon Laboratories, Inc. will analyze the samples for total and isotopic uranium (i.e., U-234, U-235, and U-238) activities.

SAIC personnel are required to comply with all of the policies and procedures specified in this FSP Addendum, associated plans (SAIC 2005a, b, c, d, and e), and other referenced documents. All equipment related to USFWS personnel are not required to adhere to these same policies and procedures, but may do so at their discretion. The following bullets summarize the roles and responsibilities of the SAIC personnel responsible for conducting the deer sampling:

- Ms. Corinne M. Shia is SAIC's overall JPG Project Manager. She is responsible for all activities conducted at JPG, including the deer tissue sampling and all external coordination.
- Mr. Michael L. Barta is SAIC's Lead Ecologist for the deer sampling activities. He is responsible for developing the plans associated with the deer sampling event and will be present at JPG during the first week. While present at JPG, he will be the primary point of contact for SAIC.
- Mr. Seth T. Stephenson will serve as the Field Manager and provide UXO avoidance support. He is a graduate of the EOD School in Indian Head, Maryland, and has served as the UXO Team Member and UXO Supervisor on surveys and removal actions at DOD sites. When Mr. Barta is not present at JPG, he will be the primary point of contact for SAIC and will be responsible for ensuring work activities are conducted in accordance with the procedures and policies specified in this HASP Addendum and other related project plans.
- Mr. Randy C. Hansen will serve as the Project Health and Safety Officer. He is a certified safety professional (CSP) and has supervised the environmental radiation protection program on remedial action projects involving radiological contamination. He has experience supporting field operations at JPG.

- Mr. Michael W. Lambert will serve as the Radiation Protection Manager. He is a certified health physicist (CHP) in SAIC's St. Louis office who specializes in environmental compliance, industrial hygiene, occupational safety, and radiation protection.
- Mr. Joseph E. Peters will be the Quality Control (QC) Manager for all of SAIC's work at JPG. He will conduct a laboratory surveillance to ensure that project personnel training requirements are properly documented and up to date. In addition, he will ensure that appropriate laboratory procedures are being followed. He is the QC Manager for USACE, National Guard Bureau (NGB), and U.S. Department of Energy (DOE) contracts and has extensive experience in working with laboratories and validating chemical and radiological data.
- Ms. Sara Haddox will be the Sample Manager. She is responsible for extricating, preparing, and shipping samples to Paragon Laboratories, Inc. for analysis. She also is responsible for ensuring sampling equipment and containers are available when needed.

SAIC is proposing to collect all deer in the first round of sampling between November 28 and December 16, 2005. Deer collection generally will occur every evening beginning at dusk Monday through Friday until all deer samples have been collected. If the bait stations are particularly successful in attracting deer, some sampling might start in the late afternoon. In the event that few deer (less than 5) are collected during the first week of sampling, the Army will consult with USFWS on whether to continue sampling as planned for the remaining 2 weeks or delay until February. The current sampling period was selected to occur after general hunting season ended (the week prior to November 28th). As a result, deer may be skittish and less responsive to the bait stations. In such an event, by February the deer should be less skittish and more responsive to bait. If after 3 weeks of sampling more than 20 but not 30 deer have been collected, the Army will consult with USFWS on what timeframe in December or January to conduct 1 more week's worth of sampling.

3. SAMPLE PACKAGING AND SHIPPING REQUIREMENTS

Information concerning sample packaging and shipping are provided in Section 8 of the HASP (SAIC 2005b). The HASP indicated that the biota samples would be stored in Ziploc[®] bags on dry ice. As the use of either dry ice or regular ice is acceptable and dry ice introduces additional logistical issues (e.g., nearby supplier), regular ice will be used instead of dry ice. In addition, the laboratory has requested that the samples be shipped in glass jars rather than Ziploc[®] bags. These changes are reflected in Section 3.1.

3.1 SAMPLE VOLUMES, TYPES, AND PRESERVATIVE REQUIREMENTS

The sample volumes, types, and preservative requirements for biota sampling are identified in Table 3-1.

Table 3-1. Sample Volumes, Types, and Preservative Requirements for Biota Samples Jefferson Proving Ground, Madison, Indiana

Sample Type	Analysis	Volume	Container	Preservative
Biota	Total and isotopic uranium	75-100 grams	Glass jars	Frozen upon collection or field dressing/dissection using regular ice

3.2 SAMPLE CONTAINER SHIPMENTS FROM PARAGON ANALYTICS

All sample containers, coolers, and associated equipment will be shipped from Paragon Analytics to the following address:

Jefferson Proving Ground Attn: Ken Knouf/SAIC Building 125 1661 West JPG Niblo Road Madison, IN 47250-9700

۱.

The first shipment will occur prior to the start of sampling on November 28, 2005. If sample collection is successful during week 1, additional shipments will be made at the end of week 1 or the beginning of week 2. SAIC will coordinate with Paragon Analytics concerning specific shipping dates.

[] |

4. INVESTIGATION-DERIVED WASTES

IDW generated during deer sampling includes equipment (e.g., knives and saw) decontamination liquids. Equipment decontamination liquid will be disposed of on the ground given that equipment will be surveyed and decontaminated using dry methods prior to proceeding with decontamination operations specified in Appendix A of this FSP Addendum. Any waste determined to be radioactive will be surveyed, packaged, stored, and transported in accordance with applicable regulations (10 Code of Federal Regulations [CFR] Part 20, 10 CFR Part 61, 49 CFR Parts 171-178 and, if shipped by air, International Air Transport Association requirements).

Once samples have been collected from deer, the carcasses will be scavenged (all remains including the entrails will be allowed to decompose naturally) at a location(s) designated by USFWS. The FSP (SAIC 2005a) indicated that meat collected from the adjacent hunting zones and northern hunting zones might be donated; however, due to logistical concerns, all of the deer collected from the adjacent hunting zones and northern hunting zones also will be scavenged. The USFWS will be responsible for deer scavenging. Scavenging within the DU Impact Area will be limited to areas adjacent to roads to minimize UXO hazards, and any pathways from the road will be cleared first by trained UXO personnel.

A deer tissue sampling report will be prepared that summarizes all data collected for each individual deer and each sampling group. A brief comparison of the results to historical data will be presented. As specified in the FSP (SAIC 2005a), if no DU is detected in deer tissue from the nearby hunting zones and the DU Impact Area above background levels, verification sampling of deer in 2007 will not occur. If DU is detected at levels above background, supporting analyses will be conducted in the deer tissue sampling report to determine if additional deer samples will be collected in 2007 to verify the 2005 data. These supporting analyses include estimating food ingestion risks to hunters and analysis of abiotic (e.g., surface soil, surface water) sampling data.

In addition, the report will conclude with a recommendation as to whether other biota samples are required. The trigger to collect tissue data from other biota will be based on a weight-of-evidence approach using the results of the abiotic sampling as well as the deer tissue sampling.

4

THIS PAGE WAS INTENTIONALLY LEFT BLANK

6. **REFERENCES**

- SAIC (Science Applications International Corporation). 2005a. Field Sampling Plan, Site Characterization of the Depleted Uranium Impact Area. Final. May.
- SAIC. 2005b. Health and Safety Plan, Site Characterization of the Depleted Uranium Impact Area. Final. May.
- SAIC. 2005c. Quality Control Plan, Site Characterization of the Depleted Uranium Impact Area. Final May.
- SAIC. 2005d. Memorandum, Airborne Transport of DU and Site Characterization Needs. From Corinne Shia, SAIC to Paul Cloud, BRAC Environmental Coordinator and Joyce Kuykendall, Radiation Safety Officer, U.S. Army. Final. January 13.
- SAIC. 2005e. Health and Safety Plan Addendum, Site Characterization, Deer Sampling of the Depleted Uranium Impact Area. Draft. November.

1.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

17

L

APPENDIX A

į.

.....

<u>ل</u>ا

L

DEER SAMPLING SOP

Ĺ

THIS PAGE WAS INTENTIONALLY LEFT BLANK

1.0 PURPOSE

The purpose of this procedure is to define the requirements necessary for collection of deer tissue performed by and/or assisted by Science Applications International Corporation (SAIC). This procedure describes the methods and equipment commonly used for collecting deer, performing deer dissections, and collecting tissue and bone samples.

2.0 SCOPE

Deer collection and dissection and collection of deer samples is applicable to any site that contains habitat capable of supporting deer populations.

3.0 REFERENCES

- 3.1 Science Applications International Corporation Field Technical Procedure (SAIC FTP) 400, Equipment Decontamination.
- 3.2 Science Applications International Corporation Field Technical Procedure (SAIC FTP) 1215, Use of Field Logbooks.
- 3.3 SAIC. 2005. Field Sampling Plan (FSP), Site Characterization of the Depleted Uranium Impact Area. May.
- 3.4. SAIC. 2005. Field Sampling Plan (FSP) Addendum, Site Characterization, Deer Sampling, of the Depleted Uranium Impact Area. Draft. November.
- 3.5 SAIC. 2005. Health and Safety Plan (HASP), Site Characterization of the Depleted Uranium Impact Area. Final. May.
- 3.6 SAIC. 2005. Health and Safety Plan Addendum, Site Characterization of the Depleted Uranium Impact Area. Final. November.
- 3.7 SAIC. Var Dates. SAIC St. Louis, Missouri Health Physics Manual (HP-01) and Procedures (HP-02 to 52). SAIC, St. Louis, MO.
- 4.0 DEFINITIONS

None.

- 5.0 **RESPONSIBILITIES**
- 5.1 PROJECT MANAGER

The Project Manager is responsible for:

- 5.1.1 approving this procedure;
- 5.1.2 designating a qualified person to train personnel who will be using this procedure;
- 5.1.3 ensuring that all personnel are properly trained;
- 5.1.4 ensuring that this and all appropriate procedures, including all health and safety matters, are followed;
- 5.1.5 oversight of biota sampling; and

A-1

5.1.6 verifying that the appropriate training records are submitted to the Central Records Facility (CRF).

5.2 QUALITY ASSURANCE/QUALITY CONTROL OFFICER

The QA/QC Officer is responsible for:

- 5.2.1 approving this procedure; and
- 5.2.2 verifying that this and all appropriate procedures are being followed through scheduled surveillance.

5.3 SITE HEALTH AND SAFETY OFFICER

The SHSO is responsible for ensuring that appropriate SAIC and contractual H&S policies and procedures are in effect and verifying enforcement of same by line management.

5.4 BIOTA SAMPLING MANAGER

The Biota Sampling Manager is responsible for:

- 5.4.1 ensuring that all personnel are properly trained;
- 5.4.2 ensuring that this and all appropriate procedures are followed; and
- 5.4.3 verifying that the appropriate training records are submitted to the CRF.

5.5 FIELD MANAGER

The Field Manager is responsible for:

- 5.5.1 ensuring that all personnel perform their assigned duties in accordance with this procedure when it is applicable;
- 5.5.2 ensuring compliance with the Field Sampling Plan and Health and Safety Plan and related addenda; and
- 5.5.3 overall management of field activities.

5.6 HEALTH PHYSICS TECHNICIAN

The Health Physics Technician (HPT) is responsible for

- 5.6.1 implementing the health physics program and supporting procedures under the direction of the RSO or RPM
- 5.6.2 immediately reporting nonconformance with health physics procedures and policies to the RSO or RPM and the Field Manager
- 5.6.3 maintaining, in conjunction with the Field Manager, health physics training and qualifications current
- 5.6.4 stopping work or ordering an area evacuated, in consultation with the Field Manager, when in his/her judgment radiological conditions warrant such an action and such actions are consistent with site and personnel safety.

When the field crew is working within the boundaries of the DU Impact Area, a senior HPT will be assigned to perform this function. The HPT will perform these functions at all other locations.

6.0 GENERAL

- 6.1 It is SAIC policy to maintain an effective program to control employee exposure to chemical, radiological, and physical stress which is consistent with U.S. Army and Occupational Safety and Health Administration (OSHA) established standards and requirements.
- 6.2 Any deviations from specified requirements will be justified to and authorized by the Project Manager and/or his/her designee.
- 6.3 Deviations from requirements are sufficiently documented to allow re-creation of the modified process.
- 6.4 Refer to the site- or project-specific HASP and HASP Addendum for relevant H&S requirements.
- 6.5 Refer to the FSP and FSP Addendum for project/task-specific sampling and analysis requirements.
- 6.6 SAIC personnel who use this procedure must provide documented evidence of having been trained on the procedure to the Project Manager for transmittal to the CRF.

7.0 STANDARD OPERATING PROCEDURES

7.1 PREPARATION

- 7.1.1 Personnel executing the protocols described in this procedure are instructed in the use of the sampling equipment and in proper identification of deer tissues.
- 7.1.2 At least two days prior to sample collection, the U.S. Fish and Wildlife Service (USFWS) will place bait at locations in the Depleted Uranium (DU) Impact Area, nearby adjacent hunting zones, and the northern hunting zones. If possible, USFWS will place all bait stations near roads. Not only will this bait station placement expedite deer retrieval in all three collection areas but also minimize potential exposures to unexploded ordnance (UXO).

7.2 RADIATION PROTECTION MONITORING

7.2.1 General

- 1 All work (deer collection and tissue sampling) within the JPG DU Impact Area shall be performed in accordance with the requirements in HP-01, "Health Physics Manual." Personnel accessing these areas and providing radiological support shall be trained and qualified in accordance with HP-01 and HP-04, "Qualifications and Training."
- 2 The HPT supporting these activities shall maintain a logbook, independent of the project logbook, with appropriate entries made daily while tasks are performed in the DU Impact Area, as well as collection and packaging of samples. HP support activities shall be performed in accordance with HP-12, "Health Physics Oversight." This logbook is to be provided to the Field Manager at the conclusion of the field work and is subject to review and surveillance.
- 3 The HPT shall select and use instrumentation appropriate for the contaminants of concern in the DU Impact Area. Instruments shall be used and maintained in accordance with HP-30, "Radiological Instrumentation." Radioactive sources used at JPG for quality control verification of HP instrumentation performance shall be maintained in accordance with HP-23, "Radiological Source Control." Radioactive sources shall be secured from

unauthorized access, loss, or theft at all times while not in the immediate possession of the HPT.

- 4 The HPT shall brief all qualified radiological workers requiring access to the DU Impact Area or involved in deer collection and tissue sampling prior to initiating associated tasks or area access. HSWP briefings shall occur daily in conjunction with the daily safety briefings led by the Field Manager while access to the DU Impact Area is required and/or deer collection and sampling is performed. Briefings shall be performed and documented in accordance with HP-21, "Health and Safety Work Permits."
- 7.2.2 The HPT shall monitor the deer collection locations within the DU Impact Area, deer transport cart, sample collection locations, samples, sample media, used PPE, vehicles, and the external surfaces of each sample shipping container and generate the required records in accordance with HP-30, "Radiological Monitoring."
- 7.2.3 Personnel monitoring shall include the following protocol:
 - 1 All personnel exiting the DU Impact Area shall perform a minimum of a hand and foot frisk to detect the presence of radioactive contamination.
 - 2 Personnel handling and moving deer shall perform a whole body frisk prior to exiting the DU Impact Area.
 - 3 Deer tissue samplers shall monitor hands periodically while handling deer and collecting/packaging samples.
- 7.2.4 If a personal injury occurs while inside the DU Impact Area (e.g., collecting deer, tissue sampling), the HPT shall perform radiological monitoring of the individual and/or wound site. At no time shall radiological monitoring interfere with or impede any actions necessary to render life saving first aid/medical treatment or stabilize the individual.
- 7.2.5 The HPT shall make appropriate notifications and generate reports as required by HP-22, "Radiological Reporting."

7.3 DEER COLLECTION

- 7.3.1 Around 4:30 PM each evening, USFWS and SAIC personnel will leave to collect from 1 to approximately 4 deer. Once within a few miles of a bait station, the USFWS vehicle will approach first approximately 0.5 miles ahead of the SAIC vehicle. Once USFWS personnel have spotted deer and indicated that an attempt to collect deer will occur, SAIC personnel will stop their vehicle approximately 0.5 miles behind and remain in their vehicle until USFWS personnel indicate via cell phone or radio that deer collection has occurred and retrieval can begin. SAIC personnel will not assist USFWS in spotting deer.
- 7.3.2 USFWS will kill deer using a rifle.
- 7.3.3 For work in areas where UXO reasonably may be exposed at the surface, such as off road paths leading to deer in the DU Impact Area, the work areas will be cleared by visual and instrument surveys conducted by a qualified UXO Specialist. The surveyed areas will be marked and non-UXO personnel will operate only within the designated cleared areas. All field work in areas where UXO reasonably may be exposed at the surface will be subject to continuous surveillance by qualified UXO personnel. UXO personnel will clear UXO areas as described in the HASP Addendum.
- 7.3.4 The location of deer collection and the deer killed within the DU Impact Area shall be surveyed by the HPT prior to movement of the deer. Particular attention shall be given the hooves and lower legs of the deer, as well as the side of the deer that makes contact with the ground (assistance with movement of the deer to facilitate this survey may be

A-4

allowed if initial radiological conditions permit). If radioactive contamination is detected on the deer in excess of the limits in Table 8-1 of the HASP or radiological surveys indicate the need for posting the area as a "Radiation Area," the deer shall not be handled, the area shall be posted and controlled in accordance with HP-20, "Radiological Posting," personnel shall not be allowed to access that location, and the HSWP shall be suspended pending review and any necessary revision.

- 7.3.5 Prior to movement of the deer, the exact location where the deer is collected will be documented using a global positioning system (GPS). If measurements are precluded at the precise location (e.g., tree canopy) where the deer falls, measurements will be taken at the closest location and will be recorded in the field logbook.
- 7.3.6 SAIC personnel will assist USFWS staff in loading the deer onto a deer cart. Deer will then be hauled to the road where sample collection will occur. In the event that a wounded deer flees the bait area, no chase will occur given the UXO hazards. If the deer drops within 30 yards of the bait area, then the UXO Technician will clear a path in order to retrieve the deer.
- 7.3.7 Once near the side of the road, the sampling location, weather conditions, sex, and weight of each deer as well as the presence of any external anomalies observed by USFWS will be noted and recorded on the Biota Sample Worksheet (Section 7 of the FSP) or field logbook prior to dissection. Individuals are weighed by suspending the animal within a net from a scale.
- 7.3.8 A site control zone will be established for field crew performing deer dissections in accordance with the FSP. Field vehicles will be positioned to protect the samplers from traffic during dissection.

7.4 TISSUE COLLECTION

- 7.4.1. Only one deer will be sampled at a time. Depending on the time of night after the first round of samples have been prepped, USFWS personnel may capture another one to four deer. If it is too late at night to continue sampling or weather precludes further sampling, the sampling teams will return to USFWS Headquarters, Building 125, which is located in the Cantonment Area of JPG.
- 7.4.2 Radiation monitoring procedures during deer dissection include the following:
 - 1. Radiological contamination monitoring shall be performed using radiological instruments capable of detecting the radiation emitted from the contaminants of concern at JPG (i.e., depleted uranium) and with a detection sensitivity and survey technique sufficient to detect contamination at or below the applicable limit(s) in Table 8-1 of the HASP.
 - 2. Prior to entering or exiting the site control zone, personnel radioactive contamination monitoring shall be completed to verify no detectable contamination above background. If contamination is detected, the HPT shall assist in confirming the contamination and direct decontamination in accordance with HP-10, "Personal and Equipment Decontamination."
- 7.4.3 The deer will be placed within the site control zone on the ground on plastic. All deer handlers will wear nitrile gloves. Staff performing gross and/or fine dissection will don protective gloves beneath the nitrite gloves.
- 7.4.4 Gross dissection to expose the abdominal cavity and muscle will be achieved with a knife.
- 7.4.5 Muscle, liver, and kidney samples then will be collected with a disposable scalpel. Bone tissues will be collected with a bone saw and all tissues will be scraped from the bone.

Tissue and bone samples then will be labeled, packed in glass jars, and frozen on ice. 100 grams each of muscle, liver, and kidney will be collected while about 30 grams of bone (3 to 4 inches [7.5 to 10 centimeters] from the foreleg will be collected. No tissue preservatives will be used.

- 7.4.6 A glass sample container will be wiped clean so that a label and security seal may be placed on it.
- 7.4.7 All material and equipment used to collect tissue and bone samples, as well as PPE that may have come into contact with the deer, deer samples, and deer sampling tools shall be surveyed by the HPT. If contamination is detected on the tissue or bone, the HPT shall contact the Project Manager to assess the need to further evaluate the radioactive content and classify and ship the samples as Class 7 hazardous material. All other material, tools, and equipment shall be decontaminated after use and a post-decontamination survey performed and recorded. Equipment and material shall not be used if post-decontamination surveys indicate the presence of radioactive contamination above background. All PPE, materials, tools, etc. with detectable contamination above background and which cannot be decontaminated shall be segregated and bagged as radioactive waste, labeled, and controlled in accordance with HP-25, "Storage and Control of Radioactive Waste."
- 7.4.8 Decontamination of knives and the bone saw will be conducted within a temporary decontamination pad. The decontamination pad will be designed so that all decontamination liquids are contained and can be disposed of into the surrounding environment after decontamination is complete. Nondedicated equipment will be decontaminated after each piece of sampling equipment is used. The procedure for decontamination of equipment will be as follows:
 - 1. Survey equipment for removable radioactive contamination. If radioactive contamination is detected above background, the surface shall be decontaminated using dry methods. All equipment that cannot be decontaminated will be managed in accordance with Section 7.4.7.
 - 2. Wash with approved water and phosphate-free detergent using various types of brushes required to remove particulate matter and surface films.
 - 3. Rinse thoroughly with approved potable water.
 - 4. Rinse thoroughly with American Society for Testing and Materials (ASTM) Type I or equivalent water.
 - 5. Allow equipment to dry as long as possible.
 - 6. Place equipment on clean plastic if immediate use is anticipated or wrap in aluminum foil or bags to prevent contamination if longer-term storage is required.. Decontamination liquids will be disposed of on the ground after all related operations are completed.
- 7.4.9 Sharp items, such as scalpels, which will be discarded, will be placed in a sharps box.
- 7.4.10 All samples will be surveyed and stored in a freezer in a secured location until shipping, which will not occur until after the samples are frozen solid (at least 48 hours in the freezer). During packaging for shipping to the analytical laboratory, the external surfaces of sample packages (coolers) shall be surveyed for removable radioactive contamination. If contamination is detected above background, the surface shall be decontaminated using dry methods.
- 7.4.11 Once samples have been collected from the deer, the carcasses will be scavenged (i.e., removed from the site control zone and disposed of) at a location designated by

USFWS. USFWS is responsible for completing all scavenging of the deer carcasses and entrails. However, scavenging within the DU Impact Area will be limited to areas adjacent to roads to minimize UXO hazards and any pathways from the road will be cleared first by trained UXO personnel.

7.4.12 Following completion of field work, all radioactive waste generated, if any, shall be turned over to the Department of Army for secured storage pending removal of the material from the site if removal is delayed.

8.0 RECORDS

L

: ... Documentation generated as a result of this procedure is collected and maintained in accordance with requirements specified in QAAP 17.1, Records Management.

9.0 ATTACHMENTS

9.1 ATTACHMENT 1 – FIELD CHECKLIST

ATTACHMENT 1 FIELD CHECKLIST

Health and Safety Plan (HASP) and HASP Addendum

Field Sampling Plan (FSP) and FSP Addendum

HSP Addendum

FSP Addendum

_____ Rifle with scope

Ammunition

____ Ear protection

____ Scale

____ Game cart

Knives

____ Bone saw

____Net

Floodlights, headlights, and battery packs

Logbooks

Black indelible pen

____ Nitrile/leather gloves

Trash bags

Disposable scalpels

Decontamination equipment for knives and saw

____ Gloves, face shields

_____ Safety shoes

____ Safety glasses or monogoggles

____ Cell phone/two-way radios

Magnetometer

Radiation Monitoring Equipment

Freezer

_____ Lighting

Canopy

____ Coolers

Sample containers

Sharps box

Reflective vests

Generator

Digital camera

Duct/strapping tape

Alconox

First aid kit

GPS unit

_____ Tyvek

Computer.

APPENDIX B FIELD LOGBOOK

....

1

.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

and the second Landbar JPG 1.1.1. 1/2005 Jefferson Proving Ground 1. 11 28/05 Project a Cheant USACE Project Chent USACE (JJPG) Signature Page Mobilization for Deer Sampling - Monday Name-print Signature 1230 Seth Stephenson & Sarah Haddox Initials (SAIC) arrive on site at the 8M Sarah Haddox Suchta U.S. Fish & Wildlife site Soth Stylenson Jeffer s management building (Bld # 125) 575 Jessie M. Muir Jessie M. Muir Jared Meese (SMCYalso on Mr site finishing RAD equipment set up. Unload supplies and then leave site to meet Mike. Barta. Ψ 1345 Arrive back onsite from lunch. Seth Stephenson, Sarah Haddox Mike Barta & Jared Meese are on site to unpack supplies. Neather - Tornado Watch until 7 p.M tonight: Heavy rains with 20 mph winds (Gusts 301 mph)Mike Barta discusses schedule with U.S. Fish & Wiblife while we inventory equipment. August 2006 1430 Fish and Wildlife suggest to wait to see weather conditions to determine if we should start today. · Ù

Location JPG Date 11 28 05 JPG Date 11 29 05 Deer JPG, I chathar Project/Chern USACE Project Chent USACE r Sampling , Madison, Office set up, Mobilization, & Equipment Deer Sampling prep — Tuesday 1530 Mike Barta, Seth Stephenson, 1230 Arrive onsite at U.S Fish & Jared Mccse, and Sarah Haddox Wildlife site management office. video briefing for health & Safety Set up printer. No USB cord. briefing for health & Safety. Mike Borta (SAIC) briefs 1600 U.S. Fish and wildlife decide Seth Stephenson, Jared Meese, due to the weather to wait and Sarah Haddox on deer until tomorrow to begin the Sampling procedures. Prep 90 deer hunting/sampling. Continue Trash bags, Dokes with: unpacking equipment & Inventory. St Aid Kits, 1700 Leave site to go to Walmart. for uxo cleaning -> Gyglume glow sticks, for supplies. NOTE: No health & Safety briefing due to no field work. safety álasss, face sheilds, earplings, Kevlar & nitrile gloves, UXO, field, and sample notes reflective safety vests Will be in this logbook. RAD notes nammer, sharps on instrumentation (RC cheeklog. Copies to Corinne Rule) box, disposable scalples Sample jars, bone Saw, Krife, plastic Sheeting GPS, schostant, tire extinguishers, eye wash kits August 2006 RAD equipment, schonstedt hospital maps, generator digital carriera, tent w/ lights, Caution tape, gas can, labets

JPG. Date 11/29/05 treation JPG Date 11 29/05 11 JAG Location Project Clique USACE USACE Project + Client Deir Sampling prep cont. Deer searching continued. Jared Meese calibrates RAD 1645 Continue following U.S. Fish & Wildlife equipment. Background 10 pr mR per hour for samples. (sign for Jefferson County line) Fina Wait at bridge while U.S. Fish and 1430 Meet with U.S. Fish & Wildlife Wildlife Continues shead to check 12)7018737 / 812701 3151 bait station. Continue to East (812)701 8737 perimeter road (where E Road Paul Cloud (USACE)+4434211475 crosses E Perimeter Road) to Wait to discuss plan of action, for further instruction from U.S. procedures and duties." Fish and Willife. 1500 Print labels & leave to go to 8-3 8-3 715 Turn Right on E Perimeter Rd bait stations E wait. Fish and wild life return. 1445 Discuss sampling tech to 1815 Turn around & head back to help determine the age of deer. other side of property. We agree to pull teeth & will 1845 Wait at "F" Road and send them to Paragon Labs to Morgan Road linkrsection. hold for later analysis if Fisher Wildlife turn Right to necessary, palos check bait station. 6000 Arrivento first bait station-no 930 U.S. Fish & Wildlife return deer here. U.S. Fish and wildlife. to where we are waiting move to second bait station. No No deer. Turn around & August 2006 deer at second bait location. return to East area of Continue driving with U.S. Fish & property (E Perimeter Rol.) "...dlife in the lead to F" Road. 2035 Notice Hand snow starting. Then go to East side of property. Continue Waiting on Eyst Road

treaters JPG Date 11/29/05 treation JPG 1. 11/30/05 Project-Chent USACE Project / Chern USACE Wednesday 210 miles 2050 Decide to call it a 1230 Seth Stephenson & Sarah Haddox go to Mailboxes off of Clifty Rd. night Snow stops. 40 pick up FedEx Supplies. 1300 Go to Walmart for some additional 2106 Return to U.S. Fish & Wildlife Site management building #125. to unlead truck. Load printer supplies. to print a few items such 1330 Return to hotel to meet Mike as a mapquest to hospital, Barta (Shic) & Jared Meese (Shic) See John Carter once we turn info mapquest to fedEX = email about dumping water tase Property. 2720 Leave Site for the day 1400 Arrive at field office and begin 西 loading equipment for deer Sampling. 'Jared Meese docs guality control | check on RAD equipment (bench counter (m.de 12.927) 2360/43-89 meter (detects alpha 4 beta) and micro-R). 1430 Rinse bone saw, 2 small knives, and 3 larger knilles with DI Water from lab (0110201 Q) 1500 Print labels for touth forary August 2006 Samples just in case u.s. Fish. and wildlife wants us to Sample tecth (aging) &/or ovaries (ovulation time frame)

1. II/3Ø/Ø5 Internet JPG 1. Ina 11 30/05 15 Linder JPG Project Chant U.S.A.C.E truet that USACE Deer Searching & prop for sampling Peer searching continued 1530 Continue printing Sample 2015 U.S Fish and wildlife labels while seth Stephenson call us on radio and gives health & safety meeting to John Carter (QA" Audit) direct us to travel west then south and Mike Barta (Stic), Jared Meese then west onto serano (SMC), and Sarah Haddox (SAIC), Brett Road off of Machine 1550 Put aluminum foll around Gun Road. No deer within deconned knives and saws. aunshot scen. Wrap up & load up into 2146 Relocate to Scrano Brett Road vehicles! Put cooler with ice z shaped charge Road ц В С 1615 Meet up with Paul Cloud (USACE) intersection 2154 Hear gunshot and then get and U.S. Fish & Wildlife to Call on radio that a deer drive to North portion of property. has been shot. (Background hunting zone) 2205 Seth Stephenson gets 1645 leave site to Eat dinner out and Elears approximately 100 yards off road. -NOUXO. 1800 Arrive at 2005 & 600 W which puts us at East GPS coordinates for DR-BHZ-01 Perimeter Road & "L" Road US Fish and Wildlife review deer. on the background hunting Female. Older (Ovary sample not zone area of property needed) Molar will be sampled 1945 Continue to wait for U.G. (sec diagrams on page 16) Fish & Wildlife to call us on Deer Weight 8 125 the radio, Lever shot in Area 7. fullthe

 $\mathsf{Location} \to \mathsf{JPG}$ 130/05 Daro 11/30/05 JPG Location. Project / Chent USACE USACE Project / Chent GPS coordinates for DR-BHZ-01 Diagram of deer head and N 4321587.160 E 365251.983) Drop location of tooth, Sample] (4ªtooth back location. Pdop 4.48 t done sat 1/30/05 Started 1 from Incisors) 223\$ Sample DR-BHI-01 SALCT (tooth) 1s+tooth after Ø by Joc Rollb 2240 Sample DR-BHZ-OJ SAICB (bone) 3 pre-molars SHICM/MUSCLE), SAICL (liver) & SAICK (Kidney) 2345 Complete Sampling & begin *beer* nead cleanup of deer & equipment. incisor B-0 Jarca scanned personnel Mo/ars premolar hands and feet. Everyone good. Jared scanning samples 0130 Leave site for the day ИØØ for dose rate DR-BHZ-01-MUSCLE 6 mR/nr Erackad. Kidney Bur/hr Bone Tur/hr Liver Bur/hr (1stdeer) RAD = 10 mB/hr Doils Arrive back at field office. Unload Equipment and put Samples office freezer. August 2006 Disturs schedull for tomorrow. Sul

JPG. Date 12/1/05 Thursday Location JPG Date 12/1/05 19 Project / Client U.S. A, CE JPG. Location Location **USACE** Weather: Snowing and cold Deer searching 1515 Arrive at JPG site 1745 U.S. Fish and wildlife direct management office (Bldg*125) US to come down "D" Road Re decon equipment and to East permeter Road. layout to dry. Print more we turn Right and travel ovary and teeth labels in 1800 North. Stop after bridge Case we need to sample both on outer perimiter Road on any deer we may kill for for U.S. Fish and wildlife to give us the o.K. to proceed. Sampling tonight. Sit on "K" Road by creek Sharpon knilles before B-7 wrapping in the foil sur just before East outlet Road. 1835 U.S. Fish and Wildlife call on aluminum foil. Load vehicles with equipment radio and ask us to proceed and cooler with ice packs. to Machine Gun Rd., We turn 039 Leave building #125 to go to Rightonto Machine Gun Rd. Cbefore Near hunting zone. Stop of Fence) & proceed writil Serano Brett "D'road just to left ofter Road. (11t area 8:9) 2050 Continue to whit to hear tram road security gate. Wait to hear from U.S. Fish & Wildlife U.S. Fish and wildlife (still NO word) See page 144 for Health & Safety Still snowing also. 2215 U.S. Fish and Wildlife return briefing given by Seth Stephenson and ask us to sit tight while (SAIC) 40 Mike Barta (SAIC), Jared Meese (SAIC), Sarah Haddox (SAIC), and Paul Cloud (USACE). they circle the lake. 2422 Arrive back at building #125 Offer daciding to call it a night Official & leave for day. Sault

Data 12 2 05 Date: 12/2/05 JPG JPG Enation Location U.S.ACE. USACE. Project / Charl Project*i* Chent FRIDAY WEATHER: Cold; Scattered clauds, high-32° low-26 and the stop. After a moment, we hear a gunshot. 1430 Arrive at building #125 to 200 Confirm that a deer was prep for sampling. Print extra shot in the back. Get labels. Prep cooler with ice packs out & begin set up while thermometer. Make matrix for Seth Stephenson Clears a path sample tracking. to the deer to verify no 1615 Leave building #125 to go to UXO using the schonstatt. North of the property. jeth clears path using Stop at intersection of "K" Roa und W Perimeter Road and wait "K" Road "Jared takes 'cart back to pick Up deer. U.S Fish and wild if fe white U.S. Fish and wildlife to confirm that they want us to sample the ovaries as the call us on the radro. 1800 Move to intersection of "K" deer is a young female. (Area O is the hinting area she was Rd. and Northwest exit Shot -BHZ) Road intersection. 2050 U.S and Fish & Wildlife Deer She weight - 75 Lbs. return of ask is to follow GPS coordinates of where she died. N 431818.071 E. 633244.061 about 100 yards behind 2120 Set up deer for sampling tooth. them and stop & stay put August 2006 2125 DR- BHZ-02 SAICT Collected when/if we see breaks! by Jared Meese. Go right on Northwest 2130 Sample DR-BHZ-QZ SHICK, + dupliand SAICBSAICL, + SAICM (SHICS SALANDEN) Exit Road. 058 Frights U.S Fish & Wildlife Brake

Deer Sampling I JPG, Madison, I

8-8

JRG. 1111. 12/2/05 JPG . Bate 12/2005 Loadear Deer Sampling Results – Final JPG, Madison, Indiana n alte da USACE USACE - Deer Sampling Summary for Background Hunting Zone (BHZ Projecta Chern 112/2/05 N 0 2 2 1 2 aved completes sampling DR-BHZ-02 Sample and 77 plicate (NO Kidney dup) , SMCM, SMCL, SMCK SAICB SAICMD, SALLD & SAICHD. Jared Mese scanstools and - No Kidney p (kidhey got no reading DR-BHZ-02 XOSE Talk talp have l' pr/m Musche GuR/hr Kidney NS 6 pre/hr B-9 5µR/hr Bone 5 mk/ht Liv 6 MR/hr umma Seth decons tool's while I pack Up samples. Jared scans personel and noone had readings 2304 2056 ທ Eampline and all \$5 **33**ØØ Fintsheel Pocking up equipment and call 5. Tish and wildete I U. 23 aw Arrive back at building # 125 2345 unload equipment and prep 10 leave for the weekend. August 2006 2430 Leave site for day after putting sample on ice, custody scaling unleading equipment, & locking office tread am \sim <u>xxx</u>

24 10 10	vation opect / Ch	JI Ient V	PG- SAEE		Sal	mpli	'NG S	Dat	Z	/2005 fr NHZ		station opent - Cl	J nent L	PG JSA	E	- San	pIn	رم ک		IZ/Z nang	oos for D	25 VA
07 84	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N - /	トレイト	V V 2 F	W - / -	V V - F	ヘトア	X V - F		- 0	V 2217	V odia	-		V 2253 V 4630	-	1.	2548			
the are	57	12	61	54	15 4.	57	52	52	25		Hunt Areat	Pu Area	DUArea	DUATER	Turne	DUArea	DUARA	Sc Am	hude			
QA	Bib/horizon		[۱	1	٢	1	١	1		QA	N/A	N/A A/V		MNJAA	N/N N/A	0/A	N/4	N/H			
BLKM	<pre>/ / / / / / / / / / / / / / / / / / /</pre>	· · · · · · · · · · · · · · · · · · ·	^ . ^ . ^ . / . /	> > > >	ンンン	~ ~ ~ ~	ノンン	へつつ	ノンシン	-the	BLKM	X X X	× × × × × × × × × × × × × × × × × × ×	7 7 7 7 7 7 7 7 7 7 7 7 7	\ 7 7	/ // //	~ ~ ~ ~	7 7 7 7	777777777777777777777777777777777777777	· .	62	
	2/21/06 1946		2/22/06 2012	2/22/06 2030	2/22/06 2117	2/22/06 2222	2/22/66 2319	2/22/01 2345	2/23/06 0000		Date & Time	los 2232	0 -	9181 Solo	12/6/05 1855 1	6/05 2255 1	12/2/05 1246	2/05 Z140	1 lor 2253 1	4 !	· ;	:
c/1)	19-24N-201	- NHZ-D3	40-24N -20	20 - 2HN	NHZ-D6		80 - 2 HN	60-24N	DR-NHZ-ID		Sample Site/12/Da	DR-DUA-DI 12/5/05	- DUA - 02 124	<u>いて</u> 11 10 11 10	DR - DUA - DS 1216	2- DUA- 06 12161 2- DUA- 07 1263	8	121 60	ר-אמר-א)

. .

Γ

.....

ſ

[

[_____

.

.

Deer Sampling Results – Final JPG, Madison, Indiana

Γ.

Γ.

L.

Γ.

Γ.

An interest in the second s JPG, Location JPG Date 12/5/05 JPG Data 12/5/05 Location r Sampling , Madison, Project Client USACE USACE -12/6/05 Project / Cherol N= 2212 [5/14/05 /05/05] N= 2312 bring dear back to the truck 1445 Arrive on s.t. Redecin equiphat and allow to dry. Start badiny vehicle. Seth Stepheisan 638259.422 / coordinates go to talk to USFUS about setting video tope 4304897.917 new personel to JR STEVE weigh deer - 110 lbs/male Fer watch See what time they want to 2217 collected feeth sample (jaw) go at to the DU'erca. -2232 collected fore from front nght -1520 Jessie Mivir and Ster Struck leg, liver (1st), Kidney tissue, wetch safety video. -2250 finish collecting samples. dispose ā - 1550 Tailgate safety briefing w/ в-11 of deer body. de-con knives Seth S., Steve, Jessie M. & Janed R. and packed up supplies - 1615 Arrive north of firing line. -2257 contacted USFW, they spotted USFWS go ahead on Morgan Rd. SAIC more deer, will wait to hear thicks, wait back. back from them. -2412 USFW GALL that they have a 2337 USFW call with there 2nd deer Waldeer, OFF OF WONIU ROAD, eastern -2344 arrive at location Morgan PD, ists boundary of DU Aven. South of C, SETH Starts his. 2142 SETH and Steve go to clear UN cleanance check. path. Jessie and Jared set up 0001 - get deer back to truck (11605, 105) weight = 7516s / females (for 1200) August 2006 -2,50 having difficulty locating the deer. during Seth's check he states there GPS Coordinates N: 4303022.388 is a lot of UXO present. E: 6366933.

Location JPG Date 12/0/05 Date 12/06/05 29 JPG Location Project/Chent VSACE Project Chent VSACE 0009- begin cutting Jato 1510 Arrive at site. Re-decon equipment get , AN for teeth sample DR-DUA-02]T Kidney, liver, muscle, bone Sams finish sampling, decon, reload 0013-Restock supplies as needed. JARed 0018 went to store to get new saw since 0030 our blades were so dull we are truck waiting at the office until we get wait on USFN who have another 0038 Word from USFWS that they've .deer within target killed a cleer. * Shot USFW call off hunt. go back to **005**1 1635 GET the call from USFW they irray re office and unload trucks and have a deer along Wonju supplies. put samples in freezer. Voad. north of C ROAD (east side) side 1647 arrive at site of kill. (lightly snowing) dared does UXO clearance and GPS NORTH 4304331.907 EAST 638253.309 1710 weight = 75 145 MALE back to truck to weigh 1715 get Jaw (touth) sample. notice a 2" scar along deer's nose get [DR-DUA-03] bone, muscle, liver, f 1717 kidney finish taking samples, decon, 1726 and reload supplies 12/04/05

B-12

August 2006

tonation JPG 1. 12/6/05 12/6/05 JPG Location Project/Chent VSACE Propert Cleve VSACE 1730 GOT CALL FROM USFWS they 1855 get B, MK, iL samples have 2 move deer along 1910 finish with sampling, decon knives, Morgan Rd, north of "Road and repack truck. head back 1748 get to kill site, Seth out to to USFWS to put up samples do UXO & GPS (both deer w/1-50 yds of each of le In freezer and get more NORTH 4303654.400 Supplies as neccesary. EAST 636617.123 1925 repack samples in freezer, 1759 get deer to truck decon knives again, get more Supplies, wait to hear from Weight= 170 lbs temale DR-DUA-04 and DUPLICATE VSFW 1812 get jaw for tooth sample 2205 get call from USFW they have 1816 get B, M, L, K sample's a deer on north wonfu 1832 2218 Arnie at kill site. on Wonju finished collecting samples road north of "" Road decon equipment i prepare for SETH AND Steve out to kill site second deer. 2221 1836 Sethand Steve out to 2nd deer, for UXO and tad check. check for UNO frad 2240 bring deer back to truck 1843 deer brought up to trude Weight = 160 scr = Male (~9pt) weight 125 female GPS N= 4304 364.643 GPS N 4303680.46A E= 6382,45.371 2253 get the jaw for teeth sample [DR-DUA-06] 636632.613 1852 get law (leeth) sumple for 1265 get the M, B, L, K samples 2308 finish with sample collection decon Sample DR-DUA-05

<u>.</u> Deer Sampling JPG, Madison, 32 Date 12/06/05 JPG Date 12/07/05 JPG Location Location ISACE Project: Clent USACE Project / Chent g Results , Indiana 2308 cont. and load truck 1200 Arrive at USFWS to pack samples Final 2316 · check in W/USFW. Paul wants to from last week (SETH ; JESSIE) try for another 30 min and 1207 Collect Sauple Source-DE SAICOI call it a night if they dont get from DI maching located in Billy 125. anything 1212 Collect Rinsente souple 2349 didn't find anymore deer so we DR-DUA-07, SAIRBOI went back to USFW office. Unloaded 1215 Start packing cooler. truck and Supplies 1245 leave USFWS office to take slikuples 0020 left USFWS office to Feder place 1500 Arrive back'at USFWS office. Get supplies ready "decon knivestshappen Begin packing up extra supplies into office(trying to take inventory) 1745 Get call from USFW they have a deer on Wonju Rd, north of "C" Rd(005) 1804 arrive at kill site seth/Steve out for UXO and rad dearance 2/00/02 4304540. 769 GPS E 638283.172 August 2006 1820 deer brought back to truck weight 130 sex male (~8,1) 1830 Jaw collected for teeth sample DR-DUA-07 - Kimin Alt. Muir 15/12/06 For 12/7/05

And the second discussion in the second JPG, LORANTER JPG Date 12/07/05 JPG Data 12/7/05 Location r Sampling , Madison, Project / Cherity USACE USACE Project Cherit Indiana 1833 collected B, M, K& L' samples Steve do UXO and rad clearance finish collecting samples decon 2136 get deer back to fruck N = 4307297.307 1841 and repack supplies onto truck get call ust has another deer E: 636589.621 weight = 1901bs sex = male (-7pt 1900 arrive at kill site. deer along "C" get pw for teeth sample road, north of road. Seth and Steve go out for uxo and rad. deer 2148 get B, M, K, & L samples ~170 yds north of road. 1926 deer back to truck finish w/ sampling, cleanup, 2165 B-15 N=4304597.113 and load truck E=637527,931 USFWS ready for us to get next Weight = 150 sex = doc deer got jaw for teeth sample 194[2211 arrive at kill site, off of "C" RECOVER 1946 kd., east of road, ~ 200 yots off road got B, M, K, L Gamples 1956 finish collecting samples decon Seth and Steve but to Site for and repack supplies onto truck UXO and RAD dearance check in w/ USFWS - nothing insite 2237 deer back to truck, GPS N = 4304084.465 so we want black to office to E= 637/82.038 get more supplies and wait 2055 get call from USFWS they sex = female Weight = 115 August 2006 2248 get Jaw for teeth sample have a deer Rilled off DR-DUA-10 Morgan Rd, north of "E" road. arrive at kill site, deer 2253 get B, M, L, K samples 217 ~70 yds off of road. Seth and Minim 5/12 2300 Finish with sampling 9/1 min 5/12(12/7)

Date 12/8/05 37 Data 12/7/05 -JPG JPG Location Location 12/8/05 UJALE Project/Client USACE Project / Client -1015 Seth Stephenson, Jared Merse 2305 get word from USFW they have ad Jessile Muir dreve on site to 3 possible deer in NHZ area. clean equipment ent store equipment waiting to hear back the return of field crew. 2315 didn't get a shot - so we all un + 1 power wash head back to office -1100 Soth to Goes Unload trucks, decon deer cart and . ne Seth returns to office. Lunch 2400 leave USFW office. ~1200 -1300 Evenpore leves 5. te.

JPG Deer Soughling Date 12/12/15 Date 02/21/06 JPG PEER SAMPLING Location. Project / Chient USALE Project? Client USACE The -0530 Arme a site. Will be packing 1430 BARTA, SKIBINSKI, MEBSE, MUIR, souples and londing equipment to STEPHENSON APPIVE AT ONSITE take back to NECD. OFFICE. GO THROUGH SUPPLIES star to get more - 1100 Go AND PREPAPE FIELD KITS. 2.0 lock bass TAILGATE SAFETY MEETING 1730 to office -1(45 Ketum USFWS LEAVES OFFICE AND GOES 1745 INTO FIELD SALC PERSONNEL WAITING AT SITE OFFICE UNTIL GET WORD FROM USFWS. USFN'S CALL WITH A KILL IN 1830 AREA 57. AREIVE AT KILL SITE. TWO 1843 FEMALES KILLED. JARED, MIKE, SETH OUT TO RETRIEVE ADDEER. (DECISION MADE TO TAKE DEER AWAY FROM SITE EDGE (ROAD) -1321 18 12312 FN GPS Coordinates 409810.078庄) RAD Reading -11,4K/hr 1910 GET 1st doer into truck, drive to site August 2006 OF 2nd deer. MIKE, JARED, SETH OUT TO RETRIEVE SELOND DEER. (DECISION TO NOVE DEER FROM KILL SITE TO GET AWAY FROM ROAD. F.T. Muis 5/12/06 for

Lucation JPG DEER SAMPLING Date 2/21/06 LUCADON JPG DEER SAMPLING Date 2/21/06 Project / Churt > F Project of BOACE 1932 2nd deer (More Swiherly) NHZO2 USFWS call with their 3rd killed 2141 SMR/hr JRAD deer in hunting zone 52 1321814.497 N | GPS Good. 2200 ARRIVE AT KILL SITE. OFF OF 409809.940 E JONESTOWN RUAD, MIKE, SETH, I JARED SEX: TE HALE OUT TO DEER FOR RAD & UNO WEGHT 145 165 CLEARANCE (down hill) 2223 DEER BACK TO TRUCK NHZ-OI 1946 GPS READINGS: 132876.497 N . pregnant of 2 fetuses, weight 1251bs .collected L, K, Milletus, bone B-18 38906.558 E RAD READING : 7 MR/hr had trouble locating ovaries SEX: Female WEIGHT : 115 so no Ovary sample collected 2236 NHZ-03 decon knives to bone saw pregnant w/ 2 fetuses NHE-02 and NHE-02Dup 2031 collected K, L, OV, Fetus, H, & B pregnant N/1 fetus decon knives i sow collected L,K, 1 fetus, bone 2301 finish decon, pack up supplies ovanes difficult to find, potential and head to site of the killing cysts, only got 1 ovary, no site office to unload supplies August 2006 ovary duplicate. 2327 amve@field office. unload trucks lear field office 2117 Completed taking Samples for 2356 NHE'DI and NHE'02(4dup), deconequip refer to page 24 for sample log m 5/12/06 for 2/21/06 5/12/06 for 2/21/06 1712.4.4 1.73 3340

12 Location JPG Deer Sampling Date 02/22/06 Project/Client USACE	Location JPG DEER SAMPLING Date 02/22/06 Project - Gient VSACE
1500 MUIR, REESE, & STEPHENSON ARRIVE AT FIELD OFFICE. PREPARE FIELD KITS AND SUPPLIES WEATHER: COLD, FOGGY/DRIZZLY	1958 BFING 2ND DEER BACK TO TRUCK. GPS: 1327734.135N 411355.842E RAD: 7MP/hr and 0
1528 SETH COLLECTED PINSE BLANK DR-NHZ-03 SAIG BO2	SEX: FEMALE 2007. WEIGH MALE DEER
1600 JOE OF USEWS TOOK THE OVARY SAMPLES FROM NHE02	WEIGHT: 110 1DR-NHZ-047 2012 COLLECT T, L, K, M, B
AND NHZO3, WENT INTO FIELD. 1835 RECEIVED CALL FROM USFN'S WITH THEIR FIRST KILL.	2020 FINISH WITH NHZ-OA 2025 WEIGH FEMALE DE-NHZ-05
1850 ARRIVE AT KILL SITE. BRING DEER TO TRUCK AND MOVE TO DIFFERENT LOCATION (511/06 For 02/22/06) FOR LOCAT DISSECTION.	WEIGHT - 102 IBS PREGNANT, IFET4. 2030 COLLECT T.L., K.NI, B, O 2047 FINISH NITH NHZ-05, HEAD TO
FOR LOCAT DISSECTION. MAH → GPS: 1328677,097N/389006.517E RAD: BAR/hr and O	SITE OF 3 ^{LD} KILL DECR. FREA 54 2053 APRIVE AT SITE
T SEX: MALE HUNTING ZONE 61 (EAST) Z ~ 50 YARDS OFF OF ROAD (NEAR PUBLIC	GPS' 13258932.725N 407740.127E
& ROAD) HAD TROUBLE INITIALLY LOCATING DEER.	RAD: Jur/hr and O SEX: FEMALE WEIGHT: 130165. 2117 WWED DR-NHZ-06
1945 ARRIVE AT SITE OF 2ND DEER KILL. SETH, MIKE, I JARED OUT FOR UXO - RAD	PREGNANT, 2 FETUSES 2135 FINISH AND LEAVE FOR

Deer Samolin	44 tradical JPG DEER SAMPLING Date 2/22/06 Project / Chent VSACE 1	Location JPG DEER SAMPLING Date 2/22/06 Project: Clical USACE
ing Results – Final	ARRIVE AT KILL SITE FOR 4th deer. 2140 TOK RAD, UXO READINGS. AREA 57. GPS: 1323351.546 N 411013:204 E RAD: 5MR/hr, O LOADED DEER INTO TRUCK TO TAKE	2300 ARRIVE AT KILLSITE OF LAST TWO DED DR-NH7-08 NEIGHT: 80 LBS SAMME SEX: Female (young, not pregnant) THE319 TAKE DR NH7 OS SAMPLE T, L, K, M, O, B
B-20	TO ANDTHER LOCATION FOR DISSECTION. DEER NEXT TO ROAD (ALONG PUBLIC ROAD) 2200 ARRIVE AT NEW LOCATION FOR DISSECTION. SET UP TRUCK & EQUIP. SEX: MALE WEIGHT: 130 135	DELONEQUIP SETH HAG ALDEADY CLEARED UXO PATH TO SITE OF J KILL DEERS SETH, MIKE, VARED OUT TO TAKE RAD READINGS BOTH DEER ~ 100 YDS
	2222 TAKE DR-NHZ-07 COLLECT L, K, M, B 2235 FINISH SAMPLING, DECON. EQUIPMENT LEAVE FOR NEXT KILL SITE, USPWS LEAVESITE.	OFF THE ROAD GPS: 1324381 220 N NHZ9 391392.153E RAD: 912/hr,0
a mana na sa	2242 ARRIVE AT KILL SITE, NHZ#52 DEER ALONG ROADSIDE (JINESTOWN RD) GPS: 1326835.449N 388770:010E (DK-NH7-08)	WEIGHT: <u>75185</u> SEX: <u>FEMALE</u> GPS: 132430. 262 N NHZ 10 391875 439 E PAD: 948/hr 0
August 2006	RAD: 7/nR/hr, O TAKING DEER TO LOCATION OF LAST 2 DEER KILLED. (LAST 3 OF NHZ) ARRIVE AT KILL SITE OF LAST 2 DEER NHZ #52. SMinun 5/12/06 Br 2/22/06	WEIGHT: <u>110 LB</u> ⁵ SEX: FEMALE 2345 COLLECT DR-NHZOG 2358 FINISH TAKING OG SAMPLES, DECO 2402 COLLECT DR-NHZ-10 MO000 PREGNANT, IFETUS ON Thum 5/12/06 For 2/23

.

A State of the second stat JPG, .17 Ination JPG DEER SAMPLING Date 2/23/06 togetten JPG DEER SAMPLING Date 2/23/06 Sampling I Madison, I Project/Client USACE Project a head USACE Results -Indiana 0011 FINISH COLLECTING SAMPLES, DECON 1245 JARED JESSIE MIKE AFFIVE AT EQUIP, LOAD TRUCKS AND HEAD FIELD OFFICE. SETH AT LOWE'S - Final BACK TO FIELD DEFICE. TO PICK UP MORE GLOWSTICKS. 0045 AFRIVE AT FIELD OFFICE. UNLOAD JESSIE SEPARATES TEETH, OVARY TRUCKS. AND FETUSES' FROM OTHER 0100 LEAVE FIELD OFFICE AND SITE SAMPLES JARED & MIKE LOOKING FOR LOST " PADIO OUT IN PIELD. SETH JESSIE CONTINUE TO PREPARE AND PESTOCK FIELD KITS. B-21 WEATHER: SUNNY 03154.5 LEFT FIELD OFFICE W/ USFWS FOR LUNCH , PAUL CLOUD MET US THERE. 1720 AFRIVE AT THE NORTH AREA FOR BACKG FOUND. DAMPLING 1900 USFWS CALL TO SAY THEY HAVE nun 2 DEER KILLED ALONG NORTH "K" 5/12/06 For ROAD. HEAD TO THE KILL LOCATION. 2/23/06 1909 ONE DEER IS A'LONG THE ROADSIDE. THE OTHER ONE IS - SO YARDS IN THE WOODS, HUNTING AREA_6 ... August 2006 JARED, MIKE, SETH OUT TO SECOND DEER FOR UXA FRAD READINGS : AFTER TAKING READINGS ON 1St DEER ALONG THE ROAD. 5/12/06 for 48/05

Date 2/2:	
Project / Chem / USACE GPS: 1371692.003 N 383185.522 E RAD: 7/NE/Mr O WEIGHT: 150 165. SEX: FEMALE OI PREGNANT W/2 FETUSES GPS: 1371654.871 N 383342.076 E RAD: 8/NR/hr WEIGHT: 105	Project Clifted VSACE 2034 AT-FINE AT SITE OF SED DEEP. HUNTING ZONE 2 DEEP WAY OUT IN WOODS, DOWN HILL, UP NEXT HILL SETH, JARED, S MIKE OUT TO GET DEER. 2053 DEEP BACK AT TRUCK, WEIGH GPS: 1375048, 113N 393825, 239 E RAD: 8MR/Ar WEIGH: 130LBS SEX: FEMALE
SEX: FEMALE PREDNANT, 2 FETUSES 1935 BEGIN GULECTING DR-BHZ-03 HUSFWS REQUESTED WE TAKE PICTUR OF THE FEMALES IFPREGNANT	2056 BEGIN COLLECTING DR-BHZ-05 COLLECT 0, F(2), L, K, M, B PREGNANT N/2 FETUSES 2107 FINISH COLLECTING SAMPLES. DECON
(INARDS INTAKES) 1955 FINISH WITH BHZO3 SAMPLING WEIGH J ND DEER (B <u>HZO4)</u> 2000 BEGIN COLLECTING [DR-BHZO4]	EQUIPMENT. DRIVE TO A NEW SPOT TO WAIT FOR WORD FROM USFWS 2235. CALL FROM USFWS WITH 4 th DEER DOWN. GO TO THEIR LOCATION SETH, NARED, & MIKE OUT TO DEER
COLLECT T, O, F, B, L, F, & M 2020 FINISH COLLECTING. MOVE ONT SITE OF 3RD KILLED DEER.	FOR UXO & RAD' READINGS.

.

•

manning have a little Boy Isturning . 199124 18 5 time them JPG DEER SAMPLING Date 2/23/06 Invention JPG DEER SAMPLING Date 2/24/06 JPG, Project/Client USACE 2/24/06 Propert's head USACE Sampling Results Madison, Indiana Grs: 1380104.994N 0031 COLLECT SAMPLE DR-BHZ-07 402314.096E no fetuses, too young RAD: 7mR/hr0 0042 FINISH COLLECTING SAMPLE BHZOT - Final SEX: FEMALE PACKUP SUPPLIES AND TRUCKS, DECON WEIGHT: 120 LBS EQUIP. HEAD BACK TO FIELD OFFICE 2304 BEGIN COLLECTING DR-BHZ-06 DI35 APPIVE AT FIELD OFFICE. UNLOAD ALE PILTURES OF OVARIES TRUCKS AND BAMPLES PREGNANT W/2 FETUSES 0200 LEAVE FIELDOFFICE AND SITE. 2320 FINISH TAKING SAMPLES AND HEAD TO ANOTHER LOCATION TO MEET UP B-23 WITH US FWS. THEY KILLED 5th DHER 2329 ARRIVE AT SITE W/ USFWS. DEER IS ON OTHER SIDE OF LAKE. JARED, MIKE, SETT OUT TO GET DEER & READINGS 0026 BRING DEER TO TRUCK, WEIGH DEER GPS: 1383761.520N 406243.416E 2/24/06 RAD: 7MR/HV SEX: Female (young, ~ 21 year) WEIGHT: 60 August 2006 HUNTING ZONE: 4 TOOK ALONG TIME TO FIND DEER! XM. Thuin 5/12/06 for 2/24/06

Location JPG DEER SAMPLING Date 2/24/05 Project Client USACE	Location JPG DEER SAMPLING Date 2/24/06
1	Project / Client USACE
1200 SETH AND JESSIE ARRIVE AT FIELD OFFICE. PACK SAMPLES	2106 DEER BACK TO TRUCK. WEIGH.
NHZOI - NHZO3 (from Tues) FOR	2110 BEGIN COLVECTING DE-BHZ-08
1 SHIPMENT.	O, F, T, L, K, & M (Pregnant, Ifetus)
1250 SETH COLLECTED RINSE BLANK	2128 FINISH TAKING SAMPLES, DECON
0 DR-BHZ07-SAIRBO3	EQUIP, & PACK TRUCKS BACKUP.
1330 LEFT FIELD OFFICE TO TAKE	2140 ARRIVEAT SITE OF 2 KILLED DEER. HUNTING ZONE#13.
PACKED SAMPLES TO FEDEX	SETH, MIKEIJJARED OUT TO DEER FOR
1515 SETH, JARED, SJESSIE ARRIVE AT	RAD & UXO READINGS.
FIELD OFFICE. PACK TRUCKS.	DEER BACK TO TRUCK.
GIVE JOE OF DEFUS THE OVARIES	GPS: 1374406, 487N
TEOM PREVIOUS EVENING.	393183.152E
1600 USFWS HEAD OUT TO THE BHZ AREA. WR	RAD: 6 MR/hr 0
1645 HEAD OUT TO NORTH BHZAREA. JEP 3	SEX: MALE WEIGHT: 100
1715 ARRIVE AT WAITING S POT NEAR	2153 COLLECT DR-BHZ-09
BRIDGE # 28. WAIT HERE FROTIL WE	L, K, M, T
GET WORD FROM USFWE.	2208 LOAD UP TRUCKS, DECON EQUIP
2048 ARRIVE AT SITE OF 1ST DEER. HE#3	CHECK IN WITH USFWS
SETH, JARED, & MIKE OUT TO DEER	2228 ARRIVE AT SITE OF LAST DEER.
FOR UXOFRAD READINGS	SETH, MIKE, LJARED OUT TO DEER
GPS: 1380843.461N	FOR UXO & RAD READINGS.
393695.540E RAD: 6MR/hr O Stylhion	HUNTING ZONE 6
SEX: FEMALE WEIGHT: 135 5/12/06	2/24/66

•

•

Date 2/27/06 UN JUNI JPG DEER SAMPLING In JPG DEER-SAMPLINE 111 2/24/06 Project Cheer USACE 2 125/06 Project or head USACE 1-1130 Arrive on site. I will be 2242 DEER BACK AT TRUCK packing samples, cleaning and GPS: 1373178.426N - 1145 Take Deer cart and net 385670.999E 6 MR/hr, O MD: to ar wash for power washing. SEX: Female - 1245 Return to, s.t. 5+-+ WEIGHT: 145 packing coolers. PREGNANT, 2 FETUSES 1-1400 Finish packing coolers. Stort 2248 COLLECT SAMPLE / DR-BHZ-10 loading eguptint to take to 0,2F, L, K, M, T ; building 723. 2304 FINISH COLLECTING SAMPLE. DECON -1500 Finish wasna aguip want EQUIP, PACK TRUCKS UP, HEAD B-25 bene site for Feditr BACK TO OFFICE. 2400 ARRIVE BACK AT OFFICE PACK UP SUPPLIES AND TRUCKS JARED TOOK SWIPES OF TRUCKS (LEPTRAR) DEER CAPT 1040 LEAVE FIELD OFFICE 4ALL AT BOKGD 0030 AND FLOOR BOARD OF DRIVER'S SIDE FOR ALPHA ; BETA. จ_ัugust 2006 2/25/06

THIS PAGE WAS INTENTIONALLY LEFT BLANK

1

ſ

APPENDIX C PHOTOGRAPHS

.

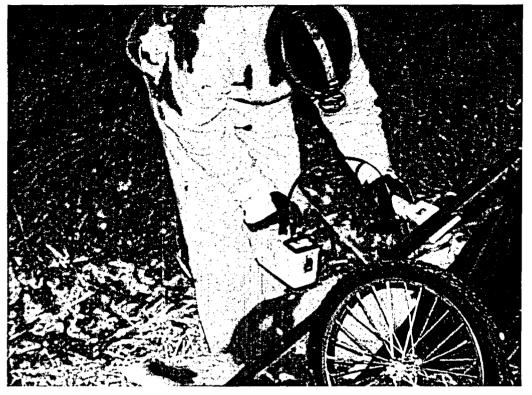
...

.

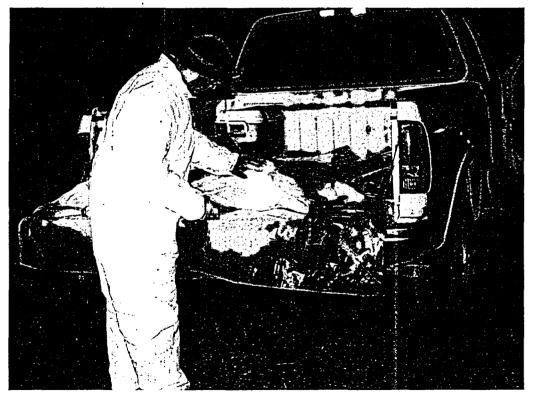
أستعا

THIS PAGE WAS INTENTIONALLY LEFT BLANK

l i



Fur and Tissue Scraped from Foreleg for Clean Bone Sample


نسا

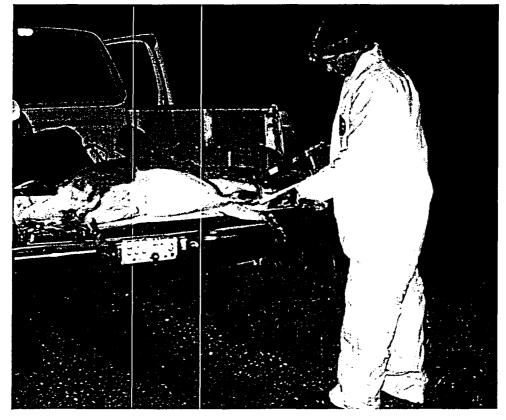
-

1

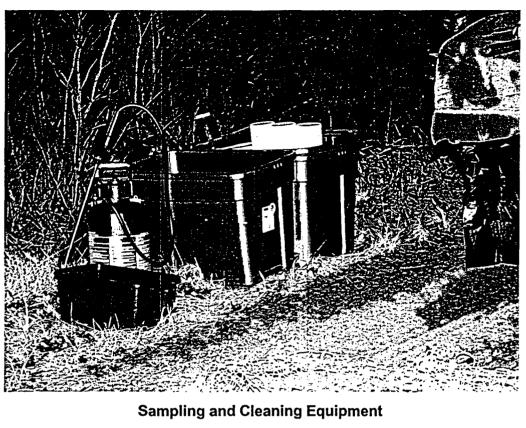
Health Physics Technician Collecting Radiological (Dose) Readings

Initiating Deer Dissection

1


!

____i



Recording GPS Location of Deer Sampled in the NHZ Area

Removal of the Foreleg Bone for Bone Sample

-

Senior UXO Supervisor Clearing a Path in DU Impact Area

1

L

APPENDIX D DATA VALIDATION SUMMARY

أسا

L

.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

lт

D. DATA VALIDATION SUMMARY

D.1 PARAGON ANALYTICS SDGs #05-12-068 and #06-02-205

This report contains the results from the data validation technical review for the Jefferson Proving Ground (JPG) deer tissue samples (i.e., muscle, bone, liver, and kidney) and associated field quality control (QC) samples and analyses that are associated with the above-referenced laboratory and sample delivery groups (SDGs). These data points have been selected for data validation, and the sample data summary sheets on the following pages specifically identify the samples and analyses associated with this validation review.

The JPG validation technical review was performed in accordance with the U.S. Environmental Protection Agency's (USEPA's) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (July 2002) and Science Applications International Corporation's (SAIC's) Quality Assurance Technical Procedure No. TP-DM-300-7, Data Validation (February 2004). The technical review was based on the information and documentation supplied by the associated laboratory. The analyses were evaluated against criteria established in the related analytical procedures and the JPG data quality requirements.

Attachment D1 to this report provides the Sample Data Summary Sheets for the samples associated with the above-referenced SDGs. These summary sheets identify the analytical values and the qualifiers for each sample and parameter. Attachment D2 outlines the validation qualifiers and reason codes used in the validation of the data.

Report Summary						
Total Number of Samples	136					
Total Number of Data Points	408					
Total Number of Rejected Data Points	0					
Percent Completeness (approval to rejection ratio)	100%					

	Sample In	dex	
Laboratory:		SDO	
Paragon Analytics			05-12-068, 06-02-205

DR-BHZ-01-SAICM 512068-1 DR-BHZ-01-SAICB 512068-2 DR-BHZ-01-SAICL 512068-3 DR-BHZ-01-SAICK 512068-4 DR-BHZ-02-SAICM 512068-5 DR-BHZ-02-SAICM 512068-6 DR-BHZ-02-SAICM 512068-6 DR-BHZ-02-SAICB 512068-7 DR-BHZ-02-SAICBD 512068-8		30-Nov-05 30-Nov-05 30-Nov-05 30-Nov-05 02-Dec-05 02-Dec-05 02-Dec-05 02-Dec-05	Isotopic Uranium Isotopic Uranium Isotopic Uranium Isotopic Uranium Isotopic Uranium Isotopic Uranium Isotopic Uranium
DR-BHZ-01-SAICL 512068-3 DR-BHZ-01-SAICK 512068-4 DR-BHZ-02-SAICM 512068-5 DR-BHZ-02-SAICMD 512068-6 DR-BHZ-02-SAICB 512068-7		30-Nov-05 30-Nov-05 02-Dec-05 02-Dec-05 02-Dec-05	Isotopic Uranium Isotopic Uranium Isotopic Uranium Isotopic Uranium
DR-BHZ-01-SAICK 512068-4 DR-BHZ-02-SAICM 512068-5 DR-BHZ-02-SAICMD 512068-6 DR-BHZ-02-SAICB 512068-7		30-Nov-05 02-Dec-05 02-Dec-05 02-Dec-05	Isotopic Uranium Isotopic Uranium Isotopic Uranium
DR-BHZ-02-SAICM 512068-5 DR-BHZ-02-SAICMD 512068-6 DR-BHZ-02-SAICB 512068-7		02-Dec-05 02-Dec-05 02-Dec-05	Isotopic Uranium Isotopic Uranium
DR-BHZ-02-SAICMD 512068-6 DR-BHZ-02-SAICB 512068-7	· · · · · · · · · · · · · · · · · · ·	02-Dec-05 02-Dec-05	Isotopic Uranium
DR-BHZ-02-SAICB 512068-7		02-Dec-05	
	· · · · · · · · · · · · · · · · · · ·		Isotopic Uranium
DP-BHZ-02-SAICBD 512068-8		02-Dec-05	
01-0112-02-041000 012000-0		02-000 00	Isotopic Uranium
DR-BHZ-02-SAICL 512068-9		02-Dec-05	Isotopic Uranium
DR-BHZ-02-SAICLD 512068-10		02-Dec-05	Isotopic Uranium
DR-BHZ-02-SAICK 512068-11		02-Dec-05	Isotopic Uranium
DR-DUA-07-SAIRB01 512068-12		07-Dec-05	Isotopic Uranium
SOURCE-DI-SAIC01 512068-13		07-Dec-05	Isotopic Uranium
DR-DUA-01-SAICM 512068-14		05-Dec-05	Isotopic Uranium
DR-DUA-01-SAICB 512068-15		05-Dec-05	Isotopic Uranium
DR-DUA-01-SAICL 512068-16		05-Dec-05	Isotopic Uranium
DR-DUA-01-SAICK 512068-17		05-Dec-05	Isotopic Uranium
DR-DUA-02-SAICM 512068-18		D6-Dec-05	Isotopic Uranium
DR-DUA-02-SAICB 512068-19		06-Dec-05	Isotopic Uranium
DR-DUA-02-SAICL 512068-20		06-Dec-05	Isotopic Uranium
DR-DUA-02-SAICK 512068-21		06-Dec-05	Isotopic Uranium
DR-DUA-03-SAICM 512068-22		06-Dec-05	Isotopic Uranium
DR-DUA-03-SAICB 512068-23		06-Dec-05	Isotopic Uranium
DR-DUA-03-SAICL 512068-24		06-Dec-05	Isotopic Uranium
DR-DUA-03-SAICK 512068-25		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICM 512068-26		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICMD 512068-27		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICB 512068-28		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICBD 512068-29		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICL 512068-30		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICLD 512068-31		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICK 512068-32		06-Dec-05	Isotopic Uranium
DR-DUA-04-SAICKD 512068-33	·	06-Dec-05	Isotopic Uranium
DR-DUA-05-SAICM 512068-34		06-Dec-05	Isotopic Uranium
DR-DUA-05-SAICB 512068-35		06-Dec-05	Isotopic Uranium
DR-DUA-05-SAICL 512068-36		06-Dec-05	Isotopic Uranium
DR-DUA-05-SAICK 512068-37		06-Dec-05	Isotopic Uranium

Deer Sampling Event Report – Final JPG, Madison, Indiana

August 2006

.....

L.,

Client Sample I.D.	Laboratory Sample I.D.	Date Collected	Analyses Performed
DR-DUA-06-SAICM	512068-38	06-Dec-05	Isotopic Uranium
DR-DUA-06-SAICB	512068-39	06-Dec-05	Isotopic Uranium
DR-DUA-06-SAICL	512068-40	06-Dec-05	Isotopic Uranium
DR-DUA-06-SAICK	512068-41	06-Dec-05	Isotopic Uranium
DR-DUA-07-SAICM	512068-42	07-Dec-05	Isotopic Uranium
DR-DUA-07-SAICB	512068-43	07-Dec-05	Isotopic Uranium
DR-DUA-07-SAICL	512068-44	07-Dec-05	Isotopic Uranium
DR-DUA-07-SAICK	512068-45	07-Dec-05	Isotopic Uranium
DR-DUA-08-SAICM	512068-46	07-Dec-05	Isotopic Uranium
DR-DUA-08-SAICB	512068-47	07-Dec-05	Isotopic Uranium
DR-DUA-08-SAICL	512068-48	07-Dec-05	Isotopic Uranium
DR-DUA-08-SAICK	512068-49	07-Dec-05	Isotopic Uranium
DR-DUA-09-SAICM	512068-50	07-Dec-05	Isotopic Uranium
DR-DUA-09-SAICB	512068-51	07-Dec-05	Isotopic Uranium
DR-DUA-09-SAICL	512068-52	07-Dec-05	Isotopic Uranium
DR-DUA-09-SAICK	512068-53	07-Dec-05	Isotopic Uranium
DR-DUA-10-SAICM	512068-54	07-Dec-05	Isotopic Uranium
DR-DUA-10-SAICB	512068-55	07-Dec-05	Isotopic Uranium
DR-DUA-10-SAICL	512068-56	07-Dec-05	Isotopic Uranium
DR-DUA-10SAICK	512068-57	07-Dec-05	Isotopic Uranium
DR-NHZ-01-SAICM	602205-1	21-Feb-06	Isotopic Uranium
DR-NHZ-01-SAICB	602205-2	21-Feb-06	Isotopic Uranium
DR-NHZ-01-SAICL	602205-3	21-Feb-06	Isotopic Uranium
DR-NHZ-01-SAICK	602205-4	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICM	602205-5	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICMD	602205-6	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICB	602205-7	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICBD	602205-8	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICL	602205-9	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICLD	602205-10	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICK	602205-11	21-Feb-06	Isotopic Uranium
DR-NHZ-02-SAICKD	602205-12	21-Feb-06	Isotopic Uranium
DR-NHZ-03-SAICM	602205-13	21-Feb-06	Isotopic Uranium
DR-NHZ-03-SAICB	602205-14	21-Feb-06	Isotopic Uranium
DR-NHZ-03-SAICL	602205-15	21-Feb-06	Isotopic Uranium
R-NHZ-03-SAICK	602205-16	21-Feb-06	Isotopic Uranium
R-NHZ-03-SAIRB02	602205-17	22-Feb-06	Isotopic Uranium
R-BHZ-07-SAIRB03	602205-18	24-Feb-06	Isotopic Uranium
R-NHZ-04-SAICM	602205-19	22-Feb-06	Isotopic Uranium
DR-NHZ-04-SAICB	602205-20	22-Feb-06	Isotopic Uranium
R-NHZ-04-SAICL	602205-21	22-Feb-06	Isotopic Uranium
R-NHZ-04-SAICK	602205-22	22-Feb-06	Isotopic Uranium

-

.

•

Client Sample I.D.	Laboratory Sample I.D.	Date Collected	Analyses Performed
DR-NHZ-05-SAICM	602205-23	22-Feb-06	Isotopic Uranium
DR-NHZ-05-SAICB	602205-24	22-Feb-06	Isotopic Uranium
DR-NHZ-05-SAICL	602205-25	22-Feb-06	Isotopic Uranium
DR-NHZ-05-SAICK	602205-26	22-Feb-06	Isotopic Uranium
DR-NHZ-06-SAICM	602205-27	22-Feb-06	Isotopic Uranium
DR-NHZ-06-SAICB	602205-28	22-Feb-06	Isotopic Uranium
DR-NHZ-06-SAICL	602205-29	22-Feb-06	Isotopic Uranium
DR-NHZ-06-SAICK	602205-30	22-Feb-06	Isotopic Uranium
DR-NHZ-07-SAICM	602205-31	22-Feb-06	Isotopic Uranium
DR-NHZ-07-SAICB	602205-32	22-Feb-06	Isotopic Uranium
DR-NHZ-07-SAICL	602205-33	22-Feb-06	Isotopic Uranium
DR-NHZ-07-SAICK	602205-34	22-Feb-06	Isotopic Uranium
DR-NHZ-08-SAICM	602205-35	22-Feb-06	Isotopic Uranium
DR-NHZ-08-SAICB	602205-36	22-Feb-06	Isotopic Uranium
DR-NHZ-08-SAICL	602205-37	22-Feb-06	Isotopic Uranium
DR-NHZ-08-SAICK	602205-38	22-Feb-06	Isotopic Uranium
DR-NHZ-09-SAICM	602205-39	22-Feb-06 ·	Isotopic Uranium
DR-NHZ-09-SAICB	602205-40	22-Feb-06	Isotopic Uranium
DR-NHZ-09-SAICL	602205-41	22-Feb-06	Isotopic Uranium
DR-NHZ-09-SAICK	602205-42	22-Feb-06	Isotopic Uranium
DR-NHZ-10-SAICM	602205-43	23-Feb-06	Isotopic Uranium
DR-NHZ-10-SAICB	602205-44	23-Feb-06	Isotopic Uranium
DR-NHZ-10-SAICL	602205-45	23-Feb-06	Isotopic Uranium
DR-NHZ-10-SAICK	602205-46	23-Feb-06	Isotopic Uranium
DR-BHZ-03-SAICM	602205-47	23-Feb-06	Isotopic Uranium
DR-BHZ-03-SAICB	602205-48	23-Feb-06	Isotopic Uranium
DR-BHZ-03-SAICL	602205-49	23-Feb-06	Isotopic Uranium
DR-BHZ-03-SAICK	602205-50	23-Feb-06	Isotopic Uranium
DR-BHZ-04-SAICM	602205-51	23-Feb-06	Isotopic Uranium
DR-BHZ-04-SAICB	602205-52	23-Feb-06	Isotopic Uranium
DR-BHZ-04-SAICL	602205-53	23-Feb-06	Isotopic Uranium
DR-BHZ-04-SAICK	602205-54	23-Feb-06	Isotopic Uranium
DR-BHZ-04-SAICKD	602205-55	23-Feb-06	Isotopic Uranium
DR-BHZ-05-SAICM	602205-56	23-Feb-06	Isotopic Uranium
DR-BHZ-05-SAICB	602205-57	23-Feb-06	Isotopic Uranium
DR-BHZ-05-SAICL	602205-58	23-Feb-06	Isotopic Uranium
DR-BHZ-05-SAICK	602205-59	23-Feb-06	Isotopic Uranium
DR-BHZ-06-SAICM	602205-60	23-Feb-06	Isotopic Uranium
DR-BHZ-06-SAICB	602205-61	23-Feb-06	Isotopic Uranium
DR-BHZ-06-SAICL	602205-62	23-Feb-06	Isotopic Uranium
DR-BHZ-06-SAICK	602205-63	23-Feb-06	Isotopic Uranium
DR-BHZ-07-SAICM	602205-64	24-Feb-06	Isotopic Uranium

August 2006

L

Client Sample I.D.	Laboratory Sample I.D.	Date Collected	Analyses Performed	
DR-BHZ-07-SAICB	602205-65	24-Feb-06	Isotopic Uranium	
DR-BHZ-07-SAICL	602205-66	24-Feb-06	Isotopic Uranium	
DR-BHZ-07-SAICK	602205-67	24-Feb-06	Isotopic Uranium	
DR-BHZ-08-SAICM	602205-68	24-Feb-06	Isotopic Uranium	
DR-BHZ-08-SAICB	602205-69	24-Feb-06	Isotopic Uranium	
DR-BHZ-08-SAICL	602205-70	24-Feb-06	Isotopic Uranium	
DR-BHZ-08-SAICK	602205-71	24-Feb-06	Isotopic Uranium	
DR-BHZ-09-SAICM	602205-72	24-Feb-06	Isotopic Uranium	
DR-BHZ-09-SAICB	602205-73	24-Feb-06	Isotopic Uranium	
DR-BHZ-09-SAICL	602205-74	24-Feb-06	Isotopic Uranium	
DR-BHZ-09-SAICK	602205-75	24-Feb-06	Isotopic Uranium	
DR-BHZ-10SAICM	602205-76	24-Feb-06	Isotopic Uranium	
DR-BHZ-10-SAICB	602205-77	24-Feb-06	Isotopic Uranium	
DR-BHZ-10-SAICL	602205-78	24-Feb-06	Isotopic Uranium	
DR-BHZ-10-SAICK	602205-79	24-Feb-06	Isotopic Uranium	

1_

.

.

.....

.....

ļ

1

1.4

D.1.1 Analytical Category: Radiochemical

- Uranium-234 (U-234), Uranium-235 (U-235), and Uranium-238 (U-238) were determined by alpha spectrometry (American Society for Testing and Materials [ASTM] D3972-90M).
- Deer tissue samples and associated field QC samples collected in November and December 2005 were analyzed in SDG 05-12-068 and deer tissue samples and associated field QC samples collected in February of 2006 were analyzed in SDG 06-02-205.
- 1. The following items (as applicable) have been addressed during the validation review:
- Sample custody, integrity and preservation
- Sample handling and preparation
- Holding times
- Instrument calibration and performance
- Dilution factors
- Detection limits
- Laboratory background and carry-over
- Overall appearance of the data
- QC:
 - Calibration checks and background
 - Preparation blanks
 - Chemical yield (tracer) recovery
 - Laboratory control samples
 - Laboratory duplicates
 - Field blanks (if available)
 - Field duplicates (if available).
- 2. The above items were found to be acceptable, except as follows:
- Blank Contamination Associated with Tissue Samples

U-234 was present in the associated deer tissue method blanks at 0.0073 ± 0.0056 picocuries per gram (pCi/g) and 0.0077 ± 0.0027 pCi/g in SDG 05-12-068. U-238 was present in one associated deer tissue method blank at 0.0026 ± 0.0016 pCi/g in SDG 05-12-068. U-234 and U-238 were present in the associated water method blank at 0.063 ± 0.038 pCi/Liter (pCi/L) and 0.071 ± 0.042 pCi/L, respectively, in SDG 06-02-205. Those samples, where the normalized absolute difference between the sample and the method blank was less than 2.58, were qualified as estimated "J," with a reason code 6 for the U-234 and U-238 results via alpha spectroscopy. Although the blank contamination required qualification of associated sample data, the contamination was well below the requested minimum detectable concentration (MDC) of 0.02 pCi/g for deer tissue samples and 2.0 pCi/L for water samples.

Blank Contamination Associated with Equipment Rinse Blanks

The only tissue samples that the equipment rinse blanks would apply to are the bone samples. The muscle, liver, and kidney tissue were dissected from the deer using disposable scalpels. The bone saw and gutting knifes were rinsed after decontamination and the rinsate was collected and sent to the laboratory for analysis. For purposes of data validation, the equipment rinse blanks are not significantly different than the associated water method blank. The U-234 and U-238 were qualified "J" in both equipment rinse blanks due to method blank contamination, and the Uranium U-235 was nondetect in equipment rinse blank DR-BHZ-07-SAIRB03 and detected at 0.025 ± 0.024 pCi/L in equipment rinse blank DR-NHZ-03-SAIRB02. Due to the uncertainty in the equipment rinse blanks for U-234 and U-238 as a result of method blank contamination and the large relative error compared

to the equipment rinse blank concentration for U-235, the equipment rinse blanks were not used for validation of the deer bone samples.

• Chemical Yield Summary (Tracer Recovery)

The chemical yield for samples DR-DUA-07-SAICB and DR-DUA-10-SAICB was below the lower control limit (LCL) of 30 percent at 17.7 percent and 13.6 percent, respectively. The U-234, U-235, and U-238 results for these two samples were qualified as estimated ("J" or "UJ") with a reason code of 38.

• Overall Assessment of Data

U-234, U-235, and U-238 sample data with results greater than the MDC were qualified as estimated "J," reason code 37 in instances where the associated error was greater than 50 percent of the sample result.

3. Additional comments:

- The Case Narrative reports that the analytical method quantifies U-235 alpha activity in a specific region of interest corresponding to emission energies between those of U-234 and U-238. A potential limitation of this method is that measurable amounts of U-234 in the sample may cause a small amount of characteristic activity in the U-235 region of interest due to poorly resolved alpha activity at the boundary between the two regions. To minimize the potential for a high bias in the U-235 analytical results, the U-235 region of interest has been narrowed and limited to a lower energy region. An 85.1 percent abundance correction has been made to the final U-235 results. No action was taken during validation.
- The Case Narrative also reports the tracer of several samples have a Full Width at Half Maximum (FWHM) greater than 100 keV in SDG 06-02-205. FWHM is defined as the width of the peak distribution at a level that is half the maximum ordinate of the peak. All other peaks in these samples have good resolution, and all QC criteria were met for these samples. No action was taken during validation.
- It should be noted that the majority of the reported isotopic uranium activity results were at extremely low levels. In most instance, if the uncertainty is subtracted from the reported activity result, the value is less than the sample-specific MDC.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

[]

[]

Attachment D1

Jefferson Proving Ground Sample Data Summary Sheets

است

1

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Sample Data Summary – Deer Tissue

Laboratory:

١.

Paragon Analytics

•

SDG #:

05-12-068, 06-02-205

.

	Isotopic Uranium							
	<u></u>	AST	M D3972-90M		· · · · · · · · · · · · · · · · · · ·	- <u></u>		
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code	
	U-234	0.0066	0.0060	0.0079	pCi/g	U		
DR-BHZ-01-SAICM	U-235	0.0016	0.0046	0.0085	pCi/g	U		
	U-238	0.0006	0.0039	0.0065	pCi/g	U		
DR-BHZ-01-SAICB	U-234	0.0047	0.0047	0.0080	pCi/g	U		
	U-235	-0.0004	0.0030	0.0070	pCi/g	U		
	U-238	0.0027	0.0037	0.0068	pCi/g	U		
	U-234	0.0024	0.0036	0.0071	pCi/g	υ		
DR-BHZ-01-SAICL	U-235	0.0016	0.0033	0.0071	pCi/g	U		
	U-238	0.0033	0.0039	0.0067	pCi/g	U		
	U-234	0.0054	0.0051	0.0068	pCi/g	U		
DR-BHZ-01-SAICK	U-235	0.0012	0.0043	0.0032	pCi/g	U		
	U-238	0.0010	0.0036	0.0028	pCi/g	U		
	U-234	0.0036	0.0036	0.0047	pCi/g	U		
DR-BHZ-02-SAICM	U-235	0.0005	0.0033	0.0055	pCi/g	U		
	U-238	0.0006	0.0028	0.0062	pCi/g	U		
	U-234	0.0072	0.0050	0.0022	pCi/g	J	6, 37	
DR-BHZ-02-SAICMD	U-235	0.0009	0.0034	0.0026	pCi/g	U		
	U-238	0.0056	0.0043	0.0022	pCi/g	J	37	
	U-234	.0104	0.0070	0.0091	pCi/g	J	6, 37	
DR-BHZ-02-SAICB	U-235	0.0015	0.0036	0.0060	pCi/g	υ		
	U-238	0.0086	0.0059	0.0062	pCi/g	J	37	
	U-234	0.0108	0.0063	0.0054	pCi/g	J	6, 37	
DR-BHZ-02-SAICBD	U-235	0.0036	0.0039	0.0048	pCi/g	U		
	U-238	0.0016	0.0029	0.0022	pCi/g	U		
	U-234	0.0127	0.0063	0.0041	pCi/g	J	6, 37	
DR-BHZ-02-SAICL	U-235	0.0024	0.0029	0.0022	pCi/g	J	37	
	U-238	0.0014	0.0025	0.0019	pCi/g	U		

		lsot	opic Uranium				
· · · · · · · · · · · · · · · · · · ·		AST	M D3972-90M		• • • • • • • • • • • • • • • • • • • •		
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code
	U-234	0.0033	0.0034	0.0044	pCi/g	U.	
DR-BHZ-02-SAICLD	U-235	0.0005	0.0031	0.0052	pCi/g	U	
	U-238	0.0032	0.0034	0.0049	pCi/g	U	
	U-234	0.0052	0.0046	0.0072	pCi/g	U	
DR-BHZ-02-SAICK	U-235	0.0023	0.0034	0.0064	pCi/g	U	<u> </u>
	U-238	0.0016	0.0029	0.0061	pCi/g	U	
	U-234	0.038	0.040	0.060	pCi/L	U	
DR-DAU-07-SAIRB01	U-235	0.008	0.032	0.022	pCi/L	U	
	U-238	0.013	0.028	0.053	pCi/L	U	
SOURCE-DI-SAIC01	U-234	0.072	0.066	0.107	pCi/L	U	
	U-235	-0.002	0.035	0.090	pCi/L	U	
	U-238	0.029	0.047	0.090	pCi/L	U	
	U-234	0.0061	0.0045	0.0049	pCi/g	J	6, 37
DR-DUA-01-SAICM	U-235	-0.0006	0.0031	0.0057	pCi/g	U	
	U-238	0.0006	0.0026	0.0057	pCi/g	U	
	U-234	0.066	0.0051	0.0052	pCi/g	J	6, 37
DR-DUA-01-SAICB	U-235	0.0013	0.0037	0.0068	pCi/g	U	
•	U-238	0.0016	0.0032	0.0068	pCi/g	U	
<u> </u>	U-234	0.0039	0.0037	0.0055	pCi/g	U	
DR-DUA-01-SAICL	U-235	0.0011	0.0026	0.0044	pCi/g	U	
	U-238	0.0019	0.0029	0.0057	pCi/g	U	
	U-234	0.0049	0.0044	0.0058	pCi/g	U	
DR-DUA-01-SAICK	U-23 5	0.0012	0.0034	0.0063	pCi/g	U	
	U-238	0.0020	0.0029	0.0048	pCi/g	U	
· · · · · · · · · · · · · · · · · · ·	U-234	0.0024	0.0038	0.0075	pCi/g	U	
DR-DUA-02-SAICM	U-235	-0.0011	0.0028	0.0066	pCi/g	U	
	U-238	-0.0001	0.0024	0.0064	pCi/g	υ	
· · · ·	U-234	0.0067	0.0055	0.0076	pCi/g	U	
DR-DUA-02-SAICB	U-235	0.0008	0.0035	0.0076	pCi/g	U	
	U-238	0.0003	0.0030	0.0073	pCi/g	U	

_ 7 L

ł

4

<u>,</u>	Isotopic Uranium								
	*	AST	M D3972-90M			<u></u>			
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code		
	U-234	0.0105	0.0056	0.0043	pCi/g	J	6, 37		
DR-DUA-02-SAICL	U-235	0.0008	0.0027	0.0021	pCi/g	U			
	U-238	0.0019	0.0023	0.0017	pCi/g	J	37		
	U-234	0.0041	0.0037	0.0044	pCi/g	U			
DR-DUA-02-SAICK	U-235	0.0005	0.0031	0.0052	pCi/g	U			
	U-238	-0.0001	0.0027	0.0058	pCi/g	U			
······································	U-234	0.0038	0.0056	0.0111	pCi/g	U			
DR-DUA-03-SAICM	U-235	-0.0016	0.0046	0.0102	pCi/g	U			
	U-238	-0.0009	0.0039	0.0098	pCi/g	U	······		
	U-234	0.0058	0.0052	0.0057	pCi/g	J	37		
DR-DUA-03-SAICB	U-235	0.0012	0.0043	0.0033	pCi/g	U			
	U-238	0.0036	0.0042	0.0063	pCi/g	U			
	U-234	0.0042	0.0044	0.0051	pCi/g	υ			
DR-DUA-03-SAICL	U-235	0	0.0045	0.0035	pCi/g	U			
	U-238	0.0022	0.0039	0.0030	pCi/g	U			
	U-234	0.0024	0.0033	0.0058	pCi/g	U			
DR-DUA-03-SAICK	U-235	0.0007	0.0034	0.0047	pCi/g	U			
	U-238	0.0016	0.0029	0.0022	pCi/g	·U			
· · · · · · · · · · · · · · · · · · ·	U-234	0.0095	0.0062	0.0049	pCi/g	J.	37		
DR-DUA-04-SAICM	U-235	0.0045	0.0048	0.0070	pCi/g	U			
	U-238	0.0003	0.0032	0.0060	pCi/g	U			
	U-234	0.0073	0.0059	0.0067	pCi/g	J	37		
DR-DUA-04-SAICMD	U-235	0.0010	0.0042	0.0055	pCi/g	U			
	U-238	0.0001	0.0035	0.0072	pCi/g	U			
	U-234	0.016	0.010	0.008	pCi/g	J	37		
DR-DUA-04-SAICB	U-235	0	0.0062	0.0048	pCi/g	U			
	U-238	-0.0011	0.0053	0.0100	pCi/g	U			
	U-234	0.0041	0.0043	0.0050	pCi/g	U			
DR-DUA-04-SAICBD	U-235	0.0046	0.0051	0.0069	pCi/g	U			
	U-238	0.0014	0.0038	0.0071	pCi/g	U			

4

Ì.__

.

أحطأ

ł

			opic Uranium			=	
		AST	M D3972-90M	· · · · · · · · · · · · · · · · · · ·			
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code
	U-234	0.0106	0.0083	0.0101	pCi/g	J	37
DR-DUA-04-SAICL	U-235 ·	0.0007	0.0056	0.0097	pCi/g	U.	
	· U-238	0.0028	0.0048	0.0096	pCi/g	U	
	U-234	0.0117	0.0078	0.0076	pCi/g	J	37
DR-DUA-04-SAICLD	U-235	0.0038	0.0047	0.0063	pCi/g	U	
	U-238	0.0008	0.0040	0.0090	pCi/g	U	
	U-234	0.0022	0.0038	0.0029	pCi/g	U	
DR-DUA-04-SAICK	U-235	0	0.0045	0.0034	pCi/g	U	
	U-238	0.0014	0.0038	0.0072	pCi/g	U	
	U-234	0.0034	0.0064	0.0137	pCi/g	U·	
DR-DUA-04-SAICKD	U-235	0.0015	0.0063	0.0084	pCi/g	U	
	U-238	0.0018	0.0056	0.0137	pCi/g	U·U	
	U-234	0.0021	0.0031	0.0053	pCi/g	U	
DR-DUA-05-SAICM	U-235	0	0.0036	0.0028	pCi/g	U	
	U-238	0.0020	0.0031	0.0058	pCi/g	U	
	U-234	0.0116	0.0076	0.0068	pCi/g	J	37
DR-DUA-05-SAICB	U-235	0.0026	0.0046	0.0035	pCi/g	U	
	U-238	0.0029	0.0039	0.0061	pCi/g	U	
	U-234	0.0006	0.0036	0.0056	pCi/g	U	
DR-DUA-05-SAICL	U-235	0	0.0042	0.0032	pCi/g	U	
	U-238	0.0035	0.0041	0.0062	pCi/g	U	
	U-234	0.0075	0.0060	0.0052	pCi/g	J	37
DR-DUA-05-SAICK	U-235	0.	0.0046	0.0035	pCi/g	U	
	U-238	0.0033	0.0039	0.0030	pCi/g	J	37
	U-234	0.0067	0.0045	0.0032	pCi/g	J	37
DR-DUA-06-SAICM	U-235	0.0026	0.0033	0.0054	pCi/g	U	
	U-238	0.0029	0.0031	0.0046	pCi/g	U	
	U-234	0.0086	0.0064	0.0069	pCi/g	J	37
DR-DUA-06-SAICB	U-235	0.0022	0.0043	0.0057	pCi/g	U	
	U-238	0.0043	0.0048	0.0074	pCi/g	U	

. •

٢

1

L

i i

			opic Uranium		····· <u> </u>				
ASTM D3972-90M									
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reasor Code		
	U-234	0.0084	0.0054	0.0043	pCi/g	J	37		
DR-DUA-06-SAICL	U-235	0	0.0033	0.0025	pCi/g	U			
	U-238	0.0010	0.0028	0.0052	pCi/g	U			
	U-234	0.0062	0.0054	0.0050	pCi/g	J	37		
DR-DUA-06-SAICK	U-235	0.0008	0.0044	0.0069	pCi/g	U			
	U-238	0.0057	0.0054	0.0071	pCi/g	U			
	U-234	0.0139	0.0084	0.0081	pCi/g	J	37		
DR-DUA-07-SAICM	U-235	0.0010	0.0045	0.0059	pCi/g	U			
	U-238	0.0038	0.0050	0.0089	pCi/g	U			
	U-234	0.020	0.012	0.014	pCi/g	J	6, 37, 3		
DR-DUA-07-SAICB	U-235	-0.0010	0.0067	0.0142	pCi/g	UJ	38		
	U-238	0.0094	0.0093	0.0142	pCi/g	UJ	38		
DR-DUA-07-SAICL	U-234	0.0044	0.0049	0.0079	pCi/g	U			
	U-235	0.0022	0.0040	0.0085	pCi/g	U			
	U-238	0005	0.0034	0.0097	pCi/g	U			
<u></u>	U-234	0.0074	0.0064	0.0078	pCi/g	U			
DR-DUA-07-SAICK	U-235	0.0025	0.0049	0.0065	pCi/g	U			
	U-238	0.0020	0.0042	0.0093	pCi/g	U	•		
	U-234	0.0052	0.0063	0.0115	pCi/g	U			
DR-DUA-08-SAICM	U-235	0.0001	0.0044	0.0089	pCi/g	U			
	U-238	0.0021	0.0044	0.0098	pCi/g	U			
	U-234	0.0037	0.0053	0.0092	pCi/g	U			
DR-DUA-08-SAICB	U-235	0.0043	0.0063	0.0108	pCi/g	U			
	U-238	0.0026	0.0054	0.0119	pCi/g	U			
	U-234	0.0098	0.0069	0.0052	pCi/g	J	6, 37		
DR-DUA-08-SAICL	U-235	0.0013	0.0046	0.0036	pCi/g	U			
•	U-238	0.0007	0.0039	0.0061	pCi/g	U			
	U-234	0.0069	0.0053	0.0027	pCi/g	J	6, 37		
DR-DUA-08-SAICK	U-235	-0.0002	0.0041	0.0054	pCi/g	U			
	U-238	0.0040	0.0040	0.0027	pCi/g	J	6, 37		

....

<u>ا</u>

4

<u></u>			opic Uranium		<u></u>		
		AST	M D3972-90M			- <u>r</u>	
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code
	U-234	0.0027	0.0034	0.0045	pCi/g	U	
DR-DUA-09-SAICM	U-235	-0.0002	0.0040	0.0053	pCi/g	U	
	U-238	0.0037	0.0039	0.0045	pCi/g	U	
	U-234	0.015	0.012	0.018	· pCi/g	U	
DR-DUA-09-SAICB	U-235	0.0034	0.0073	0.0114	pCi/g	U	
	U-238	0.0064	0.0072	0.0097	pCi/g	U	
	U-234	0.0072	0.0059	0.0059	pCi/g	J	6, 37
DR-DUA-09-SAICL	U-235	0.0023	0.0045	0.0060	pCi/g	υ	
	U-238	-0.0006	0.0066	0.0066	pCi/g	U	
	U-234	0.0114	0.0066	0.0052	pCi/g	J	6, 37
DR-DUA-09-SAICK	U-235	0.0006	0.0035	0.0055	pCi/g	U	
	U-238	0.0022	0.0030	0.0047	pCi/g	U	
DR-DUA-10-SAICM	U-234	0.0070	0.0059	0.0082	pCi/g	U,	
	U-235	0.0027	0.0039	0.0068	pCi/g	U	
	U-238	0.0013	0.0034	0.0082	pCi/g	U	
	U-234	0.0112	0.0095	0.0134	pCi/g	UJ	38
DR-DUA-10-SAICB	U-235	-0.0036	0.0072	0.0169	pCi/g	UJ	38
	U-238	0.0061	0.0065	0.0095	pCi/g	UJ	38
	U-234	0.0030	0.0037	0.0061	pCi/g	U	
DR-DUA-10-SAICL	U-235	0.0022	0.0038	0.0076	pCi/g	U	-
	U-238	0.0027	0.0038	0.0069	pCi/g	U	
	U-234	0.0055	0.0048	0.0059	pCi/g	U	
DR-DUA-10-SAICK	U-235	-0.0002	0.0037	0.0049	pCi/g	U	
	U-238	0.0018	0.0031	0.0024	pCi/g	U	
	U-234	0.0139	0.0068	0.0048	pCi/g		
DR-NHZ-01-SAICM	U-235	0.0030	0.0035	0.0050	pCi/g	U	
	U-238	0.0036	0.0036	0.0052	pCi/g	U	
	U-234	0.0054	0.0043	0.0049	pCi/g	J	37
DR-NHZ-01-SAICB	U-235	0.0009	0.0031	0.0063	pCi/g	U	
	U-238	0.0054	0.0046	0.0065	pCi/g	U	

....

1

_

			opic Uranium				
		AST	M D3972-90M		<u></u>		
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reasor Code
	U-234	0.0057	0.0039	0.0017	pCi/g	J	37
DR-NHZ-01-SAICL	U-235	0.0022	0.0027	0.0020	pCi/g	J	37
	U-238	0.0030	0.0029	0.0031	pCi/g	U	
	U-234	0.0100	0.0060	0.0047	pCi/g	J	37
DR-NHZ-01-SAICK	U-235	0.0056	0.0047	0.0025	pCi/g	J	37
	U-238	0.0066	0.0049	0.0053	pCi/g	J	37
	U-234	0.0122	0.0063	0.0058	pCi/g	J	37
DR-NHZ-02-SAICM	U-235	0.0016	0.0028	0.0057	pCi/g	U	
	U-238	0.0029	0.0037	0.0068	pCi/g	U	
	U-234	0.0135	0.0072	0.0063	pCi/g	J	37
DR-NHZ-02-SAICMD	U-235	0.0026	0.0034	0.0047	pCi/g	υ	
	U-238	0.0030	0.0033	0.0040	pCi/g	U	
	U-234	0.0112	0.0070	0.0067	pCi/g	J	37
DR-NHZ-02-SAICB	U-235	0.0052	0.0050	0.0054	pCi/g	U	
	U-238	0.0021	0.0039	0.0081	pCi/g	U	
	U-234	0.021	0.011	0.006	pCi/g	J	37
DR-NHZ-02-SAICBD	U-235	0.0064	0.0061	0.0067	pCi/g	U	
	U-238	0.0049	0.0052	0.0076	pCi/g	U	
	U-234	0.0086	0.0077.	0.0101	pCi/g	U	
DR-NHZ-02-SAICL	U-235	0.0014	0.0059	0.0078	pCi/g	U	
	U-238	0.0016	0.0050	0.0101	pCi/g	U	
	U-234	0.0116	0.0076	0.0031	pCi/g	J	37
DR-NHZ-02-SAICLD	U-235	0.0041	0.0048	0.0037	pCi/g	J	37
	U-238	0.0058	0.0053	0.0031	pCi/g	J	37
	. U-234	0.0017	0.0040	0.0092	pCi/g	U	
DR-NHZ-02-SAICK	U-235	0.0035	0.0046	0.0072	pCi/g	U	
	U-238	0.0053	0.0056	0.0088	pCi/g	U	
	U-234	0.0054	0.0053	0.0064	pCi/g	U	•
DR-NHZ-02-SAICKD	U-235	0.0036	0.0049	0.0076	pCi/g	U	
	U-238	0.0045	0.0047	0.0055	pCi/g	υ	

أما

أهنأ

5

i.

ц.

		Isot	opic Uranium						
ASTM D3972-90M									
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code		
	U-234	0.0072	0.0053	0.0052	pCi/g	J	37		
DR-NHZ-03-SAICM	U-235	0.0006	0.0035	0.0055	pCi/g	U			
	U-238	-0.0002	0.0030	0.0040	pCi/g	U			
	U-234	0.0041	0.0049	0.0037	pCi/g	J	37		
DR-NHZ-03-SAICB	U-235	0.0048	0.0057	0.0044	pCi/g	J	37		
	U-238	0.0041	0.0049	0.0037	pCi/g	J	37		
	U-234	0.0082	0.0061	0.0049	pCi/g	J	37		
DR-NHZ-03-SAICL	U-235	-0.0007	0.0043	0.0075	pCi/g	U			
	U-238	0.0036	0.0043	0.0064	pCi/g	U			
	U-234	0.0122	0.0088	0.0118	pCi/g	J	37		
DR-NHZ-03-SAICK	U-235	0.0050	0.0056	0.0076	pCi/g	U			
	U-238	0.0042	0.0048	0.0064	pCi/g	U			
	U-234	0.070	0.043	0.049	pCi/L	J	6, 37		
DR-NHZ-03-SAIRB02	U-235	0.025	0.024	0.014	pCi/L	J	37		
	U-238	0.022	0.023	0.030	pCi/L	U			
	U-234	0.094	0.041	0.027	pCi/L	J	6, 37		
DR-BHZ-07-SAIRB03	U-235	0.002	0.024	0.051	PCI/L	U			
	U-238	0.042	0.029	0.034	PCi/L	J	6,37.		
	U-234	0.0076	0.0052	0.0023	pCi/g	J	37		
DR-NHZ-04-SAICM	U-235	0.0028	0.0035	0.0046	pCi/g	U			
	U-238	0.0032	0.0034	0.0039	pCi/g	U			
	U-234	0.0081	0.0064	0.0056	pCi/g	J	37		
DR-NHZ-04-SAICB	U-235	0.0037	0.0049	0.0077	pCi/g	U			
	U-238	0.0069	0.0059	0.0056	pCi/g	J	37		
	U-234	0.0067	0.0055	0.0067	pCi/g	U			
DR-NHZ-04-SAICL	U-235	0.0029	0.0039	0.0061	pCi/g	U			
	U-238	00015	0.0033	0.0052	pCi/g	U			
	U-234	0.0040	0.0047	0.0070	pCi/g	U			
DR-NHZ-04-SAICK	U-235	-0.0002	0.0047	0.0063	pCi/g	U			
	U-238	0.0030	0.0041	0.0063	pCi/g	U			

August 2006

. . ___

Li

.

Ĺ

		lsot	opic Uranium			· · · · · · · · · · · · · · · · · · ·				
ASTM D3972-90M										
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reasor Code			
	U-234	0.0043	0.0048	0.0078	pCi/g	U				
DR-NHZ-05-SAICM	U-235	0.0020	0.0040	0.0056	pCi/g	U				
	U-238	0.0033	0.0039	0.0056	pCi/g	U				
	U-234	0.0019	0.0053	0.0120	pCi/g	U				
DR-NHZ-05-SAICB	U-235	-0.0002	0.0036	0.0097	pCi/g	U				
	U-238	0.0033	0.0044	0.0082	pCi/g	U				
	U-234	0.0073	0.0058	0.0077	pCi/g	U				
DR-NHZ-05-SAICL	· U-235	0.0003	0.0037	0.0069	pCi/g	U				
	U-238	0.0011	0.0031	0.0059	pCi/g	U				
	U-234	0.0074	0.0056	0.0048	pCi/g	J	37			
DR-NHZ-05-SAICK	U-235	0	0.0040	0.0082	pCi/g	U				
	U-238	0.0065	0.0052	0.0048	pCi/g	J	37			
DR-NHZ-06-SAICM	U-234	0.0061	0.0049	0.0056	pCi/g	J	37			
	U-235	0.0015	0.0035	0.0059	pCi/g	U				
	U-238	0.0023	0.0030	0.0042	pCi/g	U				
	U-234	0.0055	0.0059	0.0103	pCi/g	U				
DR-NHZ-06-SAICB	U-235	-0.0008	0.0039	0.0097	pCi/g	U				
	U-238	0.0013	0.0041	0.0097	pCi/g	U				
	U-234	0.0102	0.0069	0.0095	pCi/g	J	37			
DR-NHZ-06-SAICL	U-235	0.0019	0.0035	0.0026	pCi/g	U				
	U-238	-0.0004	0.0029	0.0049	pCi/g	U				
	U-234	0.0066	0.0049	0.0053	pCi/g	J	37			
DR-NHZ-06-SAICK	U-235	0.0016	0.0033	0.0047	pCi/g	U				
	U-238	0.0003	0.0028	0.0069	pCi/g	U				
	U-234	0.0047	0.0039	0.0043	pCi/g	J	37			
DR-NHZ-07-SAICM	U-235	0.0026	0.0031	0.0023	pCi/g	J	37			
	U-238	0.0026	0.0030	0.0043	pCi/g	U				
····	U-234	0.0077	0.0051	0.0064	pCi/g	J	37			
DR-NHZ-07-SAICB	U-235	0.0013	0.0026	0.0037	pCi/g	U				
	U-238	0.0021	0.0026	0.0042	pCi/g	U	·			

.

1

.

			opic Uranium				
	<u> </u>	AST	M D3972-90M				
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code
	U-234	0.0074	0.0054	0.0052	pCi/g	J	37
DR-NHZ-07-SAICL	U-235	0.0020	0.0037	0.0028	pCi/g	U	
	U-238	0.0127	0.0040	0.0068	pCi/g	U	
	U-234	0.0070	0.0055	0.0073	pCi/g	U	
DR-NHZ-07-SAICK	U-235	0.0003	0.0035	0.0066	pCi/g	U	
	U-238	0.0034	0.0043	0.0077	pCi/g	U	
	U-234	0.0066	0.0049	0.0053	pCi/g	J	37
DR-NHZ-08-SAICM	U-235	0.0007	0.0033	0.0047	pCi/g	U	
	U-238	0.0040	0.0040	0.0058	pCi/g	U	
	U-234	0.0013	0.0037	0.0087	pCi/g	U	
DR-NHZ-08-SAICB	U-235	-0.0020	0.0042	0.0103	pCi/g	U	
	U-238	0.0011	0.0037	0.0091	pCi/g	υ	
DR-NHZ-08-SAICL	U-234	0.0020	0.0046	0.0105	pCi/g	υ	
	U-235	0.0026	0.0053	0.0074	pCi/g	U	
	U-238	0.0007	0.0045	0.0075	pCi/g	U	
· · · · · · · · · · · · · · · · · · ·	U-234	0.0038	0.0065	0.0136	pCi/g	U	
DR-NHZ-08-SAICK	U-235	0.0010	0.0045	0.0114	pCi/g	U	
	U-238	0.0049	0.0056	0.0097	pCi/g	U	
•	U-234	0.0045	0.0049	0.0082	pCi/g	U	
DR-NHZ-09-SAICM	U-235	0.0005	0.0038	0.0062	pCi/g	U	
	U-238	0.0065	0.0052	0.0060	pCi/g	J	37
	U-234	0.0062	0.0049	0.0045	pCi/g	J	37
DR-NHZ-09-SAICB	U-235	0.0008	0.0038	0.0053	pCi/g	U	
	U-238	0.0032	0.0037	0.0054	pCi/g	U	
· · · · · · · · · · · · · · · · · · ·	U-234	0.0067	0.0073	0.0089	pCi/g	U	
DR-NHZ-09-SAICL	U-235	0.0006	0.0075	0.0139	pCi/g	U	······································
	U-238	0.0031	0.0064	0.0089	pCi/g	U	
	U-234	0.0064	0.0069	0.0100	pCi/g	U	
DR-NHZ-09-SAICK	U-235	-0.0008	0.0063	0.0105	pCi/g	U	
	U-238	0.0057	0.0061	0.0075	pCi/g	U	

r i

_

i

_

. 1

_

			opic Uranium						
ASTM D3972-90M									
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reasor Code		
	U-234	0.0073	0.0061	0.0079	pCi/g	U			
DR-NHZ-10-SAICM	U-235	0.0043	0.0051	0.0076	pCi/g	U			
	U-238	0.0039	0.0054	0.0103	pCi/g	U U			
	U-234	0.0116	0.0073	0.0050	pCi/g	J	37		
DR-NHZ-10-SAICB	U-235	0.0010	0.0044	0.0059	pCi/g	U			
	U-238	0.0010	. 0.0038	0.0081	pCi/g	U			
	U-234	0.0035	0.0037	0.0059	pCi/g	U			
DR-NHZ-10-SAICL	U-235	0.0014	0.0031	0.0048	pCi/g	U			
	U-238	0.0032	0.0034	0.0049	pCi/g	U			
	U-234	0.0039	0.0042	0.0048	pCi/g	U			
DR-NHZ-10-SAICK	U-235	0.0010	0.0043	0.0057	pCi/g	υ			
	U-238	0.0036	0.0042	0.0063	pCi/g	U			
DR-BHZ-03-SAICM	U-234	0.0052	0.0048	0.0067	pCi/g	U			
	U-235	0.0017	0.0037	0.0057	pCi/g	U			
	U-238	0.0077	0.0058	0.0070	pCi/g	J	37		
	U-234	0.0015	0.0036	0.0062	pCi/g	U	· · · · ·		
DR-BHZ-03-SAICB	U-235	0.0010	0.0042	0.0056	pCi/g	U			
	U-238	0.0057	0.0051	0.0056	pCi/g	J	37		
	U-234	0.0068	0.0048	0.0049	pCi/g	J	37		
DR-BHZ-03-SAICL	U-235	0.0011	0.0031	0.0058	pCi/g	U			
	U-238	0.0026	0.0030	0.0045	pCi/g	U	<u></u>		
	U-234	0.0007	0.0028	0.0037	pCi/g	U			
DR-BHZ-03-SAICK	U-235	-0.0002	0.0033	0.0044	pCi/g	U			
	U-238	0.0021	0.0028	0.0044	pCi/g	U			
· · · ·	U-234	0.0073	0.0054	0.0044	pCi/g	J	37		
DR-BHZ-04-SAICM	U-235	0.0014	0.0039	0.0073	pCi/g	U			
	U-238	0.0023	0.0033	0.0057	pCi/g	U			
	U-234	0.0049	0.0048	0.0058	pCi/g	υ			
DR-BHZ-04-SAICB	U-235	0.0008	0.0043	0.0068	pCi/g	U			
	U-238	0.0031	0.0037	0.0075	pCi/g	J	37		

أمأ

 August 2006

		Isoto	pic Uranium						
ASTM D3972-90M									
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code		
	U-234	0.0063	0.0051	0.0076	pCi/g	U			
DR-BHZ-04-SAICL	U-235	0.0013	0.0033	0.0056	pCi/g	U			
	U-238	0.0010	0.0028	0.0052	pCi/g	U			
	U-234	0.0043	0.0041	0.0042	pCi/g	J	37		
DR-BHZ-04-SAICK	U-235	0.0031	0.0037	0.0028	pCi/g	J	37		
	U-238	0.0038	0.0041	0.0059	pCi/g	U			
	U-234	0.0023	0.0029	0.0039	pCi/g	U			
DR-BHZ-04-SAICKD	U-235	0.0026	0.0035	0.0054	pCi/g	U			
	U-238	0.0015	0.0029	0.0039	pCi/g	U			
	U-234	0.0115	0.0068	0.0062	pCi/g	J	37		
DR-BHZ-05-SAICM	U-235	0.0037	0.0042	0.0057	pCi/g	υ			
	U-238	0.0032	0.0036	0.0048	pCi/g	U			
	U-234	0.0079	0.0060	0.0057	pCi/g	J	37		
DR-BHZ-05-SAICB	U-235	-0.0004	0.0043	0.0067	pCi/g	U			
	U-238	0.0119	0.0075	0.0064	pCi/g	J	37		
	U-234	0.0071	0.0055	0.0067	pCi/g	J	37		
DR-BHZ-05-SAICL	U-235	0.0031	0.0043	0.0079	pCi/g	·U			
	U-238	0.0069	0.0055	0.0071	pCi/g	U			
	U-234	0.0139	0.0074	0.0062	pCi/g	J	37		
DR-BHZ-05-SAICK	U-235	0.0058	0.0048	0.0026	pCi/g	J	37		
	U-238	0.0052	0.0045	0.0055	pCi/g	U			
	U-234	0.0061	0.0051	0.0058	pCi/g	J	37		
DR-BHZ-06-SAICM	U-235	-0.0004	0.0039	0.0061	pCi/g	U			
	U-238	0.0016	0.0033	0.0052	pCi/g	υ			
	U-234	0.0056	0.0051	0.0071	pCi/g	υ			
DR-BHZ-06-SAICB	U-235	0.0071	0.0060	0.0068	pCi/g	J	37		
	U-238	0.0016	0.0040	0.0092	pCi/g	U			
	U-234	0.0090	0.0068	0.0092	pCi/g	υ			
DR-BHZ-06-SAICL	U-235	0.0041	0.0051	0.0087	pCi/g	U			
	U-238	0.0065	0.0055	0.0071	pCi/g	U			

[]

Li

		lsot	opic Uranium				
•		AST	M D3972-90M				
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reasor Code
	U-234	0.0081	0.0059	0.0027	pCi/g	J	37
DR-BHZ-06-SAICK	U-235	0.0069	0.0060	0.0056	pCi/g	J	37
	U-238	0.0031	0.0042	0.0072	pCi/g	U	
	U-234	0.0046	0.0043	0.0044	pCi/g	J	37
DR-BHZ-07-SAICM	U-235	0.0009	0.0039	0.0052	pCi/g	U	
	U-238	0.0006	0.0033	0.0052	pCi/g	U	
	U-234	0.0060	0.0064	0.0074	pCi/g	U	
DR-BHZ-07-SAICB	U-235	0.0012	0.0065	0.0102	pCi/g	U	-
	U-238	0.0023	0.0056	0.0097	pCi/g	U	
	U-234	0.0062	0.0050	0.0051	pCi/g	J	37
DR-BHZ-07-SAICL	U-235	0.0009	0.0038	0.0051	pCi/g	·υ	
	U-238	-0.0001	0.0033	0.0070	pCi/g	U	
	U-234	0.071	0.019	0.006	pCi/g		
DR-BHZ-07-SAICK	U-235	0.0015	0.0033	0.0051	pCi/g	U	
	U-238	0.0018	0.0028	0.0052	pCi/g	U	-
	U-234	0.0107	0.0063	0.0039	pCi/g	J	37
DR-BHZ-08-SAICM	U-235	0.0008	0.0035	0.0046	pCi/g	U	
	U-238	0.0021	0.0030	0.0051	pCi/g	U	
	U-234	0.0116	0.0079	0.0066	pCi/g	J	37
DR-BHZ-08-SAICB	U-235	0.0040	0.0050	0.0066	pCi/g	U	
	U-238	0.0020	0.0043	0.0066	pCi/g	U	
	U-234	0.0085	0.0067	0.0058	pCi/g	J	37
DR-BHZ-08-SAICL	· U-235	-0.0010	0.0051	0.0097	pCi/g	U	
	U-238	0.0092	0.0072	0.0076	pCi/g	J	37
	U-234	0.0106	0.0072	0.0060	pCi/g	J	37
DR-BHZ-08-SAICK	U-235	0.0021	0.0046	0.0071	pCi/g	U	
	U-238	0.0011	0.0039	0.0030	pCi/g	U	
	U-234	0.0121	0.0075	0.0086	pCi/g	J	37
DR-BHZ-09-SAICM	U-235	0.0051	0.0050	0.0060	pCi/g	U	
	U-238	0.0030	0.0038	0.0062	pCi/g	U	

Ĺ

....

-

......

August 2006

		Isot	opic Uranium						
ASTM D3972-90M									
Sample I.D.	Analyte	Result	Error	MDC	Units	Qualifier	Reason Code		
	U-234	0.0025	0.0036	0.0062	pCi/g	U			
DR-BHZ-09-SAICB	U-235	0.0015	0.0042	0.0079	pCi/g	U			
	U-238	0.0025	0.0036	0.0062	pCi/g	U			
	U-234	0.0033	0.0042	0.0076	pCi/g	U			
DR-BHZ-09-SAICL	U-235	0.0030	0.0038	0.0050	pCi/g	U			
	U-238	0.0026	0.0033	0.0043	pCi/g	U			
DR-BHZ-09-SAICK	U-234	0.0079	0.0067	0.0093	pCi/g	U			
	U-235	0.0009	0.0044	0.0100	pCi/g	U			
	U-238	0.0053	0.0054	0.0081	pCi/g	U			
	U-234	0.0081	0.0060	0.0048	pCi/g	J	37		
DR-BHZ-10-SAICM	U-235	0.0024	0.0043	0.0033	pCi/g	U			
	U-238	0.0034	0.0042	0.0069	pCi/g	U			
	U-234	0.019	0.012	0.008	pCi/g	J	37		
DR-BHZ-10-SAICB	U-235	0.0050	0.0068	0.0105	pCi/g	U			
	U-238	0.0094	0.0081	0.0076	pCi/g	J	37		
· · · · · · · · ·	U-234	0.0089	0.0068	0.0064	pCi/g	J	37		
DR-BHZ-10-SAICL	U-235	-0.0005	0.0048	0.0075	pCi/g	U			
•	U-238	0.0029	0.0041	0.0071	pCi/g	U			
	U-234	0.021	0.012	0.012	pCi/g	J	37		
DR-BHZ-10-SAICK	U-235	-0.0001	0.0062	0.0133	pCi/g	U			
	U-238	0.0059	0.015	0.0113	pCi/g	U			

.

-

1

ł

.....

KEY TO THE DATA VALIDATION QUALIFIERS

QUALIFIERS

Indicates that the data met all quality assurance/quality control (QA/QC) requirements, and that the radionuclide has been positively identified and the associated concentration value is accurate.

- U Indicates that the data met all QA/QC requirements, and that the radionuclide was analyzed for but was not detected above the reported sample quantitation limit.
- J Indicates that the radionuclide was positively identified; the associated numerical value is the approximate concentration of the radionuclide in the sample.
- UJ Indicates that the radionuclide was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- N The analysis indicates the presence of a radionuclide for which there is presumptive evidence to make a "tentative identification."
- R Indicates that the sample results for the radionuclide are rejected or unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the radionuclide cannot be verified.

DATA VALIDATION REASON CODES

6 Method blank contamination.

37 Associated error was greater than 50 percent of the sample result.

38 Chemical yield exceeded the control limits.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX E

....

.

1

.

Ĺ

١.,

.

HISTORICAL JPG DEER SAMPLING RESULTS

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Sample Year	Deer Sample I.D.	Location	Tissue Type	U-234 Activity (pCi/g)	U-234 Error (pCi/g)	U-238 Activity (pCi/g)	U-238 Error (pCi/g)
· · · · · · · · · · · · · · · · · · ·	8322120	Near SS 57	Liver	0.016	0.007	0.024	0.008
	8322120	Near SS 57	Kidney	-0.032		-0.0022	
	8322121	Near SS 6	Liver	-0.032		-0.0022	_
	8322121	Near SS 6	Kidney	0.055	0.027	-0.0022	
	8322121	Near SS 6	Bone	-0.032		0.0003	0.0004
	8322122	Near SS 57	Liver	-0.032		0.0003	0.0004
	8322122	Near SS 57	Kidney	-0.032		-0.0022	
	8322122	Near SS 57	Bone	-0.032		-0.0022	
	8322123	Near SS 57	Liver	0.054	0.014	0.04	0.013
	8322124	Near SS 54	Liver	0.017	0.008	0.005	0.005
	8322124	Near SS 54	Kidney	-0.032		0.049	0.022
1984	8322125*	Near SS 57, 60	Liver	0.021	0.009	0.035	0.012
1504	8322125*	Near SS 57, 60	Kidney	0.021	0.000	0.016	0.008
	8322125*	Near SS 57, 60	Bone	-0.032	0.01	-0.0022	0.000
	8322126	Near SS 57	Liver	-0.032	i	0.013	0.004
	8322120	Near SS 57	Kidney	-0.032		-0.0022	0.004
				-0.032		0.00022	0.0005
	8322126	Near SS 57	Bone		0.01		0.0003
	8322127	Near SS 57	Liver	0.028	0.01	0.028	
	8322127	Near SS 57	Bone	-0.32		0.0002	0.0004
	Deer #1	Unspecified	Unspecified	-0.001		-0.001	
	Deer #2	Unspecified	Unspecified	-0.001		-0.001	
	Deer #3	Unspecified	Unspecified	-0.001		-0.001	
	Deer #4	Unspecified	Unspecified	-0.001		-0.001	
	Deer	Area 52	Bone	0.0007	0.0004	0.0001	0.0002
	Deer	Area 52	Bone	0.0004	0.0002	0.0001	0.0001
	Deer	Area 52	Bone	-0.01	0	0.0005	0.0004
	Deer	Area 52	Bone	-0.01	0	0.0003	0.0002
	Deer	Area 52	Kidney	-0.01	0	0.0062	0.011
	Deer	Area 52	Kidney	-0.01	0	0.0003	0.0005
	Deer	Area 52	Liver	0.0023	0.0034	0.0025	0.0034
1987	Deer	Area 52	Liver	0.0001	0.0002	0.0001	0.0002
1901	Deer	Area 52	Liver	0.0088	0.0049	0.0079	0.0046
	Deer	Area 52	Liver	0.0003	0.0002	0.0003	0.0002
	Deer	Area 63	Bone	0.0003	0.0003	0.0005	0.0004
	Deer	Area 63	Bone	0.0002	0.0002	0.0003	0.0002
	Deer	Area 63	Kidney	0.0105	0.00992	0.0124	0.0095
	Deer	Area 63	Kidney	0.0006	0.0005	0.0007	0.0005
	Deer	Area 63	Liver	0.0175	0.0092	0.0016	0.0038
i	Deer	Area 63	Liver	0.0008	0.0004	0.0001	0.0002
	Deer (48)	Not Specified	Kidney	-0.0003		-0.0003	
	Deer (48)	Not Specified	Liver	-0.001		-0.002	
4000	Deer (60)	Not Specified	Liver	-0.002	· · · · · · · · · · · · · · · · · · ·	-0.002	
1992	Deer (60)	Not Specified	Kidney	-0.0009		-0.0009	
	Deer (62)	Not Specified	Kidney	-0.0003		-0.0003	
	Deer (62)	Not Specified	Liver	-0.001	····	-0.0008	
	Deer 1	-0.01		-0.01			
	Deer 2	-0.02		-0.02			
1993	Deer 3	-0.02		-0.02			
	Deer 4	-0.01		-0.01			
ļ	Deer 5	-0.01		-0.01			

Table E-1. Data from Historical Deer Samples Reported in Ebinger ar	id Hanson	(1996)
---	-----------	--------

*Composite of two deer.

August 2006

Sample Year	Location	Tissue Type	U-234 Activity (pCi/g)	U-235 Activity (pCi/g)	U-238 Activity (pCi/g)	Total Uranium Activity (pCi/g)
1996	DU Impact Area	Liver	0.051	0.008	0.032	0.091 ± 0.03
	DU Impact Area	Kidney	0.091	0.021	0.039	0.151 ± 0.05
	DU Impact Area	Bone	0.221	0.053	0.142	0.416 ± 0.07

Ł