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L Introduction

This paper will compare and contrast Seismic Probabilistic Risk Assessment (SPRA) and Seismic
Margin Methods and will discuss the potential advantages gained from a hybrid of the two methods
(Hybrid Method). A brief overview of both the SPRA and the Seismic Margin Methods will be presented.
However, details of both methods will not be presented because these details are readily available in the
referenced publication. For example, Refs. 1 through 4 provide details on the SPRA Method with the
emphasis of Refs. 3 and 4 being on seismic fragility assessment. Similarly, Refs. 5 through 10 provide
details on the Seismic Margin Method. Many additional references on both methods also exist. The
Hybrid Method will be discussed in more detail because it is only briefly presented in Ref. 4.

2. Seismic Probabilistic Risk Assessment Method

2.1 Overview of SPRA Method

Figure I schematically and simplistically illustrates the critical steps of a SPRA. This figure
defines the steps necessary for estimating the mean core damage frequency. However, it can be easily
extended to estimating the entire probability distribution function on the core damage frequency.
Estimating the mean core damage frequency will be discussed first.

2.1.1 Seismic Hazard Estimate:

In order to estimate a mean core damage frequency, a mean seismic hazard estimate is required.
This estimate defines the mean annual frequency of exceedance H (called herein hazard exceedance
frequency) versus ground motion levels for a specified ground motion quantity. The ground motion
quantity can be the peak ground acceleration (PGA), 5% damped spectral acceleration (SA) at any

specified natural frequency, average 5% damped spectral acceleration (SA ) over a specified natural
frequency range, or any other ground motion quantity of interest. The only requirement is that the same
ground motion quantity be used for the hazard estimate and all seismic fragility estimates. It is strongly
preferable that this ground motion quantity be highly correlated with the damage of critical structures,
systems, or components being considered in the SPRA.

If uncertainty is to be propagated through the SPRA in order to determine the probability
distribution on the core damage frequency, then uncertainty in the hazard curve must be shovn by the use
of multiple possible hazard curves with a probability %weighting assigned to each curve. These probability
weights must add to unity. Typically about 5 to 10 probability weighted hazard curves are used.

Figure 2 shows some representative mean seismic hazard curves. The ground motion quantities
shown in Figure 2 are the 5% damped spectral accelerations SA at I and 10 HZ natural frequencies. Ten
hazard curves typical of eastern and central U.S. sites (labeled EUS sites) are shown. Also shown are
hazard curves for a California and Washington site. In addition, the hazard curve for a typical site in the
United Kingdom is shown. All hazard curves are normalized to their spectral acceleration value at an
exceedance frequency of I x 1 0 4 for ease of comparison of hazard curve shapes. It can be seen that the UK
hazard curve shape is similar to the typical EUS hazard curve shapes.

An important aspect of these hazard curves is their slope. Typical seismic hazard curves are close
to linear when plotted on a log-log scale (for example see Fig. 2). Thus over at least any ten-fold
difference in exceedance frequencies such hazard curves may be approximated by:
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H(a) = K a Kl)(1)

where H(a) is the annual frequency of exceedance of ground motion level "a", KI is an appropriate
constant, and KH is a slope parameter defined by:

KH =log(AR) (2)

in which AR is the ratio of ground motions corresponding to a ten-fold reduction in exceedance frequency.
Either AR or KH may be used to define the slope of the hazard curve. The ground motion ratio AR will be
used herein. A large AR represents a shallow-sloped hazard curve, whereas a small AR represents a steep
hazard curve. Within the annual frequency range of interest, AR typically lies in the range of 2 to 4 for
EUS and UK sites, and in the range of 1.75 to 2.25 for California sites.

2.1.2 Seismic Fradilitv Estimates:

For each seismic safety significant structure, system, or component (SSC) a seismic fragility curve
must be estimated in terms of the same ground motion quantity for which the hazard curve is defined.

Figure 3 shows a representative SSC fragility curve defining the conditional probability of failure
(unacceptable performance) PF versus ground motion level for a specified ground motion quantity. The
ground motion quantity shown in Figure 3 is the 5% damped spectral acceleration SA at 5 Hz natural
frequency. In the most general case, fragility curves are typically described in terms of a lognormal
distribution defined by the medium capacity C5 0% and two lognormally distributed random variables with
logarithmic standard deviations PUNC and pRAND which define the uncertainty and randomness,
respectively, of the fragility curve. The uncertainty PUNC defines the width of the confidence bands of the
fragility curves shown in Figure 2 while the randomness pRAND defines the shape of each fragility curve
in Figure 2. If one does not propagate uncertainties of both the hazard curve and fragility curves in a
seismic risk assessment, it is sufficient to define the fragility curve by a single mean (composite) fragility
curve defined by a median capacity C50 % and composite logarithmic standard deviation P given by:

P = [ +C 1 RAND Y (3)

Mean seismic risk estimates can be rigorously obtained by convolving the mean hazard curve with the
mean fragility curve. Similarly, median seismic risk estimates can be very closely approximated by
convolving the median hazard curve with the mean fragility curve. Most recent Seismic Probabilistic Risk
Assessment (SPRA) studies have concentrated on defining either mean or median seismic risk, and
therefore have used mean fragility curves defined by C5 0% and 0 as opposed to dividing the fragility
variability into both PUNC and PRAND. This paper will concentrate on mean or median seismic risk
estimates.

For structures and major passive mechanical components mounted on the ground or at low
elevations within structures, P typically ranges from 0.3 to 0.5. For active components mounted at high
elevations in structures the typical 11 range is 0.4 to 0.6.

Given the median seismic capacity C5 0 %, for example, the seismic capacity at 1% and 10%

probability of unacceptable performance are given by:

Cl% = C5oe-23264
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CIO% = C50%e-1. 2 82 0 (5)

where -2.326 and -1.282 are the standardized normal variables associated with 1% and 10%
non-exceedance-probabilities, respectively.

Typically, individual SSC fragilities are estimated using the Separation of Variables approach
described in Refs. 1, 3, and 4. By this approach, the median seismic capacity C50 % can be estimated
from:

C50% - S50% FN SME
D50% (6)

where S50 %, D50 %, FN50% are median estimates of the component seismic strength, seismic demand for
a specified seismic input (called herein SME), and inelastic energy absorption (nonlinear) factor,
respectively. Next, the composite logarithmic standard deviation P is estimated from:

=[AS + pl + pl T2 (7)

where Ps, PD. and ON are the composite logarithmic standard deviations associated with strength, demand,
and the nonlinear factor. If variabilities are divided into randomness and uncertainty variabilities, then Eqn
(7) can be used with the uncertainty fPS, PD. and ON to define the overall J3UNC. Similarly, Eqn. (7) can
be used to find the overall PRAND.

2.1.3 Systems Analysis

In order to estimate any plant damage state (such as core damage) seismic risk, it is necessary to
develop plant damage state logic trees (fault trees and event trees). From these trees, a Boolean algebra
cutset of components that dominate the plant damage state seismic risk can be developed. A simple
Boolean cutset for Damage state DS in terms of components A, B, C, D, E, and F might look like:
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DS = SP13SP2(8a)
SPI = A4B4C (8b)

SP2 = D4E4 F (8c)

Eqn. (8a) states that the Damage State DS occurs only when Success Paths (SPI) "AND" (SP2) both fail.
Eqn. (8b) states that Success Path SPI fails when either Component A"OR" B "OR" C fails. Similarly for
Eqn. (8c). Of course, actual plant damage state minimum cutset Boolean expressions are typically much
more complex than the simplified expression shown by Eqn. (8). However, this simplified Boolean
expression will subsequently be used for illustrative purposes.

2.1.4 Convolve Individual SSC Fragilities to Obtain Plant Damage State Fragility

Once all of the individual SSC fragilities are defined (Step 2), and the plant damage state Boolean
algebra cutset is defined (Step 3), the plant damage state fragility can be estimated by the following
process. First, the ground motion parameter is divided up into a series of ground motion levels. At any
ground motion level a, the conditional probability of failure PF(SSC) is determined for each SSC using its
estimated fragility curve. These individual component conditional failure probabilities are combined using
Boolean algebra probability combination rules to obtain the Damage State failure probability at ground
motion level a. For example, using the simplified Boolean expression defined by Eqn. (8) at ground
motion level a, the mean plant damage state conditional failure probability PF(DS) is:

PF(DS) = PF(SPl)PF(Sp2)(9 a)

PF(SPI) = PF(A) + ( - PF(A) JPF(B) + (1 - PF(B) PF(Q J(9b)

PF(SP2) = PF(D) + (I PF(D) JPF(E) + (I - PF(E) )F(F) I (9c)

where PF(SPI) and PF(SP2) are the individual success path mean conditional failure probabilities, and P

F(A) through PF(F) are the individual SSC mean conditional failure probabilities. Experience has showvn
that the overall seismic risk is dominated by ground motion levels at which individual SSC conditional
failure probabilities are in the range of 1% to 70%. Therefore, it is important to include the not-failure
probability terms in Eqn. (9). In other words, the small probability assumption which is commonly made in
internal event PRA studies should not be made in SPRA studies.

Secondly, to obtain a reasonable estimate of the plant damage state mean fragility curve, the plant
damage state mean conditional failure probability PF(DS) should generally be estimated for at least 10
different ground motion levels within the ground motion range of interest. Thus, even for the very simple
plant damage state Boolean expression of Eqn. (8), one must solve Eqn. (9) for at least 10 different ground
motion levels. The computations quickly become sufficiently numerous that the development of plant
damage state mean fragility estimates must be computerized.

If the variabilities in each SSC fragility estimate are separated into randomness PRAND and
uncertainty PUNC and the uncertainties are to be propagated through to the plant damage state fragility
estimate, then Monte Carlo type simulations of the uncertainties become necessary. To reasonably
propagate the uncertainty, at least 1000 trials are necessary at each ground motion level. Thus, the number
of computations required quickly escalates.

2.1.5 Convolution of Plant Damage State Fragilitv Estimate and Seismic Hazard
Estimate to Obtain Damage State Seismic Risk

Once the mean plant damage state fragility estimate has been made, then the mean seismic risk PF
can be obtained by numerical convolution of the mean seismic hazard curve and mean fragility curve by
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either:

PF =- f d(a)d V/ da

Pr.f =JH (a) ~dPF/a) a
o ( da )l (lOb)

where PF/a is the conditional probability of failure given the ground motion level a which is defined by the

mean fragility curve, and H(a) is the mean hazard exceedance frequency corresponding to ground motion

level a. At the limit of very small differential da, both Eqns. (lOa) and (lOb) produce identical results.
Therefore, the choice of using Eqn. (lOa) versus (lOb) is a matter of personal preference.

In order to rigorously estimate the uncertainty in the seismic risk estimate, both the uncertainty of
the seismic hazard estimate and the uncertainty of the plant damage state fragility estimate must be
propagated through Eqn. (10) by Monte Carlo type simulations. Experience dictates that at least 100 trials
are necessary.

However, as previously noted, Eqn. (10) only needs to be solved once using the mean hazard
curve and the mean fragility curve in order to rigorously define the mean risk. Furthermore, experience has
shown that the median risk (50% exceedance probability) or any other point estimate within the range of
the 10% to 60% exceedance probability can be closely approximated by using the mean (composite)
fragility estimate coupled with the hazard estimate H(a) corresponding to the exceedance frequency of

interest. This approximation is substantially more precise than the accuracy with which either the seismic
hazard or seismic risk estimate is defined. Therefore, unless there is a need to estimate the 0% to 10% or
60% to 100% exceedance probability tails of the seismic risk estimate, there is no need to separate the
fragility variability P into its uncertainty PUNC and randomness PRAND components. Furthermore, since

only a point estimate plant damage state fragility is needed, there is no need for Monte Carlo simulations to
propagate individual SSC fragility uncertainties to plant damage state fragility uncertainties or to propagate
plant damage state fragility uncertainties to seismic risk uncertainties. This simplification typically reduces
the computational effort by more than a factor of 10,000.

2.2 Methodological Observations From Past SPRA Studies

2.2.1 Observations Concerning Accuracy of Seismic Risk Estimates

At ground motion levels corresponding to about the 10-5 annual frequency of exceedance, Ref. 11
shows that the 15% to 85% non-exceedance probability (NEP) range on this annual exceedance frequency
is about two orders of magnitude wide. In other words, the 15% to 85% NEP range on the hazard
exceedance frequency is about 10-6 to 10-4 or a factor of 100 wide at least for the Central and Eastern U.S.
At lower hazard exceedance frequencies, this range is even wider. Therefore, even if no uncertainty exists
in the fragility estimate, the 15% to 85% NEP range on the estimated seismic risk would be a factor of 100
wide. A typical PUNC estimate of about 0.3 or less on the plant damage state fragility estimate contributes

less than about a factor 4 range on the 15% to 85% NEP seismic risk for a typical EUS hazard curve with
an AR ratio of about 2.5. Therefore, the seismic risk uncertainty is nearly totally dominated by the seismic

hazard uncertainty. Thus, over the central region of the seismic risk estimate from about the 40% to 90%
NEP range, it is unnecessary to consider the fragility estimate uncertainty OUNCE but to simply define the

fragility by its mean (composite) 1 variability.

Prior to about 1990, most high quality SPRA studies separated the total fragility variability P into

its randomness PRAND and uncertainty components PUNC. In fact, at one stage it was considered
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absolutely essential for a high quality SPRA to make such a separation and to rigorously propagate the
individual uncertainty estimates in order to estimate the uncertainty range on the estimated seismic risk.
Unfortunately the division of the overall fragility P into OUNC and PRAND has always been partially
subjective and a source of controversy between practitioners. Furthermore, the rigorous propagation of this
uncertainty from the individual SSC fragility estimates to the plant damage fragility estimate and then to
the seismic risk estimate resulted in an extremely substantial increase in the numerical computations
involved.

However, based on the above observation gleaned from these SPRA results, none of this increased
complexity and controversy associated with subdividing the fragility variability P into IPUNC and PRAND
is either necessary or even desirable. The practice should be abandoned. Point estimates of the seismic
risk such as the mean risk, median risk, and 85% NEP risk can be made working only with the mean
(composite) SSC fragility estimates defined by C5 0% and P with a precision substantially better than the

accuracy of the underlying data. The added complexity of separating the fragility variability P estimates
into PUNC and PRAND and then rigorously propagating this uncertainty through to seismic risk
uncertainty can lead to the mistaken impression that the complex process produces an accuracy in
estimated seismic risk that simply doesn't exist.

Furthermore, the fact that the median and 85% NEP seismic risk, typically differ by about a factor
of 10 should be sufficient to demonstrate that none of the point estimates (mean, median, or 85% NEP) are
highly accurate. In my judgement, even the highest quality SPRA cannot produce point estimate seismic
risk estimates accurate to within better than a factor of 5 because of inaccuracies of the underlying data.

2.2.2 Observations Concerning Apparent Lack of Sensitivity of Reported Seismic
Risk to Significant Seismic Design Changes

Certainly, for a deterministic engineer, changing the seismic capacity of a structure, system or
component (SSC) by a factor of 1.5 represents a substantial change in the seismic vulnerability of that SSC.
However, based on the typical slope of the seismic hazard curves shown in Figure 2 a factor FS change in
the seismic capacity will only result in a factor Rp change in the resulting seismic risk where based on the
approximation of Eqn. (1):

R p =(FS )K (I 1)

For FS = 1.5 and the typical EUS and UK hazard curves shown in Figure 2:

AR KH l(Rp)-' |
2.0 3.32 3.8
4.0 1.66 2.0

Thus, a substantial change in the seismic capacity of a factor of 1.5 typically results in a change in seismic
risk of only a factor of 2 to 4 because of the shallow slope on typical seismic hazard curves.

Considering my closing comment of the previous section that the seismic risk cannot be estimated
to within an accuracy of better than a factor of 5, a change in seismic risk of only a factor of 2 to 4 by a
substantial design change might be considered by some to be inconsequential. The problem is that one
must be careful not to confuse the inaccuracy of absolute seismic risk estimates with the importance of
changes in the relative seismic risk. Even though the absolute seismic risk cannot be estimated within a
factor of 5, a change in the relative seismic risk of a factor of 2 to 4 represents a significant seismic design
change that should not be ignored.

My conclusion is that fairly small differences (less than a factor of 5) in absolute seismic risk
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estimates should be de-emphasized whereas changes in the relative seismic risk as small as a factor of 2 to
4 are important and should be emphasized. Unfortunately, in order to be comparable, two relative seismic
risk estimates must both be computed by the exact same prescriptive approach to estimating the seismic
hazard and SSC fragilities. Otherwise, the comparisons of small relative differences become meaningless.
This dichotomy between the level of accuracy of seismic risk estimates and the importance to design of
relatively small changes in the estimated seismic risk remains a continuing problem in the use of SPRA
results for making design or other safety related decisions. In the mid-1980's to 1990 time frame as a result
of this dichotomy considerably increased emphasis was placed on defining the Seismic Margin of a plant as
opposed to defining the Seismic Risk.

3Seismic Margin Method

3.1 Definition of Seismic Marein

Nuclear power plants have been designed for a Design Basis Earthquake (DBE) called the Safe
Shutdown Earthquake (SSE) in the U.S. The design criteria is conservatively established. Therefore, these
plants have additional seismic margin to withstand earthquake ground motion larger than their DBE ground
motion. Ref. 7 suggested that one way to consistently describe this margin over a wide range of plants and
their SSCs was to define this seismic margin in terms of the High-Confidence-Low-Probability-of-Failure
(HCLPF) Capacity of each critical SSC and Plant Damage State. It was recommended that this HCLPF
capacity should represent approximately the 95% confidence of less than about 5% probability of failure
point on the fragility curve (see Figure 3). Thus:

CHCPF ' C5 %efH (12)

f =-1.645(PUNC + p RAND )(I2a)

where CHCLPF is the HCLPF seismic capacity and -1.645 is the standardized normal variable associated
with 5% NEP. This recommendation was adopted by an Expert Panel on the Quantification of Seismic
Margins (Ref. 5) and the U.S. Nuclear Regulatory Commission
(Ref. 6).

However, as noted in Section 2.2.1, it was decided in about 1990 to no longer recommend that the
fragility variability P be subdivided into PUNC and PRAND. Based on Eqn. (3), so long as 0.5 • (MUNCI

PRAND) S 2.0:

fH z -2.326 (p)(12b)

It is unlikely that (PUNC/PRAND) falls outside of the above range. If (PUNC/PRAND) does fall outside
of this range, then Eqn. (12b) becomes an increasingly conservative approximation of Eqn. (12a).

Based on Eqn. (12b), an alternate definition of the HCLPF capacity is that the HCLPF capacity
corresponds to approximately the I% probability of failure point on the mean (composite) fragility curve.
This alternate definition of the HCLPF capacity was adopted by the U.S. Nuclear Regulatory Commission
(Ref. 6) when P is not subdivided into PUNC and PRAND. Thus:

CHCLPFt C1 %(13)

where Cl% is the 1% probability of unacceptable performance capacity as defined by Eqn. (4).

3.2 Methods for Computing HCLPF Capacity of SSC
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Ref. 5 recommends two methods for computing the HCLPF capacity of a SSC. These methods are
the Fragility Method, and the Conservative Deterministic Failure Margin (CDFM) Method.

In the Fragility Method, the fragility curve is computed as described in Section 2.1.2. Next, the C

1% is computed from Eqn. (4) and the HCLPF capacity CHCLPF is approximated by Eqn. (13).

Ref. 7 recommended the CDFM Method as an approximate method for estimating the C1 % point
on the fragility curve and thus CHCLPF. This method is deterministic, but has been extensively
benchmarked against the Fragility Method. This method is most extensively described in Ref. 10. A
summary of the CDFM Method together with a description of the conservatism introduced into the method
is given in Appendix A. This appendix demonstrates that:

Cl% tCCDFM(14 )

where CCDFM1 is the CDFM Method computed capacity. Combining Eqns. (13) and (14):

C I % = CCDFM - CHCLPF(l S)

Thus, the CDFM capacity, HCLPF capacity, and the 1% probability of unacceptable performance capacity
are essentially interchangeable terms for the same Seismic Margin Capacity and are often used
interchangeably in the literature.

Within my experience most highly experienced deterministic design engineers are not comfortable
with estimating the seismic fragility curve for a SSC. Their training has not been directed toward
estimating median seismic capacities C5 0% or variabilities P. These engineers are much more confident in
estimating a High-Confidence-Low Probability-of-Failure (HCLPF) capacity CHCLpF by the CDFM
Method rather than estimating the fragility parameters C50 % and P, and then computing CHCLPF from
Eqn. (4). Furthermore, the CDFM Method requires significantly less effort than does the Fragility Method.
Therefore, in the majority of seismic margin reviews the CDFM Method has been used to estimate the
HCLPF seismic margin capacity of individual SSCs.

In my own practice, for very critical SSCs I estimate the HCLPF capacity by both the Fragility
Method using Ref. 4 and by the CDFM Method using Ref. 10. If both methods produce CHCLPF
estimates that agree within 20%, 1 tend to consider the Fragility Method result to be the more accurate.
Nearly always such agreement occurs. When the results from the two methods differ by more than 20%, 1
search for the cause of the difference and I generally discover that I have made some error in the Fragility
Method. The CDFM Method is much less error prone and is therefore more reliable, but somewhat less
accurate. For less critical SSCs, I exclusively use the CDFM Method.

3.3 Plant Damage State HCLPF Capacity

In a seismic margin review, the plant damage state Boolean cutsets can be developed using either
the plant damage state logic trees (fault trees and event trees) mentioned in Section 2.1.3 or using the
Success Path approach described in Ref. 10. The Success Path approach results in simple Boolean cutsets
of the type shown in Eqn. (8). The Success Path approach is simpler to use, potentially more error prone,
and sometimes introduces excessive conservatism by losing useful information on the benefits provided by
alternate redundant paths embedded within the overall Success Path.

Once the plant damage state Boolean cutset is established, the HCLPF Max/Min Method is used to
estimate the HCLPF capacity of a Damage State given the HCLPF capacities of every component in the
Boolean cutset describing that Damage State. This method consists of the following two rules:

The HCLPF capacity of a combination of components combined by "OR" gates is equal to the
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minimum HCLPF capacity of the components being combined.

The HCLPF capacity of a combination of components combined by "AND" gates is equal to the
maximum HCLPF capacity of the components being combined.

With these two simple rules, the Damage State HCLPF capacity can be immediately estimated from the
individual component HCLPF capacities and the Damage State Boolean cutset.

Component lognormal fragility curves should be truncated at some lower bound since the
lognormal tail extends to zero. Ref. 5 suggests that the HCLPF capacity represents a reasonable lower
bound on the seismic capacity. Rule #1 for "OR" combinations is rigorous when individual fragility curves
are truncated at their HCLPF capacity. It is slightly unconservative when individual fragility curves are not
truncated at their HCLPF capacity. This unconservatism is negligible except when more than two
components have essentially the same minimum HCLPF capacities. From experience, the unconservatism
is never more than 20% which is probably about the accuracy with which the HCLPF capacities can be
estimated in the first place.

Rule #2 for "AND" combinations is always conservative. This conservatism can become
substantial when two or more components have essentially the same maximum capacity. As a result,
Damage State seismic risk will be overestimated when the Damage State Boolean cutset is dominated by
components combined by "AND" gates.

3.3.1 Example Application of HCLPF Maximum Method

For this example application, it is assumed that Eqn. (8) defines the Damage State Boolean cutset.
Furthermore, the individual HCLPF capacities and variability are assumed to be:

Component A. B. C

CHCLPF = 0.35g

1 = 0.4 (16)

Component D. E. F

CHCLPF = 0.50g

13= 0.4

Table I shows the CHCLPF capacities obtained for Success Paths SP I, and SP2, and Damage State DS
using the HCLPF Max/Min Method. This table also shows the HCLPF capacities obtained by the rigorous
convolution of the component fragility curves performed as described in Section 2.1.4. Each fragility curve
is assumed to have the Eqn. (16) HCLPF capacities and 1 = 0.4 with no truncation of the tails of the
fragility curves.

This example shows that about 14% unconservatism is introduced by the HCLPF Max/Min
Method when three identical component fragilities without truncation are combined in an OR combination.
It also illustrates the conservatism introduced when two components are combined in an AND combination,
For more complex Damage State Boolean cutsets, the HCLPF Max/Min Method generally introduces a
conservative bias to the computed Damage State HCLPF capacities, as is the case in this simple example.

3.4 Use of Screening Tables To Screen Out SSCs From HCLPF Capacity Computations

Ref. 10 provides screening tables which can be used as part of a seismic walkdown to screen out
many SSC from having to have HCLPF capacity calculations performed. The Ref. 10 screening tables are
set at 0.8g, 5% damped peak spectral acceleration (approximately 0.33g PGA) and 1.2g 5% damped peak
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spectral acceleration (approximately 0.5g PGA). The advantage of screening out components from further
review is that a great amount of unnecessary HCLPF capacity computations are eliminated for components
whose HCLPF capacities clearly exceed the screening level. However, if the screening level is set too low
and all computed HCLPF capacities for the non-screened out components either nearly equal or exceed the
screening level, then no weaker link components which govern the seismic risk will be determined from the
Seismic Margin Review. Therefore, the screening level needs to be set sufficiently high that it is
unnecessary to determine which components are the weaker link components when all components have
HCLPF capacities which exceed this screening level.

In recent years, the Ref. 10 screening tables have also often been used in SPRA reviews. When
screening tables are used in a SPRA review, a surrogate element must be added to the Damage State
Boolean cutsets to replace all of the components which have been screened out from review. Based on Ref.
4, this surrogate element should have the following median capacity C50 % and variability P:

Surroeate Element

C5 0 % =2(SL)
(17)

= 0.3

where SL is the screening level. This surrogate element produces a HCLPF capacity
CHCLPF = Cl % = SL as can be seen from Eqn. (4). If no surrogate element is added, then the Damage
State seismic risk coming from the screened out components will have been ignored.

The advantages of using screening tables in a SPRA is that computing fragilities for a large
number of uninteresting components can be eliminated. The disadvantage is that the replacement
surrogate element may be a significant contribution to the computed seismic risk which can mask the
actual risk contributions. This disadvantage can be overcome by following the below steps when selecting
a screening level:

Establish a permissible level of seismic risk PFS which can be contributed by the
surrogate element.

Enter the seismic hazard curve at an exceedance frequency HS(a) given by:

HS(a) = 2 PFS(1 8)

and determine the corresponding ground motion level a.

Set the screening level SL at:

SL 2 0.8 a5(19)

This approach will assure that the surrogate element will not contribute a seismic risk greater than PFS.
The basis for this approach is presented in Appendix B.

Table 2 presents a representation seismic hazard curve for a low seismic EUS or UK site. For this
hazard curve, if the permissible surrogate element seismic risk was set at 0.5 x 10-5, then HS(a) = x10-5 ,
as = 0.66g and SL 2 0.53g. Thus, a screening level of 0.8g is more than sufficient. However, if the

permissible surrogate element risk was only O.Sx 10-6, then by the same approach SL 2 1.Og and a
screening level of 0.8g would not be sufficient.
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4. Issues Addressed by SPRA and Seismic Margin Reviews

The SPRA Method addresses each of the following questions:

1. What is the seismic risk to the plant?

2. What range of ground motion levels dominate the seismic risk?
3. What plant components are dominant contributors to seismic risk?
4. What is the median (or mean) seismic capability of the plant?
5. What is the ground motion level at which a HCLPF of seismic-induced core damage

exists?
6. Are there any weaker link components which reduce the HCLPF capacity of the plant

below some desired SME level? If so, what are these components?

Because of large uncertainties in seismic hazard estimates of the annual probability of exceedance of
ground motion levels which dominate the seismic risk (i.e., ground motion levels well beyond the SSE
level), Question 1 can only be addressed with considerable uncertainty. Questions 2 and 3 are only mildly
dependent on the seismic hazard estimate and, as such, avoid the concerns about the large uncertainty in the
seismic hazard estimate. Questions 4 through 6 are independent of the seismic hazard.

In order to address Questions 2 through 4, a full expression of the seismic capability of every
important component is needed in terms of conditional probability of failure versus ground motion level,
or, in other words, a fragility curve. Such fragility curves also contain uncertainty and controversy because
of a limited data base. Thus, Questions 2 through 4 can also only be addressed with uncertainty, although
less than for Question 1.

In many cases, Questions 5 and 6 are of the greatest interest. These questions only require the
HCLPF capacity of seismic safety significant SSCs to be determined. Thus, these questions can be
addressed equally well by a Seismic Margin review. However, a Seismic Margin review cannot directly
address Questions I through 4.

5. Hybrid Method

5.1 Introductory Comments on Hybrid Method

A need existed to establish an intermediate method midway between the SPRA Method and the
Seismic Margin Method. This intermediate method (called herein Hybrid Method) has to be capable of
addressing all 6 questions listed in the previous section with only a small and tolerable loss of precision
relative to the SPRA Method. In addition this Hybrid Method needed to retain the fundamental simplicity
of the Seismic Margin Method in only requiring HCLPF capacities to be computed by the CDFM method
as opposed to the SPRA Method of developing seismic fragilities. Thus the advantage of the SPRA
Method of addressing all 6 questions, and the simplification of the Seismic Margin Method are both
retained.

5.2 Hybrid Method Steps

The following steps of the SPRA Method are retained:

[ Seismic Hazard Estimate (Section 2.1.1)

El Systems Analysis (Section 2.1.3)

El Convolve Individual SSC Fragilities to Obtain Plant Damage State Fragility (Section
2.1.4)

D Convolution of Plant Damage State Fragility Estimate and Seismic Hazard Estimate to
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Obtain Damage State Seismic Risk (Section 2.1.5)

However, the Seismic Fragility Estimate Step (Section 2.1.2) is revised and simplified as follows.

First, estimate the HCLPF Capacity by the CDFM Method. Next, approximately estimate the
fragility logarithmic standard deviation P byjudgement and the following guidance. For structures and
major passive mechanical components mounted on the ground or at low elevations within structures, 1
typically ranges from 0.3 to 0.5. For active components mounted at high elevations in structures the typical
p range is 0.4 to 0.6. When in doubt, use P = 0.4. Lastly, note that Cl% = CCDFM and use Eqn. (4) to
define the median capacity C50 %. Table 3 presents the ratio C50%ICCDFM for typical P values. Note
that overestimating P is unconservative because it increases C50 %.

5.3 Basis for Hybrid Method

The Hybrid Method is based on the observation that the annual probability of unacceptable
performance PF for any SSC is relatively insensitive to P. This annual probability (seismic risk) can be
computed with adequate precision from the CDFM Capacity CCDFM and a crude estimate of P. This point
is illustrated in Table 4 using the representative seismic hazard estimate given in Table 2 for two different
CDFM capacities. Table 4 was developed by numerical integration of Eqn. (1 Oa). Over the range of P
from 0.3 to 0.6, the computed seismic risk differs by a factor of approximately 2.6. The computed seismic
risk at 1 = 0.3 is approximately 1.5 times that at P = 0.4, while at 1 = 0.6 the computed seismic risk is
approximately 60% of that at 13 = 0.4. A very crude estimate of P is sufficient to estimate the seismic risk P

F within a factor of 1.6. There is no need to obtain an improved estimate of P.

6. Simplified Hybrid Method

6.1 Introductory Comments on Simplified Hybrid Method

Even though the Hybrid Method represents a considerable simplification of the SPRA Method, it
still requires substantial numerical calculations in order to convolve individual SSC fragilities to obtain
plant damage state fragilities (Section 2.1.4) and to convolve plant damage state fragilities with the seismic
hazard estimate to obtain the estimated damage state seismic risk (Section 2.1.5). Therefore, access to a
computer program and computer to perform these steps is required. The Simplified Hybrid Method was
developed to avoid the need for these numerical calculations and to enable the Damage State seismic risk to
be reasonably estimated almost instantly by simple manual analysis given:

Di Seismic hazard estimate (Section 2.1.1)

El CDFM based HCLPF capacity for individual SSC
(Section 3.2 and Appendix A)

DI Damage State Boolean cutsets (Section 2.1.3)

This method is intended for quick estimation of the seismic risk significance of design changes or
modifications to existing plants and to provide a sanity check on seismic risk results obtained by either the
SPRA or Hybrid Methods. The basis for this method is given in Appendix B.
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6.2 Estimation of Seismic Risk PF for an Individual SSC By Simplified Hybrid Method

Step 1: Determine the component HCLPF capacity by the CDFM Method and estimate P as per the
Hybrid Method (Section 5.2)

Step 2: Estimate the 10% conditional probability of failure capacity C1 0% from:

CIO% = FOCHCLPF

= 0(20)
where 1.044 is the difference between the 10% NEP standard normal variable
(-1.282) and the 1% NEP standardized normal variable (-2.326). Fp is tabulated in Table 3

for various P values.

Step 3: Determine hazard exceedance frequency HI 0% that corresponds to CI 0% from hazard

curve.
Step 4: Determine seismic risk PF from:

PF = 0.5H 1 0 %(2I)

6.2.1 Example Application of Simplified Hybrid Method for Individual SSC

The following example computes the seismic risk PF for a SSC with a CDFM based HCLPF
capacity CHCLPF of 0.35g and the seismic hazard estimates tabulated in Table 2.

Step 1: Estimate P = 0.40
Step 2: Estimate CIo%

CIO% = 1.52 (0.35) = 0.532g

Sten 3: Determine HI 0% from hazard estimate:
H I0% = 2.04xl0-5

Step 4: Estimate seismic risk PR from Eqn. (21):
PF 1.02x10-5

Table 4 presents in parentheses the seismic risk computed by the Simplified Hybrid Method for all
8 cases considered. Table 4 shows that for the hazard curve considered, the Simplified Hybrid Method
introduces a 0% to 25% conservative bias. The cause of this conservative bias is discussed in Appendix B.
This bias is of about the same size as the uncertainty in seismic risk resulting from even a moderate level of
uncertainty in A, and is very small in comparison to the uncertainty in estimating the mean seismic hazard
exceedance frequency.
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6.3 Estimation of Damage State Seismic Risk P BY Simplified Hybrid Method

Step 1: Combine the individual SSC HCLPF capacities by the HCLPF Max/Min Method (Section
3.3) to estimate the Damage State HCLPF capacities

Step 2: Estimate the Damage State variability P. Because of the convolution described in Section
2.1.4, the Damage State fragility curve has a lower J than the individual component fragility
curves, it is recommended that P = 0.3 be used for the Damage State variability.

Step 3: Estimate the Damage State seismic risk PF by Steps 2 through 4 of the previous Section 6.2.
For an example application, the simple Damage State Boolean cutset given in Eqn. (8) will be

used. The individual component fragilities are defined in Eqn. (16). The seismic hazard estimate given in
Table 2 will be used. First, the rigorous SPRA Method described in Sections 2.1.4 and 2.1.5 is applied to
convolve the individual fragility estimates to Damage State fragility estimates and then to convolve these
Damage State fragility estimates with the seismic hazard estimate to obtain the Damage State seismic risk.
Table 5 presents the seismic risk PF computed for Success Paths SPI and SP2, and Damage State DS by a
rigorous application of the SPRA Method.

Table 5 also presents the seismic risks PF computed for these same cases by the Simplified Hybrid
Method described above. The HCLPF capacities computed in Step I by the HCLPF Max/Min Method are
shown in Table 1. These HCLPF capacities together with 1 = 0.3 are used with Steps 2 through 4 of
Section 6.2 to compute the seismic risks.

The Simplified Hybrid Method underestimates the seismic risk for Success Paths I and 2 by about
20% to 25%. This underestimation is primarily due to the HCLPF Max/Min Method overestimating the
HCLPF capacity for these OR combination cases (see Table 1). The Success Path SPI and SP2 seismic
risk estimates represent a very severe test for the HCLPF Max/Min method because all three components
have identical SACDFM capacities. From actual SPRA experience it is unlikely that as many as three
components in an OR combination will all have the same minimum capacity.

The Simplified Hybrid Method estimates the same seismic risk for Success Path SP2 and Damage
State DS because the HCLPF Max/Min Method produces the same HCLPF capacity for these two cases.
Although not shown, for Damage State Boolean cutsets dominated by AND combinations, the Simplified
Hybrid Method can overestimate the seismic risk by as much as a factor of two. Within my experience this
very simple procedure provides a sufficiently precise estimation of the seismic risk for most applications.

6.4 Treatment of Non-Seismic Failures and Human Errors In Cutsets

For simplicity, non-seismic failures and human errors (called herein randomfailures) were not
included in the Damage State DS and Success Paths SPI and SP2 Boolean cutset
Eqn. (8). Both the SPRA Method and the Rigorous Hybrid Method automatically include the effects of
these random failures when they are included in the Boolean cutset equation because both methods perform
the rigorous numerical convolution described in Section 2.1.4 to determine the Damage State fragility,
which then includes the effect of these random failures.

However, the Simplified Hybrid Method does not directly consider the effect of random failures
on seismic risk because it uses the HCLPF Max/Min Method to approximate the Damage State fragility.
Even so. the effect of random failures can be approximated as described for the following example in
which the Damage State Boolean cutset of Eqn. (8) is revised to:

DS = (SP14RI)3(SP24R2)3R3(22)

where RI, R2, and R3 are random failures with failure probabilities PF(R1) . PF(R2). PF(R3), respectively.

First, reduce the HCLPF capacity of any Success Path with large random failure probabilities
combined in an OR combination using the following empirical guidance:
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PF(R) HCLPF Reduction Factor
<2% No Reduction
5% 0.9
10% 0.8
30% 0.7

Next, use the HCLPF MaxlMin Method with these revised (if necessary) success path HCLPF capacities to
define the Damage State seismic HCLPF ignoring the AND combined random failure R3. Using this
Damage State seismic HCLPF, compute the seismic risk PFS by Eqns. (20) and (21) of Section 6.2. Lastly,

incorporate the AND combined random failure R3 by:

PF = PFS&PF(R3)(2 3)

7. Summary and Conclusions

The necessary steps in the Seismic Probabilistic Risk Assessment (SPRA) Method to estimate
Damage State seismic risk are summarized in Section 2.1. Some important observations concerning the
SPRA Method are presented in Sections 2.2.

Section 3 summarizes the simpler Seismic Margin Method. The concept of defining seismic
margin in terms of the High Confidence Low Probability at Failure (HCLPF) capacity is discussed in
Section 3.1. Some problem areas associated with the use of Screening Limits to reduce the number of
HCLPF or fragility computations required in either Seismic Margin or SPRA reviews are discussed in
Section 3.4 and an approach to avoid these problems is presented.

Section 4 summarizes and compares the seismic issues which can be addressed by a SPRA review
versus a Seismic Margin review. The Seismic Margin review addresses some of the most important issues,
but not all of the issues addressed by a SPRA review.

Section 5 presents a Hybrid Method which addresses all of the issues, addressed by a SPRA
review while retaining much of the simplicity of the Seismic Margin Method. It is recommended that this
Hybrid Method should be used in lieu of either the SPRA Method or the Seismic Margin Method for most
future seismic risk studies. The simplifications gained over the SPRA Method are worth the slight loss in
precision.

Lastly, Section 6 presents an even much simpler Simplified Hybrid Method for estimating
Damage State seismic risk. This method is intended for quick estimation of the seismic risk significance of
design changes or modifications to existing plants and to provide a sanity check on seismic risk results
obtained by either the SPRA or Hybrid Methods. This very simple procedure provides a sufficiently
precise estimation of the seismic risk for most applications. Given a seismic hazard estimate, with this
Simplified Hybrid Method, all Seismic Margin study HCLPF results can be essentially instantly converted
into Damage State seismic risk estimates. Therefore, for any plant for which a high quality Seismic Margin
review has been performed, Damage State seismic risks can easily be estimated using this Simplified
Method.
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Table I Success Path and Damage State
HCLPF Capacities for Example Problem

HCLPF Capacit es CHCLPF(g)

Failure Mode Max/Min Rigorous
Method Convolution

SPI 0.35 0.30
SP2 0.50 0.43
DS 0.50 0.52

Table 2 Representative Mean Seismic Hazard Estimate

Hazard Spectral
Exceedance Acceleration
FrequErktq Lg)
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1x1O-2 0.039
3xjo-3 0.072
x 10-3 0.117

3x1O4 0.200

Ix104 0.302
3x1o05  0.473
Ix 105  0.661
3xjo-6  0.953
lxIO-6  1.254
3xlo 7 1.695

1x1O07  2.161

Table 3 Hybrid and Simplified Hybrid Method Parameters

(C54

0.3 2.01 1.37; iC] Median CDF~ug / C F

0.4 2.54 1.52
0.5 3.20 1.69
0.6 4.04 1.87
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Table 4 Component Seismic Risk Results
(all risk results are to be multiplied by 10-6)

Seisrmic Risk PF *

CDFM Capacity P = 0.3 1 = 0.4 P = 0.5 P = 0.6
CCDFM .

0.35 12.7 8.4 6.1 4.8
(14.3) (10.2) (7.2) (5.2)

0.50 4.0 2.6 1.9 1.6
(4.4) (3.2) (2.2) (1.6)

Results shown in parentheses ( ) are by the Simplified Hybrid Method of Section 6.2

Table 5: Seismic Risk PF Computed for Success Paths
SPI and SP2. and Damage State DS

(all risk results are to be multiplied by 10-6)

Failure Mode SPRA Simplified Hybrid
Method Method

SPI 17.8 14.3
SP2 5.8 4.4
DS 4.3 4.4
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RISK-ASSESSMENT METHODOLOGY FOR
SEISMIC INPUT
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Figure 1: Critical Steps of a Seismic Probabilistic Risk Assessment
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Figure 3: ILLUSTRATION OF FRAGILITY CURVES
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Appendix A
Summary of Conservatism Introduced

Into the CDFM Method for Computine
Seismic Capacity

A.1 General Philosophy of CDFM Method

As noted in Section 3.2, the CDFM Method is a deterministic method for estimating seismic
capacity and is aimed at achieving a seismic capacity corresponding to about the 1% non-exceedance
probability (NEP). The general criteria (from Ref. 7 through 10) for this approach are outlined in Table
A. I and are briefly summarized below.

Essentially, the approach intends to achieve the following:

For the specified seismic margin earthquake ground motion level SME, the elastic computed
response (SME Demand) of structures and components mounted thereon should be defined at
the 84% nonexcedance probability (NEP).

Strengths for most components should be defined at about the 98% exceedance probability so that
even if the SME demand slightly exceeds this CDFM strength by more than a permissible
conservatively specified inelastic energy absorption capability, there will result a very low
probability of failure. However, for the CDFM strength of very brittle failure modes (weld
failure, relay chatter, etc.) which have no inelastic energy absorption capability, so that this
capability cannot be conservatively underestimated, the conservatism at which the strength is
defined should be increased to about the 99% exceedance probability.

Inelastic distortion associated with a Demand/Strength ratio greater than unity is permissible. The
permissible level of inelastic distortion should be specified at about the 5% failure probability
level. The inelastic energy absorption capability, FN should be slightly conservatively
estimated at about the 84% NEP for this permissible level of inelastic distortion.

Finally,
Seismic Demand/Strength • FN (A.l)

where FN is the inelastic energy absorption factor.

Because of the conservatism introduced at the various steps, the result is a
high-confidence-of-a-low-probability-of-failure (HCLPF) when Eqn. (A.1) is satisfied. Any seismic
evaluation which introduces approximately the level of conservatism as defined in the above four steps
meets the intent of the CDFM approach and would be expected to achieve a HCLPF.

A.2 Estimation of the Conservatism Introduced By the
CDFM Method as Generally Applied

A.2.1 Basic Approach

The median seismic capacity C50% can be estimated from:

C5 -=S0 FN50% SME
D50% (A.2)

where S5Q%. D5 0 %, FN5 % are median estimates of the component seismic strength, seismic demand for
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a specified SME input, and inelastic energy absorption (nonlinear) factor, respectively. In turn, the CDFM
seismic capacity CCDFM is given by:

CCDFM CDFM FNcCDMI SME
DCI)FNI(A.3)

where SCDFM DCDFM, and FNCDmi are the deterministic strength, demand, and nonlinear factors
defined in accordance with the CDFM method. Defining RS, RD, and RN as the median conservatism
ratios associated with the CDFM method, then:

S50 % = RS SCDFM

D5 0% = DCDFM/RD (A.4)

FN50% = RN FNCDFNI

and

C50% =RC CCDFM
(A.5)

RC = RS RD RN

where RC is the overall median conservatism ratio associated with the CDFM method. The ratios RS, RD,
and RN will be estimated in the following three subsections.

A.2.2 Median Strength Conservatism Ratio

The CDFM strength is normally computed using code specified allowable ultimate (maximum)
strengths.

Based upon a review of median capacities from past seismic probabilistic risk assessment studies
versus US code specified ultimate strengths for a number of failure modes, it is judged that for ductile
failure modes when the conservatism of material strengths, code strength equations, and seismic strain-rate
effects are considered, the code ultimate strengths have at least a 98% probability of exceedance. For a
low ductility failure modes, an additional factor of conservatism of about 1.33 is typically introduced.
Thus:

(Ductile) RS = e2.054PS
(A.6)

(LowDuctility) RS =1.33e2 .05 4 PS

where PS is the strength logarithmic standard deviation (typically in the 0.2 to 0.4 range), and 2.054 is the

standardized normal variable for 2% NEP.

A.2.3 Median Demand Conservatism Ratio

Within the US, seismic demands for CDFM evaluations are typically computed in accordance
with the requirements of ASCE 4-86 (Ref. 12), except that median input spectral amplifications are used
instead of median-plus-one-standard deviation amplification factors. When both are anchored to the same
average spectral acceleration computed over a broad frequency range of interest such as 3 to 8 Hz, the ratio
of median-plus-one-standard-deviation to median spectral acceleration amplification factor averages about
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1.22. In addition, as noted in its foreword, ASCE 4-86 is aimed at achieving about a 10% probability of the
actual seismic response exceeding the computed response, given the occurrence of the SME. Thus the
median demand ratio RD can be estimated from:

el .2820D
RD =

1.22 (A.7)

where PD is the seismic demand logarithmic standard deviation for a specified seismic input (typically in
the 0.2 to 0.4 range).

A.2.4 Median Nonlinear Conservatism Ratio

In the CDFM method, the nonlinear factor is expected to be specified at about the 5% NEP level.
Thus for ductile failure modes, the median nonlinear factor ratio RN should be:

Ductile RN = el.645N (A.8a)

where PN is the logarithmic standard deviation for the nonlinear factor (typically in the 0.2 to 0.4 range for
ductile failure modes) and 1.645 is the standardized normal variable for 5% NEP.

However, for low ductility (brittle) failure modes, no credit is taken for a nonlinear factor, i.e.:

FN50% FNCDFM 1,0

RN ;1.0 (A.8b)

A.2.5 Resulting CDFM Capacity Conservatism

Combining Eqns. (A.5) through (A.8) the median CDFM capacity ratio RC is estimated to be:

(Ductile Failures) Rc = 0.82e2.054PS+1. 2820D+1.645PN

(Low Ductility) RC = 1.09e2 .0 54 PS+1.282PD (A.9)

and from Eqns. (A.5) and (4):

Cl%= RC CCDM e-2 .3 2 6 0(A.10)

P= [Ps +A +PN (A. I)

Table A.2 presents the ratio of (CI/CCrCDFM) for typical values of PS, PD, and PN as computed
from Eqns. (A.9) through (A.I 1). It can be seen that over this entire range of P values:

C l%= CCDFM(A.12)

with the ratio (Cl%/CCDFM) ranging from 0.93 to 1.20 with a median value of 1.07.

The CDFM capacity can also be used to estimate the 10% probability of unacceptable
performance capacity CIO%. From Eqns. (A.5) and (5):
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CIO% = RC CCDFMeC1- 2 8 2P(A.13)

Table A.3 presents the ratios of (CloCCcDM) for typical values of PS, PD, and PN. It can be seen that:

CIO% 1.5 CCDFM (A.14)

However, the approximation of Eqn. (A.14) is not as good as that of Eqn. (A.12).
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Table A-i

SUMMARY OF CONSERVATIVE DETERMINISTIC FAILURE MARGIN APPROACH

Load Combination:
Ground Response Spectrum:

Normal + SME
Conservatively specified (84% Non-Exceedance Probability) .

Damping
Structural Model:

Conservative estimate of median damping
Best Estimate (Median) + Uncertainty Variation in Frequency

Soil-Structure-Interaction:

Material Strength:

Static Strength Equations:

Inelastic Energy Absorption:

In-Structure (Floor) Spectra Generation:

Best Estimate (Median) + Parameter Variation

Code specified minimum strength or 95% exceedance actual strength if test
data are available.
Code ultimate strength (ACI), maximum strength (AISC), Service Level D
(ASME), or functional limits. If test data are available to demonstrate
excessive conservatism of code equation then use 84% exceedance of test
data for strength equation.
For non-brittle failure modes and linear analysis, use 80% of computed
seismic stress in capacity evaluation to account for ductility benefits, or
perform nonlinear analysis and go to 95% exceedance ductility levels.
Use frequency shifting rather than peak broadening to account for uncertainty
plus use median damping.
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Table A.2 Ratio Of (C1 %/CCDFI\ I)

Strength Demand Low Ductility Ductile Failure Modes
Variability Variability Failure Modes

Ps DD PN=0.2  N--0.4

0.2 0.2 1.10 0.99 0.99
0.3 1.08 0.97 1.00
0.4 0.97 0.93 0.99

0.3 0.2 1.13 1.04 1.08
0.3 1.11 1.04 1.11

__. 0.4 1.05 1.01 1.10
0.4 0.2 1.13 1.07 1.15

0.3 1.14 1.09 1.19
. 0.4 1.11 1.07 1.20

Table A.3 Ratio Of (CIO%/CCDFrl)

Strength Demand Low Ductility Ductile Failure Modes
Variability Variability Failure Modes

Ps PD __ . N1 0.2  ON-=0 .4
0.2 0.2 1.48 1.42 1.65

0.3 1.57 1.49 1.76
i 0.4 1.55 1.56 1.85

0.3 0.2 1.64 1.61 1.90
0.3 1.72 1.70 2.04

_ 0.4 1.78 1.77 2.15
0.4 0.2 1.81 1.79 2.16

0.3 1.92 1.91 2.33
. 0.4 2.00 2.00 2.47
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Appendix B

Derivation of Simplified Hybrid Method for
Estimating Seismic Risk

Typical seismic hazard curves are close to linear when plotted on a log-log scale (for example see
Fig. 2). Thus over at least any ten-fold difference in exceedance frequencies such hazard curves may be
approximated by:

H(a) = Kla-KH
- I (B.l1)

where H(a) is the annual frequency of exceedance of ground motion level "a", KI is an appropriate
constant, and KH is a slope parameter defined by:

KH-
og (AR) (B.2)

in which AR is the ratio of ground motions corresponding to a ten-fold reduction in exceedance frequency.

So long as the fragility curve PF/a is lognormally distributed and the hazard curve is defined by
Eqn. (B.1), a rigorous closed-form solution exists for the seismic risk Eqn. (10). This closed-form solution
is derived in Ref. 13 as:

PF=~HVKH a
P= 50% e (B.3a)

F50% = ,50
CH (B.3b)

a = ,(KH #)(B.3c)

where H is any reference exceedance frequency, CH is the ground motion level that corresponds to this
reference exceedance frequency H from the seismic hazard curve, C5 0% is the median fragility, and P is
the logarithmic standard deviation of the fragility. This derivation is reproduced herein in Appendix C.

Next, a specific hazard exceedance frequency HI 0% is substituted for H in Eqn. (B.3a) where H

10% is defined at the ground motion SAIO% corresponding to a 10% conditional probability of failure.
Thus:

F50% = C50% = et 282P

CIO% (B.4)

from which:

(PF/H1 0 %) = e i (B.5a)

hp = 1.282(KHD) - 0.5(KHp) 2 (B.5b)

Table B.1 tabulates the ratio (PF/HIO%) over a range of AR and P values.
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Over the most common AR range:

PF z 0.5 H l 0 %(B.6)

The use of Eqn. (B.6) should be limited to the range of AR values for which (PFtHI0%) is less than about
0.6 in Table B. I in order to avoid significant error. Thus, for J3 = 0.4, Eqn. (B.6) should only be used in the
range of AR from 1.6 to 5. However, this range should cover essentially any hazard curve of interest.

At 3 = 0.4, Eqn. (B.6) produces slightly conservatively biased estimates in the typical range of AR
from 1.75 to 3.0. Additional conservative bias occurs because when plotted on a log-log scale the hazard
curves are not linear, but are slightly convex (see Fig. 2). The combination of these two factors typically
leads to about 0% to 25% conservatism over the range of AR values from 1.75 to 3.0.

Table B.1 Ratio (PF/lhl0 %) as a
Function of AR and P

AR KH . 0.3 0.4 0.5 0.6
5.0 1.43 0.63 0.57 0.52 0.48
4.5 1.53 0.62 0.55 0.50 0.47
4.0 1.66 0.60 0.53 0.49 0.46
3.5 1.84 0.57 0.51 0.47 0.45
3.0 2.10 0.54 0.49 0.45 0.44

2.75 2.28 0.53 0.47 0.44 0.44
2.5 2.51 0.51 0.46 0.44 0.45

2.25 2.84 0.48 0.44 0.44 0.48
2.0 3.32 0.46 0.44 0.47 0.57
1.75 4.11 0.44 0.47 0.59 0.89
1.60 4.90 0.45 0.55 0.87 1.74
1.5 5.68 0.48 0.72 1.48 4.21
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Appendix C

Derivation of Closed Form Solution to Risk Equation

Assuming a lognormally distributed fragility curve with median capacity, C5 0, and logarithmic
standard deviation A, and defining the hazard exceedance probability H(a) by Equation (B.1), from
Equation (lOb) one obtains:

O'= 10{KIa }[(aPvi )exp{(a M da -C-l)
2132 JJ (C.l1)

M = > C50

DefiningX = fina, Equation (C. Ibecomes:

P= [ (2he (IX- 22 J}] (C.2)

Many statistical textbooks (for example Appendix A of Ref. C. I) provide the solution to the
definite integral shown in Eqn. (C.2). Thus:

PF = K, exp{ KHM + )•(KHP) 2 }(C.3)

or from the previous definition of M:

PF =K 1 C-KH e(KHO? (C4)

Defining H as any reference exceedance frequency, CH is the ground motion level that corresponds to this
reference exceedance frequency H, then from Eqn. (B.1):

K, = H[CH]KH (C.5)

from which:
PF =HF-IIea

= 50% (C.6a)

C50%
F50% =

C H (C.6b)

a = Y4 (K H )2 (C.6c)

Reference:

C. 1: Elishakoff, I., Probabilistic Methods in the Theory of Structures, John Wiley & Sons, 1983
* RPK Structural Mechanics Consulting, 28625 Mountain Meadow Road, Escondido, CA 92026 USA
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Loess
SUMMARY STATISTICS

Plastic Plasticity Liquid Limit Su - UU Test Su - UC Test Moisture Dry
Statistic Limit (%) Index (%) (ps%) (ps Content (%) D(epncsit

CPS USAR Data - Station Site
Count: 6 6 6 1 2 9
Average: 17.5 19.1 36.6 2229 975 19.3 103.9
St. Dev: 4.1 15.2 18.0 N/A 636 4.2 8.8
Min: 12.3 3.4 16.9 2229 525 13.6 95
Max: 22.8 45.5 64.8 2229 1425 24.6 120

EGC ESP Data
Count: 2 2 2 0 2 2 2
Average: 14 18.0 32.0 N/A 3130 17.3 107.8
St. Dev: 0.0 14.1 14.1 N/A 1457 3.7 5.2
Min: 14 8 22 N/A 2100 14.7 104
Max: 14 28 42 N/A 4160 19.9 111
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Wisconsinan Till
SUMMARY STATISTICS

Statistic Plastic Limit Plasticity Liquid Limit Su - UU Test Su - UC Test Moisture Density
(%) Index (%) (psf) (psf) Content Density

CPS USAR Data - Station Site
Count: J 37 37 37 16 17 10 9
Average: 12.9 10.2 23.1 3349 3137 12.1 123.1
St. Dev: 1.4 3.6 3.9 1590 1831 2.7 4.3
Min: 10.4 2.1 13.1 880 1320 7.5 116
Max: 16.8 17.1 30.7 6600 7900 15.6 128

EGC ESP Data
Count: | 2 2 2 0 2 2 2
Average: 13 10 23 N/A 3040 15.5 116.7
St. Dev: 0.0 0.0 0.0 N/A 735 0.6 1.4
Min: 13 10 23 N/A 2520 15 116
Max: 13 10 23 N/A 3560 15.9 118
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Interglacial Soil
SUMMARY STATISTICS

S Plastic Limit Plasticity Liquid Limit Su - UU Test Su - UC Test Moisture Dry
Statistic (%) Index (%) (%) (psf (psf) Content (%) D(epncst

CPS USAR Data - Station Site : l
Count: 25 25 25 6 10 12 12
Average: 12.6 12.9 25.5 4160.5 2094.5 17.0 113.4
St. Dev: 1.9 7.5 7.2 3657.1 1257.6 8.0 15.6
Min: 9.8 4.4 16.9 1530 800 7.1 74
Max: 16.6 30.4 42.5 10437 4000 36.8 133
EGC ESP Data
Count: 3 3 3 0 2 3 2
Average: 25.7 14.3 40.0 N/A 5120 31.0 86.5
St. Dev: 21.9 4.9 19.5 N/A 5600 24.1 30.2
Min: 13 11 25 N/A 1160 15.4 65
Max: 51 20 62 N/A 9080 58.8 108
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Ilitnolan Till
SUMMARY STATISTICS

Plastic Limit Plasticity Liquid Limit Su . UU Test Su - UC Test Moisture Dey Void Compression Re-Compression Pre-Consolidation
Sithtftc N Index (h) (%) (psf) (pis Content (Y) Densit VoR Index Index Pressure (psfp

CPS USAR Data - Station Site
Count: 53 53 53 33 6 21 21 18 17 18 16
Average: 10.8 7.0 17.8 15323 6865 8.7 135.3 0.22 0.10 0.01 19063
St Dev: 1.9 5.0 6.1 8529 5195 2.4 6.6 0.11 0.04 0.01 3610
Min: 8 1.7 13.1 962 1720 6.4 110 0.15 0.053 0.007 10500
Max: 22.3 35 46.7 36000 13410 17.7 141 0.56 0.19 0.03 25000

EGC ESP Data
Count 7 7 7 2 4 8 6 2 2 2 2
Average: 9.4 9.0 18.4 11016 15175 9.1 137.8 0.22 0.08 0.01 12000
St. Dev: 1.7 1.9 1.1 8859 10498 3.2 2.9 0.02 0.01 0.00 2828
Ml: 8 7 4752 3360 5.4 134 0.199 0.079 O.OO55 1000
Max: 13 11 20 17280 28800 14.9 141 0.234 0.089 0.0075 14000
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Lacustrine
SUMMARY STATISTICS

Statsti Plastic Limit Plasticity Liquid Limit Su - UU Test Su - UC Test Moisture Dry
atisc j (%) Index (%) (%) (psf) (psf) Content (%) Density

CPS USAR Data - Station Site
Count: 2 2 2 5 0 2 2
Average: 11.5 7.4 18.9 5056 N/A 11.2 126.0
St. Dev: 1.8 0.1 1.7 2379 N/A 0.8 0.0
Min: 10.2 7.3 17.7 2502 N/A 10.6 126
Max: 12.8 7.5 20.1 7415 N/A 11.7 126

EGC ESP Data
Count: 1 1 1 0 0 1 1
Average: 11 17 28 N/A N/A 12.7 117.9
St. Dev: N/A N/A N/A N/A N/A N/A N/A
Min: 11 17 28 N/A N/A 12.7 118
Max: 11 17 28 N/A N/A 12.7 118
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Pre-Illinoian Till
SUMMARY STATISTICS

Stati Plastic Limit Plasticity Liquid Limit Su - UU Test Su - UC Test Moisture Dry
atIstic(%) Index (%) (%) (psf) (pso Content (%) D(epncst

CPS USAR Data - Station Site
Count: 11 11 11 9 1 5 5
Average: 13.9 13.4 27.3 10022 5400 14.2 120.2
St. Dev: 2.8 6.8 9.0 6944 N/A 4.2 9.4
Min: 9.6 4.4 14.9 2124 5400 6.8 116
Max: 17.8 25.5 43.3 20600 5400 16.9 137

TSC Data
Count: 3 3 3 0 3 3 3
Average: 13.7 15.0 28.7 N/A 10080 13.70 121.7
St. Dev: 5.1 6.6 10.4 N/A 1215 4.62 11.98
Min: 8 9 17 N/A 9100 8.6 111
Max: 18 22 37 N/A 11440 17.6 134
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TABLE 5-2
Summary of Shear and Compression Wave Velocity Test Data

EGC ESP Site Results CPS Site Results

Suspension Logging Test at B-2 Receiver i Seismic Cone Test Seismic Cone Test Uphole Survey at Downhole Survey
I to Receiver Measurements at CPT-2 at CPT-4 P-14 at P-14

ShearWave ShearWave I ShearWave Compression ShearWave
Compression Wave I Velocity Velocity Velocity Wave Velocity Velocity

Velocity (fps) (fps) (fps) (fps)

Depth Interval
at B-2 Stratigraphic
(ft bgs) Unit Range Average Range Average Range Average Range Average Range Typical Range Typical

0 to 42 Loess & 1680 to 4788 820 to 975 703 to 1034 641 to 838 NA 4800 900 to 900 to
Wisconsinan Till 6030 1340 1354 1077 1100 1100

42 to 59 Interglacial Zone 5720 to 6465 I 860 to 1343 1022 to 1132 1006 to 1256 NA 4800 NA 1100
(Weathered 7500 1970 1231 1602
Illinoian Till)

59 to 162 Illinoian Till 5720 to 7552 1 100 to 2188 NA NA NA NA NA 7400 NA 2100
8880 3250

162 to 190 Lacustrine 6080 to 6971 1390 to 1829 NA NA NA NA NA 7400 NA 2100
8040 2670

190 to 269 Pre-l1linoian Till 5270 to 6925 1560 to 2068 I NA NA NA NA NA 7400 NA 2100
8230 2800 I

269 to 292 Pre-lilinoian 5270 to 6579 i 1190 to 2045 NA NA NA NA NA 7400 NA 2100
Alluvial/ I 7940 3310 1 1
Lacustrine |

292 to 307 Weathered 7850 to 8096 3250 to 3420 I NA NA NA NA I NA 12000 NA 5700
Bedrock 8440 3880 f , | .
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Response to RAI 2.5.4-6 [A]
(Exelon RAI ID R7-18 [A])
Attachment

DescriDtion
This attachment presents a detailed example calculation of the factor of safety against liquefaction
for the EGG ESP Site, as summarized in Section 6.1.1 of Appendix A to the SSAR. The
calculation follows the method outlined In Youd et al. (2001). The example presented below
corresponds to subsurface conditions at Borehole B-1, at a depth of 38.5 feet.

1) Design parameters

GWfield = 6 ft

GWdesign = 5 ft

ER = 52

PGA = 0.3

M = 8

Measured Depth to Groundwater from ground surface

Design Depth to Groundwater

SPT Hammer Energy Transfer Ratio, percent

Design Peak Ground Acceleration, percent of g

Design Earthquake Magnitude

2) Input for Computations at Denth of 38.5 Feet

Depth = 38.5 ft Soil Depth Considered in Calculation

Nfield = 13 SPT Blowcount @ 38.5 feet

Fines = 13 Fines Content @ 38.5 feet, percent

3) Computation of Overburden Stresses
The total overburden pressure at the 38.5-foot depth is the sum of the products of unit weight and
thickness of each overlying soil unit. Effective overburden pressures are calculated based on the
groundwater depth, as shown below.

Total Overburden Pressure @ 38.5 feet

Otot = 2.561 tsf (Sum of products of unit weight and thickness of overlying soils)

Field Effective Overburden Pressure @ 38.5-feet, tsf

aeffifield = <atot - (Depth - GVfield) 620p Creff.field = 1.547tsf

Design Effective Overburden Pressure @ 38.5 feet, tsf

aeff.des = atot - (Depth - GWdesign) 624 pcf aeff.dcs = 1.516tsf
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Response to RAI 2.5.4-6 [A]
(Exelon RAI ID R7-1 8 [A])
Attachment

4) Computatlon of Llauefactlon Strenath (CCRR)
The soil resistance against liquefaction is calculated by the Cyclic Resistance Ratio (CRR). The CRR is
calculated as a function of the clean sand blowcount, and the Corrected CRR (CCRR) adjusts the CRR
for the overburden stress.

A) Blowcount Corrections: Four correction factors are applied to adjust the SPT blowcount to
a standardized value (Nt 60). A clean sand blowcount is also calculated (N1 60cs), based on the
fines content.

2.2
Cover " [ 1.2 Ceff.field)

L1.2 * t 1.058 tsf A

Crod = 1.00

ER
Chanmmer - 60

Overburden Correction Factor

Cover = 0.826

Rod Lenath Correction Factor
(1.0 for rod length of 30 to 1 00 feet)

Hammer Energy Correction Factor

Chammer = 0.867

Csamp.meth = 1.1 Sampling Method Correction Factor
(1.1 if a sample liner is not used)

Corrected Blowcount. without fines (N1 60)

N 1.60 = Nfield Cover Crod Charmer Csamp.meth N1.60 = 10.242

Clean Sand Blowcount (N1.60.cs)

(Equation for fines between 5 and 30 percent)

N1 .60. extF.76 -( 190 [09 (9 ie 1.5 N
N1.6.cs exifJ7 + L9 + Y1000)1 .6 N.60.cs = 12.508

B) Calculation of the CRR and the CCRR

Cyclic Resistance Ratio (CRR)
(Equation for N(1 6 0 cs) between 5 and 30)

CRR = [0.W[ 8 - 0.004721 (NI.60.cs) + 0.0006136 (N1 .60.cs) - 0.00001673 (Nl 60 cs)3]

[ I - 0.1248(NI 60cs) + 0.009578 (N1 60 cs)2 - 0.0003285 (N.60.cs)3 + 0.000003714 (NI60.cs)4]

CRR = 0.135

Page 2 of 3



Response to RAI 2.5.4-6 [A]
(Exelon RAI ID R7-18 [A])
Attachment

CRR Overburden Correction Factor (K0)
(Equation for res.des between 1 and 3 tsf)

K = 11- acdcs0 K= 0.948

CRR Static Shear Correction Factor (Kt)
(1.0 for level to gently sloping ground)

Ka = I

Corrected Cyclic Resistance Ratio (CCRR)

CCRR = CRR KO Ka CCRR = 0.128

5) Computation of Earthquake Induced Stress (CSR)
The Cyclic Stress Ratio (CSR) is calculated as a function of depth (via the stress reduction
coefficient), ground acceleration, and groundwater depth.

Stress Reduction Coefficient (rd)
(Equation for depth between 30 and 75 feet)

rd = 1.174 - 0.00814 Depth rd = 0.861

Cyclic Stress Ratio (CSR)

CSR = 0.65 PGA effeJ rd CSR = 0.284

6) Computation of Factor of Safety (FS)
The Factor of Safety (FS) is a function of the ratio of CCRR to CSR, as well as the Magnitude Scaling
Factor (MSF).

Magnitude Scaling Factor (MSF)

MSF = - MSF = 0.847
M2.56

Factor of Safety (FS)

FS = (CCRR MSF FS = 0.384
CSR
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