Sleep and Performance

Gregory Belenky, M.D.
Colonel, Medical Corps, U.S. Army
Division of Neuropsychiatry
Walter Reed Army Institute of Research

Factors Affecting Performance

- Time Awake (sleep/wake history)
- Time of Day (circadian rhythm)
- Time on Task (shift length)
- Task Complexity
- Individual Differences in Response to
 - Time Awake
 - Time of Day
48 Hours of Total Sleep Deprivation: Effect on Complex Mental Operations

72 Hours of Total Sleep Deprivation: Effect on Complex Mental Operations Task
Time on Task Effects on PVT Speed over 38 Hours of Total Sleep Deprivation

Day 1

Day 2

85 Hours of Sleep Deprivation:
30-min Daily Nap & Complex Mental Operations

- Mean Performance (N=17)
- Cubic Spline
- Linear Regression

30-min Nap
Total Sleep Deprivation vs. Daily 30-min Nap: Effect on Complex Mental Operations

Throughput (Percent of Baseline)

Sleep Deprivation (Hours)

85 Hours of Sleep Deprivation: 30-min Daily Nap & Complex Mental Operations

- Mean Performance (N=17)
- Cubic Spline
- Linear Regression

PET Scans

Sleep Deprivation (Hours)
PET Study of Sleep Deprivation: Findings

Frontal areas are deactivated during Slow Wave Sleep.

Frontal areas remain deactivated during REM.

Frontal areas are re-activated only after awakening.

Positron Emission Tomography (PET) Study of Sleep

2002 04 19 Division of Neuropsychiatry, Walter Reed Army Institute of Research U.S. Army Medical Research and Materiel Command
Subjects, Number/Sleep Group, Time in Bed

- 66 commercial drivers
 - in good general health
 - non smokers
 - light caffeine users (2-4 cups/day)
- 16 women
 - mean age 39 (range 24-55)
- 50 men
 - mean age 37 (range 24-62)
- 3 hr sleep group
 - Time in bed: 0400-0700
 - n = 18
- 5 hr sleep group
 - Time in bed: 0200-0700
 - n = 16
- 7 hr sleep group
 - Time in bed: 2400-0700
 - n = 16
- 9 hr sleep group
 - Time in bed: 2200-0700
 - n = 16
Instrumented Volunteers

2002 04 19
Division of Neuropsychiatry, Walter Reed Army Institute of Research
U.S. Army Medical Research and Materiel Command

Measures

• 24 hr. Polysomnography (EEG, EOG, EMG) (Oxford Medilog)
 - Sleep scoring
 - Sleep latency testing

• 24 hr. Actigraphy (Precision Control Design, Inc.)

• Psychomotor Vigilance Task (PVT)

• Driving Simulator (STI, Inc)

• Oculomotor Responses - Fitness Impairment Tester (FIT) (PMI, Inc.)

• WRAIR Performance Assessment Battery (PAB)

• Synthetic Work Task

• Stanford Sleepiness Scale

• Profile of Mood States
Mean Sleep, Baseline, Experimental Days, & Recovery

![Graph showing mean sleep, baseline, experimental days, and recovery.]

Mean Sleep
- **Experimental Days**
 - 9 hr group - 7.9 hrs
 - 7 hr group - 6.3 hrs
 - 5 hr group - 4.7 hrs
 - 3 hr group - 2.9 hrs

Amount of Sleep (Hrs)
- 9 HR
- 7 HR
- 5 HR
- 3 HR

Day
- T2 B E1 E2 E3 E4 E5 E6 E7 R1 R2

Effect of Partial Sleep Deprivation (Restricted Sleep) on PVT Performance

![Graph showing the effect of partial sleep deprivation on PVT performance.]

Baseline
- Sleep Restriction
- Recovery

Mean Speed (% of Baseline)
- 9 HR
- 7 HR
- 5 HR
- 3 HR
- 72 Hr TSD

Day
- 0 T1 T2 B E1 E2 E3 E4 E5 E6 E7 R1 R2 R3
Psychomotor Vigilance Task (PVT)
Time on Task Effects @ 1200

Serial Addition Substraction
<table>
<thead>
<tr>
<th>Lane Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
</tr>
<tr>
<td>T1</td>
</tr>
</tbody>
</table>

Driving Simulator: Lane Tracking

Driving Simulator
Microsleeps and Accidents

- Microsleep –
 - the occurrence of theta in the absence of artifact
 - with a duration up to 15 s
 - Anything longer scored as R&K Stage 1 sleep
- Occurrence during the minute preceding the accident

- During the sleep restriction phase
 - No R&K Stage 1 Sleep
 - all groups - 33%
 - preceded by microsleep
 - 3 hr sleep group - 49%
 - 9 hr sleep group - 29%
Driving Simulator: Peripheral Attention Task

Driving Simulator: Average Speed Across Zones
Conclusion: Restructuring the Sleep Debt

- Sleep Debt - Restructured
 - As long as performance is degrading sleep debt is accumulating
 - Once performance stabilizes sleep debt no longer accrues
 - Sleep debt is paid off rapidly
- The brain adapts to sleep restriction by capping operational capacity
- This adaptation persists into recovery, restricting performance

- Sleep Debt – Traditional view
 - Sleep debt accumulates continuously, linearly
 - Sleep debt takes days, weeks, or months to pay off
Issues in Modeling

- Current models are simple one-quantity reservoir models
 - A single quantity depleting
 - The same quantity replenishing
 - Typically different functions govern depletion and replenishment
- Simple reservoir models cannot account for the effects of sleep deprivation and sleep restriction on performance
- The performance effects and neurobiology are distinct for surge vs. sustained operations
 - Surge operations (equate to acute, severe/total sleep deprivation)
 - Sustained operations (equate to chronic sleep restriction)

Sensors, Circuits, and Software Models in Real-World Application: The Sleep Watch

Sleep Performance Prediction Model Output

Activity Counts

A Nap

Sleep Scoring Algorithm Output
Sleep Performance Model Based on Leading Facts from Sleep Research

- Linear Decline during Waking
- Charging Function during Sleep
- Circadian Rhythm
- Combined (decline, charge, circadian)

Point of Contact

Gregory Belenky, MD
COL, MC, USA
Director
Division of Neuropsychiatry
Walter Reed Army Institute of Research
503 Robert Grant Avenue
Silver Spring, MD 20910-7500

Phone: (301) 319-9085
FAX: (301) 319-9255
DSN: 285-9085
Email: gregory.belenky@na.amedd.army.mil